Membrane Protein Bcest Is Involved in Hyphal Growth, Virulence and Stress Tolerance of Botrytis cinerea
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fungal Strains and Culture Conditions
2.2. Gene Deletion and Complementation
2.3. Transcriptome Analyses
2.4. Nucleic Acid Manipulation and qRT-PCR
2.5. Pathogenicity and Infection-Related Morphogenesis Assay
2.6. Morphology and Ultrastructure of Fungal Hyphae
2.7. Abiotic Stress and Pathogenic Factor Assay
2.8. Statistical Analyses
3. Results
3.1. Identification of Bcest in B. cinerea
3.2. Deletion and Complementation of Bcest in B. cinerea
3.3. Bcest Is Involved in Hyphal Growth and Conidiation
3.4. Bcest Participates in Regulating the Pathogenicity of B. cinerea
3.5. Effects of ΔBcest Deletion on Sensitivity to Abiotic Stresses and Pathogenicity Factors
3.6. Bcest Deletion Affects Transcription and Pathogenicity-Related Genes
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fan, L.; Wei, Y.Y.; Chen, Y.; Jiang, S.; Xu, F.; Zhang, C.D.; Wang, H.F.; Shao, X.F. Epinecidin-1, a marine antifungal peptide, inhibits Botrytis cinerea and delays gray mold in postharvest peaches. Food Chem. 2023, 403, 134419. [Google Scholar] [CrossRef] [PubMed]
- Bu, S.W.; Munir, S.; He, P.F.; Li, Y.M.; Wu, Y.X.; Li, X.Y.; Kong, B.H.; He, P.B.; He, Y.Q. Bacillus subtilis L1-21 as a biocontrol agent for postharvest gray mold of tomato caused by Botrytis cinerea. Biol. Control 2021, 157, 104568. [Google Scholar] [CrossRef]
- Elad, Y.; Pertot, I.; Cotes Prado, A.M.; Stewart, A. Plant Hosts of Botrytis spp. In Botrytis—The Fungus, the Pathogen and Its Management in Agricultural Systems; Fillinger, S., Elad, Y., Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 413–486. [Google Scholar]
- Wang, C.C.; Yuan, S.S.; Zhang, W.W.; Ng, T.; Ye, X.J. Buckwheat antifungal protein with biocontrol potential to Inhibit fungal (Botrytis cinerea) infection of cherry tomato. J. Agric. Food Chem. 2019, 67, 6748–6756. [Google Scholar] [CrossRef]
- Engberg, O.; Ulbricht, D.; Döbel, V.; Siebert, V.; Frie, C.; Penk, A.; Lemberg, M.K.; Huster, D. Rhomboid-catalyzed intramembrane proteolysis requires hydrophobic matching with the surrounding lipid bilayer. Sci. Adv. 2022, 8, eabq8303. [Google Scholar] [CrossRef]
- Alguel, Y.; Cameron, A.D.; Diallinas, G.; Byrne, B. Transporter oligomerization: Form and function. Biochem. Soc. Trans. 2016, 44, 1737–1744. [Google Scholar] [CrossRef] [PubMed]
- Yeliseev, A.; Iyer, M.R.; Joseph, T.T.; Coffey, N.J.; Cinar, R.; Zoubak, L.; Kunos, G.; Gawrisch, K. Cholesterol as a modulator of cannabinoid receptor CB2 signaling. Sci. Rep. 2021, 11, 3706. [Google Scholar] [CrossRef]
- Sant, D.G.; Tupe, S.G.; Ramana, C.V.; Deshpande, M.V. Fungal cell membrane—Promising drug target for antifungal therapy. J. Appl. Microbiol. 2016, 121, 1498–1510. [Google Scholar] [CrossRef]
- Te Welscher, Y.M.; van Leeuwen, M.R.; de Kruijff, B.; Dijksterhuis, J.; Breukink, E. Polyene antibiotic that inhibits membrane transport proteins. Proc. Natl. Acad. Sci. USA 2012, 109, 11156–11159. [Google Scholar] [CrossRef]
- Shi, L.M.; Ge, B.B.; Wang, J.Z.; Liu, B.H.; Ma, J.J.; Wei, Q.H.; Zhang, K.C. iTRAQ-based proteomic analysis reveals the mechanisms of Botrytis cinerea controlled with Wuyiencin. BMC Microbiol. 2019, 19, 280. [Google Scholar] [CrossRef]
- Weidensdorfer, M.; Ishikawa, M.; Hori, K.; Linke, D.; Djahanschiri, B.; Iruegas, R.; Ebersberger, I.; Riedel-Christ, S.; Enders, G.; Leukert, L.; et al. The Acinetobacter trimeric autotransporter adhesin Ata controls key virulence traits of Acinetobacter baumannii. Virulence 2019, 10, 68–81. [Google Scholar] [CrossRef]
- Bialer, M.G.; Ferrero, M.C.; Delpino, M.V.; Ruiz-Ranwez, V.; Posadas, D.M.; Baldi, P.C.; Zorreguieta, A. Adhesive functions or pseudogenization of type va autotransporters in Brucella Species. Front. Cell. Infect. Microbiol. 2021, 11, 607610. [Google Scholar] [CrossRef]
- Raghunathan, D.; Wells, T.J.; Morris, F.C.; Shaw, R.K.; Bobat, S.; Peters, S.E.; Paterson, G.K.; Jensen, K.T.; Leyton, D.L.; Blair, J.M.; et al. SadA, a trimeric autotransporter from Salmonella enterica serovar Typhimurium, can promote biofilm formation and provides limited protection against infection. Infect. Immun. 2011, 79, 4342–4352. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.Q.; Yan, A.; Zhang, X.H.; Xu, Y.Q. Identification and characterization of a putative ABC transporter PltHIJKN required for pyoluteorin production in Pseudomonas sp. M18. Gene 2006, 376, 68–78. [Google Scholar] [CrossRef]
- Quidde, T.; Büttner, P.; Tudzynski, P. Evidence for three different specific saponin-detoxifying activities in Botrytis cinerea and cloning and functional analysis of a gene coding for a putative avenacinase. Eur. J. Plant Pathol. 1999, 105, 273–283. [Google Scholar] [CrossRef]
- Zhang, N.; Yang, Z.Z.; Zhang, Z.H.; Liang, W.X. BcRPD3-Mediated histone deacetylation is involved in growth and pathogenicity of Botrytis cinerea. Front. Microbiol. 2020, 11, 1832. [Google Scholar] [CrossRef]
- Ren, W.C.; Liu, N.; Sang, C.W.; Shi, D.Y.; Zhou, M.G.; Chen, C.J.; Qin, Q.M.; Chen, W.C. The autophagy gene BcATG8 regulates the vegetative differentiation and pathogenicity of Botrytis cinerea. Appl. Environ. Microbiol. 2018, 84, e02455-17. [Google Scholar] [CrossRef] [PubMed]
- Yan, L.Y.; Yang, Q.Q.; Sundin, G.W.; Li, H.Y.; Ma, Z.H. The mitogen-activated protein kinase kinase BOS5 is involved in regulating vegetative differentiation and virulence in Botrytis cinerea. Fungal Genet. Biol. 2010, 47, 753–760. [Google Scholar] [CrossRef]
- Yu, J.H.; Hamari, Z.; Han, K.H.; Seo, J.A.; Reyes-Domínguez, Y.; Scazzocchio, C. Double-joint PCR: A PCR-based molecular tool for gene manipulations in filamentous fungi. Fungal Genet. Biol. 2004, 41, 973–981. [Google Scholar] [CrossRef]
- Gronover, C.S.; Kasulke, D.; Tudzynski, P.; Tudzynski, B. The role of G protein alpha subunits in the infection process of the gray mold fungus Botrytis cinerea. Mol. Plant-Microbe Interact. 2001, 14, 1293–1302. [Google Scholar] [CrossRef]
- Ren, W.C.; Sang, C.W.; Shi, D.Y.; Song, X.S.; Zhou, M.G.; Chen, C.J. Ubiquitin-like activating enzymes BcAtg3 and BcAtg7 participate in development and pathogenesis of Botrytis cinerea. Curr. Genet. 2018, 64, 919–930. [Google Scholar] [CrossRef]
- Mueller, O.M.; Lightfoot, S.; Schroeder, A. RNA Integrity Number (RIN)—Standardization of RNA Quality Control; Agilent Technology Application: Santa Clara, CA, USA, 2004; pp. 1–8. [Google Scholar]
- Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 2014, 30, 2114–2120. [Google Scholar] [CrossRef] [PubMed]
- Raudvere, U.; Kolberg, L.; Kuzmin, I.; Arak, T.; Adler, P.; Peterson, H.; Vilo, J. g: Profiler: A web server for functional enrichment analysis and conversions of gene lists (2019 update). Nucleic Acids Res. 2019, 47, W191–W198. [Google Scholar] [CrossRef] [PubMed]
- McDonald, B.A.; Martinez, J.P. Restriction fragment length polymorphisms in Septoria tritici occur at a high frequency. Curr. Genet. 1990, 17, 133–138. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
- Yang, Q.Q.; Zhang, J.N.; Hu, J.C.; Wang, X.; Lv, B.N.; Liang, W.X. Involvement of BcYak1 in the regulation of vegetative differentiation and adaptation to oxidative stress of Botrytis cinerea. Front. Microbiol. 2018, 9, 281. [Google Scholar] [CrossRef]
- Zou, X.R.; Wei, Y.Y.; Jiang, S.; Xu, F.; Wang, H.F.; Zhan, P.P.; Shao, X.F. ROS stress and cell membrane disruption are the main antifungal mechanisms of 2-phenylethanol against Botrytis cinerea. J. Agric. Food Chem. 2022, 70, 14468–14479. [Google Scholar] [CrossRef]
- Zhou, Y.J.; Song, J.J.; Wang, Y.C.; Yang, L.; Wu, M.D.; Li, G.Q.; Zhang, J. Biological characterization of the melanin biosynthesis gene Bcscd1 in the plant pathogenic fungus Botrytis cinerea. Fungal Genet. Biol. 2022, 160, 103693. [Google Scholar] [CrossRef]
- Russo, C.A.d.M.; Selvatti, A.P. Bootstrap and rogue identification tests for phylogenetic analyses. Mol. Biol. Evol. 2018, 35, 2327–2333. [Google Scholar] [CrossRef]
- Abbey, J.A.; Percival, D.; Abbey, L.; Asiedu, S.K.; Prithiviraj, B.; Schilder, A. Biofungicides as alternative to synthetic fungicide control of grey mould (Botrytis cinerea)—Prospects and challenges. Biocontrol Sci. Technol. 2019, 29, 207–228. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, J.K.; Li, G.H.; Zhang, M.Z.; Zhang, Y.Y.; Wang, Y.Y.; Hou, J.; Yang, S.; Sun, J.; Qin, Q.M. A novel Botrytis cinerea-specific gene BcHBF1 enhances virulence of the grey mould fungus via promoting host penetration and invasive hyphal development. Mol. Plant Pathol. 2019, 20, 731–747. [Google Scholar] [CrossRef]
- Liu, N.; Zhou, S.Y.; Li, B.H.; Ren, W.C. Involvement of the autophagy protein Atg6 in development and virulence in the gray mold fungus Botrytis cinerea. Front. Microbiol. 2021, 12, 3943. [Google Scholar] [CrossRef] [PubMed]
- He, Z.J.; Zhang, S.H.; Keyhani, N.O.; Song, Y.L.; Huang, S.S.; Pei, Y.; Zhang, Y.J. A novel mitochondrial membrane protein, Ohmm, limits fungal oxidative stress resistance and virulence in the insect fungal pathogen Beauveria bassiana. Environ. Microbiol. 2015, 17, 4213–4238. [Google Scholar] [CrossRef] [PubMed]
- Yuan, X.M. Molecular Mechanism of BcPDR1 Gene in Regulating Pathogenicity of Botrytis cinerea. Mater’s Dissertation, Hebei Agricultural University, Baoding, China, 2019. [Google Scholar]
- He, J.Y. Functional Analysis of Phytochrome Bcphy3 in Botrytis cinerea. Mater’s Dissertation, East China Normal University, Shanghai, China, 2014. [Google Scholar]
- Zhang, C.H.; He, Y.F.; Zhu, P.K.; Chen, L.; Wang, Y.W.; Ni, B.; Xu, L. Loss of bcbrn1 and bcpks13 in Botrytis cinerea not only blocks melanization but also increases vegetative growth and virulence. Mol. Plant-Microbe Interact. 2015, 28, 1091–1101. [Google Scholar] [CrossRef] [PubMed]
- DeMarco, A.G.; Milholland, K.L.; Pendleton, A.L.; Whitney, J.J.; Zhu, P.; Wesenberg, D.T.; Nambiar, M.; Pepe, A.; Paula, S.; Chmielewski, J.; et al. Conservation of Cdc14 phosphatase specificity in plant fungal pathogens: Implications for antifungal development. Sci. Rep. 2020, 10, 12073. [Google Scholar] [CrossRef] [PubMed]
- Li, C.H.; Melesse, M.; Zhang, S.J.; Hao, C.F.; Wang, C.F.; Zhang, H.C.; Hall, M.C.; Xu, J.R. FgCDC14 regulates cytokinesis, morphogenesis, and pathogenesis in Fusarium graminearum. Mol. Microbiol. 2015, 98, 770–786. [Google Scholar] [CrossRef]
- Li, C.H.; Cao, S.L.; Zhang, C.K.; Zhang, Y.H.; Zhang, Q.; Xu, J.R.; Wang, C.F. MoCDC14 is important for septation during conidiation and appressorium formation in Magnaporthe oryzae. Mol. Plant Pathol. 2018, 19, 328–340. [Google Scholar] [CrossRef]
- Yang, G.; Hu, Y.; Fasoyin, O.E.; Yue, Y.W.; Chen, L.J.; Qiu, Y.; Wang, X.N.; Zhuang, Z.H.; Wang, S.H. The Aspergillus flavus phosphatase CDC14 regulates development, aflatoxin biosynthesis and pathogenicity. Front. Cell. Infect. Microbiol. 2018, 8, 141. [Google Scholar] [CrossRef]
- Zhuang, W. Functional Analysis of Two Putative Secreted Proteins in Botrytis cinerea. Mater’s Dissertation, Fujian Agriculture and Forestry University, Fuzhou, China, 2019. [Google Scholar]
- Schamber, A.; Leroch, M.; Diwo, J.; Mendgen, K.; Hahn, M. The role of mitogen-activated protein (MAP) kinase signalling components and the Ste12 transcription factor in germination and pathogenicity of Botrytis cinerea. Mol. Plant Pathol. 2010, 11, 105–119. [Google Scholar] [CrossRef]
- Tundo, S.; Paccanaro, M.C.; Elmaghraby, I.; Moscetti, I.; D’Ovidio, R.; Favaron, F.; Sella, L. The xylanase inhibitor TAXI-I increases plant resistance to Botrytis cinerea by inhibiting the BcXyn11a xylanase necrotizing activity. Plants 2020, 9, 601. [Google Scholar] [CrossRef]
- Schumacher, J.; Simon, A.; Cohrs, K.C.; Viaud, M.; Tudzynski, P. The transcription factor BcLTF1 regulates virulence and light responses in the necrotrophic plant pathogen Botrytis cinerea. PLoS Genet. 2014, 10, e1004040. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, W.; Ge, B.-B.; Lv, Z.-Y.; Park, K.S.; Shi, L.-M.; Zhang, K.-C. Membrane Protein Bcest Is Involved in Hyphal Growth, Virulence and Stress Tolerance of Botrytis cinerea. Microorganisms 2023, 11, 1225. https://doi.org/10.3390/microorganisms11051225
Zhang W, Ge B-B, Lv Z-Y, Park KS, Shi L-M, Zhang K-C. Membrane Protein Bcest Is Involved in Hyphal Growth, Virulence and Stress Tolerance of Botrytis cinerea. Microorganisms. 2023; 11(5):1225. https://doi.org/10.3390/microorganisms11051225
Chicago/Turabian StyleZhang, Wei, Bei-Bei Ge, Zhao-Yang Lv, Kyung Seok Park, Li-Ming Shi, and Ke-Cheng Zhang. 2023. "Membrane Protein Bcest Is Involved in Hyphal Growth, Virulence and Stress Tolerance of Botrytis cinerea" Microorganisms 11, no. 5: 1225. https://doi.org/10.3390/microorganisms11051225
APA StyleZhang, W., Ge, B. -B., Lv, Z. -Y., Park, K. S., Shi, L. -M., & Zhang, K. -C. (2023). Membrane Protein Bcest Is Involved in Hyphal Growth, Virulence and Stress Tolerance of Botrytis cinerea. Microorganisms, 11(5), 1225. https://doi.org/10.3390/microorganisms11051225