Gut Microbiota and B Cell Receptor (BCR) Inhibitors for the Treatment of Chronic Lymphocytic Leukemia: Is Biodiversity Correlated with Clinical Response or Immune-Related Adverse Event Occurrence? A Cross-Sectional Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Setting
- R Group: Patients meeting the clinical response criteria (no evidence of clinical progression criteria) and undergoing ongoing therapy with BCRi.
- NR Group: Patients with clinical progression criteria and BCRi therapy discontinuation within 12 months of treatment initiation.
2.2. Objectives
2.3. Biological Samples and DNA Sequencing
2.4. Statistical and Bioinformatic Analyses
3. Results
3.1. Taxonomic Composition and Diversity of Fecal Bacterial Communities in the Responder and Non-Responder Group
α-Diversity and β-Diversity Statistical Analyses in the Responder and Non-Responder Groups
3.2. Taxonomic Composition and Diversity of Fecal Bacterial Communities between Patients with and without irAEs
α-Diversity and β-Diversity Statistical Analyses in Patients with or without irAEs
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Justiz Vaillant, A.A.; Stang, C.M. Lymphoproliferative Disorders; NCBI Bookshelf; StatPearls: Treasure Island, FL, USA, 2022. [Google Scholar]
- Hallek, M.; Cheson, B.D.; Catovsky, D.; Caligaris-Cappio, F.; Dighiero, G.; Döhner, H.; Hillmen, P.; Keating, M.; Montserrat, E.; Chiorazzi, N.; et al. IwCLL Guidelines for Diagnosis, Indications for Treatment, Response Assessment, and Supportive Management of CLL. Blood 2018, 131, 2745–2760. [Google Scholar] [CrossRef] [PubMed]
- Gianfelici, V.; Levato, L.; Molica, S. The Evolution of Targeted Therapies in Chronic Lymphocytic Leukaemia. Curr. Hematol. Malig. Rep. 2020, 15, 343–349. [Google Scholar] [CrossRef] [PubMed]
- de Weerdt, I.; Koopmans, S.M.; Kater, A.P.; van Gelder, M. Incidence and Management of Toxicity Associated with Ibrutinib and Idelalisib: A Practical Approach. Haematologica 2017, 102, 1629–1639. [Google Scholar] [CrossRef] [PubMed]
- Vétizou, M.; Pitt, J.M.; Daillère, R.; Lepage, P.; Waldschmitt, N.; Flament, C.; Rusakiewicz, S.; Routy, B.; Roberti, M.P.; Duong, C.P.M.; et al. Anticancer Immunotherapy by CTLA-4 Blockade Relies on the Gut Microbiota. Science 2015, 350, 1079–1084. [Google Scholar] [CrossRef] [PubMed]
- Gopalakrishnan, V.; Spencer, C.N.; Nezi, L.; Reuben, A.; Andrews, M.C.; Karpinets, T.V.; Prieto, P.A.; Vicente, D.; Hoffman, K.; Wei, S.C.; et al. Gut Microbiome Modulates Response to Anti–PD-1 Immunotherapy in Melanoma Patients. Science 2018, 359, 97–103. [Google Scholar] [CrossRef] [PubMed]
- Uribe-Herranz, M.; Klein-González, N.; Rodríguez-Lobato, L.G.; Juan, M.; Fernández de Larrea, C. Gut Microbiota Influence in Hematological Malignancies: From Genesis to Cure. Int. J. Mol. Sci. 2021, 22, 1026. [Google Scholar] [CrossRef] [PubMed]
- Hakim, H.; Dallas, R.; Wolf, J.; Tang, L.; Schultz-Cherry, S.; Darling, V.; Johnson, C.; Karlsson, E.A.; Chang, T.-C.; Jeha, S.; et al. Gut Microbiome Composition Predicts Infection Risk During Chemotherapy in Children With Acute Lymphoblastic Leukemia. Clin. Infect. Dis. 2018, 67, 541–548. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Jiang, Z.; Wang, Y.; Fan, X.; Cai, J.; Yao, X.; Liu, L.; Huang, J.; He, J.; Xie, C.; et al. Modulation of Gut Microbiota to Overcome Resistance to Immune Checkpoint Blockade in Cancer Immunotherapy. Curr. Opin. Pharmacol. 2020, 54, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.M.; Donaldson, G.P.; Mikulski, Z.; Boyajian, S.; Ley, K.; Mazmanian, S.K. Bacterial Colonization Factors Control Specificity and Stability of the Gut Microbiota. Nature 2013, 501, 426–429. [Google Scholar] [CrossRef] [PubMed]
- Baruch, E.N.; Youngster, I.; Ortenberg, R.; Ben-Betzalel, G.; Katz, L.H.; Lahat, A.; Barshack, I.; Dick-Necula, D.; Mamtani, R.; Bloch, N.; et al. Fecal Microbiota Transplant Promotes Response in Immunotherapy-Refractory Melanoma Patients. Science 2021, 371, 602–609. [Google Scholar] [CrossRef] [PubMed]
- Cuschieri, S. The STROBE Guidelines. Saudi J. Anaesth. 2019, 13, S31–S34. [Google Scholar] [CrossRef] [PubMed]
- McMurdie, P.J.; Holmes, S. Phyloseq: An R Package for Reproducible Interactive Analysis and Graphics of Microbiome Census Data. PLoS ONE 2013, 8, e61217. [Google Scholar] [CrossRef]
- Oksanen, J.; Simpson, G.L.; Blanchet, F.G.; Kindt, R.; Legendre, P.; Minchin, P.R.; O'Hara, R.; Solymos, P.; Stevens, M.H.; Szoecs, E.; et al. Vegan: Community Ecology Package. 2022. Available online: https://cran.r-project.org/web/packages/vegan/index.html (accessed on 20 March 2023).
- Karpinets, T.V.; Wu, X.; Solley, T.; El Alam, M.B.; Sims, T.T.; Yoshida-Court, K.; Lynn, E.; Ahmed-Kaddar, M.; Biegert, G.; Yue, J.; et al. Metagenomes of Rectal Swabs in Larger, Advanced Stage Cervical Cancers Have Enhanced Mucus Degrading Functionalities and Distinct Taxonomic Structure. BMC Cancer 2022, 22, 945. [Google Scholar] [CrossRef] [PubMed]
- Portincasa, P.; Bonfrate, L.; Vacca, M.; De Angelis, M.; Farella, I.; Lanza, E.; Khalil, M.; Wang, D.Q.-H.; Sperandio, M.; Di Ciaula, A. Gut Microbiota and Short Chain Fatty Acids: Implications in Glucose Homeostasis. Int. J. Mol. Sci. 2022, 23, 1105. [Google Scholar] [CrossRef]
- Effendi, R.M.R.A.; Anshory, M.; Kalim, H.; Dwiyana, R.F.; Suwarsa, O.; Pardo, L.M.; Nijsten, T.E.C.; Thio, H.B. Akkermansia Muciniphila and Faecalibacterium Prausnitzii in Immune-Related Diseases. Microorganisms 2022, 10, 2382. [Google Scholar] [CrossRef] [PubMed]
- Sokol, H.; Pigneur, B.; Watterlot, L.; Lakhdari, O.; Bermúdez-Humarán, L.G.; Gratadoux, J.-J.; Blugeon, S.; Bridonneau, C.; Furet, J.-P.; Corthier, G.; et al. Faecalibacterium Prausnitzii Is an Anti-Inflammatory Commensal Bacterium Identified by Gut Microbiota Analysis of Crohn Disease Patients. Proc. Natl. Acad. Sci. USA 2008, 105, 16731–16736. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Ma, F.; Sun, B.; Liu, Y.; Tang, H.; Luo, J.; Chen, H.; Luo, Z. Intestinal Microbiome Associated With Immune-Related Adverse Events for Patients Treated With Anti-PD-1 Inhibitors, a Real-World Study. Front. Immunol. 2021, 12, 756872. [Google Scholar] [CrossRef] [PubMed]
- Viaud, S.; Saccheri, F.; Mignot, G.; Yamazaki, T.; Daillere, R.; Hannani, D.; Enot, D.P.; Pfirschke, C.; Engblom, C.; Pittet, M.J.; et al. The Intestinal Microbiota Modulates the Anticancer Immune Effects of Cyclophosphamide. Science 2013, 342, 971–976. [Google Scholar] [CrossRef] [PubMed]
- Pflug, N.; Kluth, S.; Vehreschild, J.J.; Bahlo, J.; Tacke, D.; Biehl, L.; Eichhorst, B.; Fischer, K.; Cramer, P.; Fink, A.-M.; et al. Efficacy of Antineoplastic Treatment Is Associated with the Use of Antibiotics That Modulate Intestinal Microbiota. OncoImmunology 2016, 5, e1150399. [Google Scholar] [CrossRef] [PubMed]
ID Patient | Age (YO) | Sex | BCRi | Genomic Features | Treatment Lines | Antibiotic Intake | irAEs | Outcome |
---|---|---|---|---|---|---|---|---|
01 | 40–50 | M | Ibrutinib | TP53 mut., IGVH unmut. | 3° | No | Yes | NR |
03 | 60–70 | M | Idelalisib | TP53 mut., IGVH unmut. | 2° | Yes | Yes | R |
04 | 60–70 | F | Ibrutinib | TP53 mut., IGVH unmut., del(13q), del(17p) | 2° | Yes | No | R |
05 | 60–70 | F | Ibrutinib | TP53 mut., IGVH unmut. | 2° | No | R | |
06 | 60–70 | M | Idelalisib | TP53 mut., IGVH unmut., del(17p), Trisomy 13 | 2° | Yes | Yes | R |
07 | 60–70 | F | Idelalisib | TP53 mut., IGVH unmut., del(13q) | 4° | Yes | Yes | R |
08 | 60–70 | F | Idelalisib | TP53 mut., IGVH unmut., del(13q) | 2° | Yes | Yes | R |
09 | 60–70 | M | Ibrutinib | TP53 mut., IGVH unmut., del(17p) | 5° | Yes | Yes | NR |
10 | 60–70 | M | Ibrutinib | IGVH unmut., del(13q) | 4° | Yes | No | R |
11 | 70–80 | F | Ibrutinib | TP53 mut., IGVH unmut., del(17p) | 1° | No | No | R |
12 | 70–80 | F | Idelalisib | IGVH unmut., del(13q) | 2° | No | Yes | R |
13 | 60–70 | M | Ibrutinib | IGVH unmut., Trisomy 13 | 3° | Yes | No | R |
AE Group | NAE Group | |
---|---|---|
Phylum | Actinobacteria | - |
Class | Actinobacteria | unclassified Bacteroidetes |
Bacilli | ||
Order | Coriobacteriales | unclassified Bacteroidetes |
Lactobacillales | ||
Family | Coriobacteriaceae | Veillonellaceae |
Prevotellaceae | ||
Species | Akkermansia muciniphila ATCC BAA-835 | Bacteroides eggerthii |
Blautia luti | Veillonella spp ICM51a | |
Ruminococcus obeum | Faecalibacterium prausnitzii | |
Barnesiella spp EBA4-14 | Bacteroides ovatus | |
Butyrivibrio fibrisolvens | ||
Akkermansia muciniphila | ||
Bacteroidaceae bacterium Smarlab 3301643 | ||
Parabacteroides distasonis ATCC 8503 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zuccaro, V.; Petazzoni, G.; Mileto, I.; Corbella, M.; Asperges, E.; Sacchi, P.; Rattotti, S.; Varettoni, M.; Defrancesco, I.; Cambieri, P.; et al. Gut Microbiota and B Cell Receptor (BCR) Inhibitors for the Treatment of Chronic Lymphocytic Leukemia: Is Biodiversity Correlated with Clinical Response or Immune-Related Adverse Event Occurrence? A Cross-Sectional Study. Microorganisms 2023, 11, 1305. https://doi.org/10.3390/microorganisms11051305
Zuccaro V, Petazzoni G, Mileto I, Corbella M, Asperges E, Sacchi P, Rattotti S, Varettoni M, Defrancesco I, Cambieri P, et al. Gut Microbiota and B Cell Receptor (BCR) Inhibitors for the Treatment of Chronic Lymphocytic Leukemia: Is Biodiversity Correlated with Clinical Response or Immune-Related Adverse Event Occurrence? A Cross-Sectional Study. Microorganisms. 2023; 11(5):1305. https://doi.org/10.3390/microorganisms11051305
Chicago/Turabian StyleZuccaro, Valentina, Greta Petazzoni, Irene Mileto, Marta Corbella, Erika Asperges, Paolo Sacchi, Sara Rattotti, Marzia Varettoni, Irene Defrancesco, Patrizia Cambieri, and et al. 2023. "Gut Microbiota and B Cell Receptor (BCR) Inhibitors for the Treatment of Chronic Lymphocytic Leukemia: Is Biodiversity Correlated with Clinical Response or Immune-Related Adverse Event Occurrence? A Cross-Sectional Study" Microorganisms 11, no. 5: 1305. https://doi.org/10.3390/microorganisms11051305
APA StyleZuccaro, V., Petazzoni, G., Mileto, I., Corbella, M., Asperges, E., Sacchi, P., Rattotti, S., Varettoni, M., Defrancesco, I., Cambieri, P., Baldanti, F., Arcaini, L., & Bruno, R. (2023). Gut Microbiota and B Cell Receptor (BCR) Inhibitors for the Treatment of Chronic Lymphocytic Leukemia: Is Biodiversity Correlated with Clinical Response or Immune-Related Adverse Event Occurrence? A Cross-Sectional Study. Microorganisms, 11(5), 1305. https://doi.org/10.3390/microorganisms11051305