Utilization of Macroalgae for the Production of Bioactive Compounds and Bioprocesses Using Microbial Biotechnology
Abstract
:1. Introduction
2. Biological Activity and Bioconversion of Green Macroalgae
2.1. Ulvan
2.2. L-Rhamnose
2.3. Bioconversion Using Yeast Cells
3. Component and Bioconversion of Red Macroalgae
4. Bioactivity of Brown Macroalgae
4.1. Macroalgae Polyphenols or Phlorotannins
4.2. Inhibiting Advanced Glycation End Product (AGE) Formation
4.3. Effect of Phlorotannins on Methylglyoxal (MGO) Formation
4.4. Effect of Phlorotannins on Glyceraldehyde (GA) Formation
4.5. Effect of Phlorotannins on Nε-(Carboxymethyl)lysine (CML)
5. Microbial Conversion of Macroalgae
5.1. Microorganisms and Their Enzymes
5.2. Degradation of Alginate
5.3. Immobilization of Recombinant Alginate Lyase
6. Molecular Display Technology for Macroalgae Utilization
6.1. Technology for Immobilizing Proteins on the Cell Surface
6.2. Yeast Display System
6.3. Bioethanol Production from Laminarin
6.4. Bioethanol Production from Xylan
6.5. Bioethanol Production from Alginate and Mannitol
6.6. Recovery of Metal Ions
7. Summary
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ali, M.; Seraj, M. Nexus between energy consumption and carbon dioxide emission: Evidence from 10 highest fossil fuel and 10 highest renewable energy-using economies. Environ. Sci. Pollut. Res. Int. 2022, 29, 87901–87922. [Google Scholar] [CrossRef] [PubMed]
- Coskun, D.; Britto, D.T.; Kronzucker, H.J. Nutrient constraints on terrestrial carbon fixation: The role of nitrogen. J. Plant Physiol. 2016, 203, 95–109. [Google Scholar] [CrossRef] [PubMed]
- Gray, K.A.; Zhao, L.; Emptage, M. Bioethanol. Curr. Opin. Chem. Biol. 2006, 10, 141–146. [Google Scholar] [CrossRef] [PubMed]
- Macrelli, S.; Mogensen, J.; Zacchi, G. Techno-economic evaluation of 2nd generation bioethanol production from sugar cane bagasse and leaves integrated with the sugar-based ethanol process. Biotechnol. Biofuels 2012, 5, 22. [Google Scholar] [CrossRef] [Green Version]
- Pavlečić, M.; Rezić, T.; Šantek, M.I.; Horvat, P.; Šantek, B. Bioethanol production from raw sugar beet cossettes in horizontal rotating tubular bioreactor. Bioprocess Biosyst. Eng. 2017, 40, 1679–1688. [Google Scholar] [CrossRef]
- Rizzolo, J.A.; Woiciechowski, A.L.; Júnior, A.I.M.; Torres, L.A.Z.; Soccol, C.R. The potential of sweet potato biorefinery and development of alternative uses. SN Appl. Sci. 2021, 3, 347. [Google Scholar] [CrossRef]
- Hoppert, L.; Kölling, R.; Einfalt, D. Investigation of stress tolerance of Pichia kudriavzevii for high gravity bioethanol production from steam-exploded wheat straw hydrolysate. Bioresour. Technol. 2022, 364, 128079. [Google Scholar] [CrossRef] [PubMed]
- Silva, S.R.B.; de Lima Neto, J.X.; Fuzo, C.A.; Fulco, U.L.; Vieira, D.S. A quantum biochemistry investigation of the protein-protein interactions for the description of allosteric modulation on biomass-degrading chimera. Phys. Chem. Chem. Phys. 2020, 22, 25936–25948. [Google Scholar] [CrossRef]
- Ross, A.B.; Jones, J.M.; Kubacki, M.L.; Bridgeman, T. Classification of macroalgae as fuel and its thermochemical behaviour. Bioresour. Technol. 2008, 99, 6494–6504. [Google Scholar] [CrossRef]
- Gordillo Sierra, A.R.; Amador-Castro, L.F.; Ramírez-Partida, A.E.; García-Cayuela, T.; Carrillo-Nieves, D.; Alper, H.S. Valorization of Caribbean Sargassum biomass as a source of alginate and sugars for de novo biodiesel production. J. Environ. Manag. 2022, 324, 116364. [Google Scholar] [CrossRef]
- FitzGerald, J.A.; Allen, E.; Wall, D.M.; Jackson, S.A.; Murphy, J.D.; Dobson, A.D. Methanosarcina Play an Important Role in Anaerobic Co-Digestion of the Seaweed Ulva lactuca: Taxonomy and Predicted Metabolism of Functional Microbial Communities. PLoS ONE 2015, 10, e0142603. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roy, A.; Gogoi, N.; Yasmin, F.; Farooq, M. The use of algae for environmental sustainability: Trends and future prospects. Environ. Sci. Pollut. Res. Int. 2022, 29, 40373–40383. [Google Scholar] [CrossRef] [PubMed]
- Demirbas, A. Use of algae as biofuel sources. Energy Convers. Manag. 2010, 51, 2738–2749. [Google Scholar] [CrossRef]
- Corino, C.; Modina, S.C.; Di Giancamillov, A.; Chiapparini, S.; Rossi, R. Seaweeds in Pig Nutrition. Animals 2019, 9, 1126. [Google Scholar] [CrossRef] [Green Version]
- Rioux, L.E.; Turgeon, S.L.; Beaulieu, M. Structural characterization of laminaran and galactofucan extracted from the brown seaweed Saccharina longicruris. Phytochemistry 2010, 71, 1586–1595. [Google Scholar] [CrossRef]
- Kadam, S.U.; Tiwari, B.K.; O’Donnell, C.P. Extraction, structure and biofunctional activities of laminarin from brown algae. Int. J. Food Sci. Tech. 2015, 50, 24–31. [Google Scholar] [CrossRef]
- Reed, R.H.; Davison, J.A.; Chudek, J.A.; Foster, R. The osmotic role of mannitol in the Phaeophyta: An appraisal. Phycologia 1985, 24, 35–47. [Google Scholar] [CrossRef]
- Harnedy, P.A.; FitzGerald, R.J. Bioactive proteins peptides and amino acids from macroalgae(1). J. Phycol. 2011, 47, 218–232. [Google Scholar] [CrossRef]
- Hentati, F.; Tounsi, L.; Djomdi, D.; Pierre, G.; Delattre, C.; Ursu, A.V.; Fendri, I.; Abdelkafi, S.; Michaud, P. Bioactive Polysaccharides from Seaweeds. Molecules 2020, 25, 3152. [Google Scholar] [CrossRef]
- Cotas, J.; Leandro, A.; Monteiro, P.; Pacheco, D.; Figueirinha, A.; Gonçalves, A.M.M.; da Silva, G.J.; Pereira, L. Seaweed Phenolics: From Extraction to Applications. Mar. Drugs 2020, 18, 384. [Google Scholar] [CrossRef]
- Robic, A.; Bertrand, D.; Sassi, J.F.; Lerat, Y.; Lahaye, M. Determination of the chemical composition of ulvan, a cell wall polysaccharide from Ulva spp. (Ulvales, Chlorophyta) by FT-IR and chemometrics. J. Appl. Phycol. 2009, 21, 451–456. [Google Scholar] [CrossRef]
- Dutschei, T.; Zühlke, M.K.; Welsch, N.; Eisenack, T.; Hilkmann, M.; Krull, J.; Stühle, C.; Brott, S.; Dürwald, A.; Reisky, L.; et al. Metabolic engineering enables Bacillus licheniformis to grow on the marine polysaccharide ulvan. Microb. Cell Fact. 2022, 21, 207. [Google Scholar] [CrossRef] [PubMed]
- Collén, P.N.; Jeudy, A.; Sassi, J.F.; Groisillier, A.; Czjzek, M.; Coutinho, P.M.; Helbert, W. A novel unsaturated β-glucuronyl hydrolase involved in ulvan degradation unveils the versatility of stereochemistry requirements in family GH105. J. Biol. Chem. 2014, 289, 6199–6211. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Konasani, V.R.; Jin, C.; Karlsson, N.G.; Albers, E. A novel ulvan lyase family with broad-spectrum activity from the ulvan utilisation loci of Formosa agariphila KMM 3901. Sci. Rep. 2018, 8, 14713. [Google Scholar] [CrossRef] [Green Version]
- Koller, F.; Lassak, J. Two RmlC homologs catalyze dTDP-4-keto-6-deoxy-D-glucose epimerization in Pseudomonas putida KT2440. Sci. Rep. 2021, 11, 11991. [Google Scholar] [CrossRef]
- van der Wal, H.; Sperber, B.; Houweling-Tan, B.; Bakker, R.; Brandenburg, W.; López-Contreras, A.M. Production of acetone butanol and ethanol from biomass of the green seaweed Ulva lactuca. Bioresour. Technol. 2013, 128, 431–437. [Google Scholar] [CrossRef]
- Song, Y.; He, P.; Rodrigues, A.L.; Datta, P.; Tandon, R.; Bates, J.T.; Bierdeman, M.A.; Chen, C.; Dordick, J.; Zhang, F.; et al. Anti-SARS-CoV-2 Activity of Rhamnan Sulfate from Monostroma nitidum. Mar. Drugs 2021, 19, 685. [Google Scholar] [CrossRef]
- Cassolato, J.E.; Noseda, M.D.; Pujol, C.A.; Pellizzari, F.M.; Damonte, E.B.; Duarte, M.E. Chemical structure and antiviral activity of the sulfated heterorhamnan isolated from the green seaweed Gayralia oxysperma. Carbohydr. Res. 2008, 343, 3085–3095. [Google Scholar] [CrossRef]
- Surayot, U.; Wang, J.; Lee, J.H.; Kanongnuch, C.; Peerapornpisal, Y.; You, S. Characterization and immunomodulatory activities of polysaccharides from Spirogyra neglecta (Hassall) Kützing. Biosci. Biotechnol. Biochem. 2015, 79, 1644–1653. [Google Scholar] [CrossRef]
- Wassie, T.; Niu, K.; Xie, C.; Wang, H.; Xin, W. Extraction Techniques Biological Activities and Health Benefits of Marine Algae Enteromorpha prolifera Polysaccharide. Front. Nutr. 2021, 8, 747928. [Google Scholar] [CrossRef]
- Ropellato, J.; Carvalho, M.M.; Ferreira, L.G.; Noseda, M.D.; Zuconelli, C.R.; Gonçalves, A.G.; Ducatti, D.R.B.; Kenski, J.C.N.; Nasato, P.L.; Winnischofer, S.M.B.; et al. Sulfated heterorhamnans from the green seaweed Gayralia oxysperma: Partial depolymerization chemical structure and antitumor activity. Carbohydr. Polym. 2015, 117, 476–485. [Google Scholar] [CrossRef] [PubMed]
- Patakova, P.; Branskav, B.; Vasylkivska, M.; Jureckova, K.; Musilova, J.; Provaznik, I.; Sedlar, K. Transcriptomic studies of solventogenic clostridia Clostridium acetobutylicum and Clostridium beijerinckii. Biotechnol. Adv. 2022, 58, 107889. [Google Scholar] [CrossRef] [PubMed]
- Diallo, M.; Simons, A.D.; van der Wal, H.; Collas, F.; Houweling-Tan, B.; Kengen, S.W.M.; López-Contreras, A.M. l-Rhamnose Metabolism in Clostridium beijerinckii Strain DSM 6423. Appl. Environ. Microbiol. 2019, 85, e02656-18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nakajima, M.; Nishimoto, M.; Kitaoka, M. Practical preparation of D-galactosyl-beta1-->4-L-rhamnose employing the combined action of phosphorylases. Biosci. Biotechnol. Biochem. 2010, 74, 1652–1655. [Google Scholar] [CrossRef] [Green Version]
- Greetham, D.; Adams, J.M.; Du, C. The utilization of seawater for the hydrolysis of macroalgae and subsequent bioethanol fermentation. Sci. Rep. 2020, 10, 9728. [Google Scholar] [CrossRef]
- Jiang, R.; Linzon, Y.; Vitkin, E.; Yakhini, Z.; Chudnovsky, A.; Golberg, A. Thermochemical hydrolysis of macroalgae Ulva for biorefinery: Taguchi robust design method. Sci. Rep. 2016, 6, 27761. [Google Scholar] [CrossRef] [Green Version]
- Gregersen, S.; Kongsted, A.H.; Nielsen, R.B.; Hansen, S.S.; Lau, F.A.; Rasmussen, J.B.; Holdt, S.L.; Jacobsen, C. Enzymatic extraction improves intracellular protein recovery from the industrial carrageenan seaweed Eucheuma denticulatum revealed by quantitative subcellular protein profiling: A high potential source of functional food ingredients. Food Chem. X 2021, 12, 100137. [Google Scholar] [CrossRef]
- Park, J.H.; Hong, J.Y.; Jang, H.C.; Oh, S.G.; Kim, S.H.; Yoon, J.J.; Kim, Y.J. Use of Gelidium amansii as a promising resource for bioethanol: A practical approach for continuous dilute-acid hydrolysis and fermentation. Bioresour. Technol. 2012, 108, 83–88. [Google Scholar] [CrossRef]
- Yu, S.; Yun, E.J.; Kim, D.H.; Park, S.Y.; Kim, K.H. Anticariogenic Activity of Agarobiose and Agarooligosaccharides Derived from Red Macroalgae. J. Agric. Food Chem. 2019, 67, 7297–7303. [Google Scholar] [CrossRef]
- Zheng, M.; Zheng, Y.; Zhang, Y.; Zhu, Y.; Yang, Y.; Oda, T.; Ni, H.; Jiang, Z. In vitro fermentation of Bangia fuscopurpurea polysaccharide by human gut microbiota and the protective effects of the resultant products on Caco-2 cells from lipopolysaccharide-induced injury. Int. J. Biol. Macromol. 2022, 222 Pt A, 818–829. [Google Scholar] [CrossRef]
- Cheong, K.L.; Qiu, H.M.; Du, H.; Liu, Y.; Khan, B.M. Oligosaccharides Derived from Red Seaweed: Production Properties and Potential Health and Cosmetic Applications. Molecules 2018, 23, 2451. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kholiya, F.; Rathod, M.R.; Gangapur, D.R.; Adimurthy, S.; Meena, R. An integrated effluent free process for the production of 5-hydroxymethyl furfural (HMF) levulinic acid (LA) and KNS-ML from aqueous seaweed extract. Carbohydr. Res. 2020, 490, 107953. [Google Scholar] [CrossRef] [PubMed]
- Barbeyron, T.; Henrissat, B.; Kloareg, B. The gene encoding the kappa- carrageenase of Alteromonas carrageenovora is related to β-1,3-1,4-glucanases. Gene 1994, 139, 105–109. [Google Scholar] [CrossRef] [PubMed]
- Jam, M.; Flament, D.; Allouch, J.; Potin, P.; Thion, L.; Kloareg, B.; Czjzek, M.; Helbert, W.; Michel, G.; Barbeyron, T. The endo-β-agarases AgaA and AgaB from the marine bacterium Zobellia galactanivorans: Two paralogue enzymes with different molecular organizations and catalytic behaviours. Biochem. J. 2005, 385, 703–713. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pluvinage, B.; Robb, C.S.; Jeffries, R.; Boraston, A.B. The structure of PfGH50B an agarase from the marine bacterium Pseudoalteromonas fuliginea PS47. Acta Crystallogr. F Struct. Biol. Commun. 2020, 76, 422–427. [Google Scholar] [CrossRef] [PubMed]
- Pluvinage, B.; Hehemann, J.H.; Boraston, A.B. Substrate recognition and hydrolysis by a family 50 exo-β-agarase Aga50D from the marine bacterium Saccharophagus degradans. J. Biol. Chem. 2013, 288, 28078–28088. [Google Scholar] [CrossRef] [Green Version]
- Yu, S.; Yun, E.J.; Kim, D.H.; Park, S.Y.; Kim, K.H. Dual Agarolytic Pathways in a Marine Bacterium Vibrio sp. Strain EJY3: Molecular and Enzymatic Verification. Appl. Environ. Microbiol. 2020, 86, e02724-19. [Google Scholar] [CrossRef]
- Tsevelkhorloo, M.; Kim, S.H.; Kang, D.K.; Lee, C.R.; Hong, S.K. NADP+-Dependent Dehydrogenase SCO3486 and Cycloisomerase SCO3480: Key Enzymes for 3,6-Anhydro-L-Galactose Catabolism in Streptomyces coelicolor A3(2). J. Microbiol. Biotechnol. 2021, 31, 756–763. [Google Scholar] [CrossRef]
- Yun, E.J.; Lee, S.; Kim, H.T.; Pelton, J.G.; Kim, S.; Ko, H.J.; Choi, I.G.; Kim, K.H. The novel catabolic pathway of 36-anhydro-L-galactose the main component of red macroalgae in a marine bacterium. Environ. Microbiol. 2015, 17, 1677–1688. [Google Scholar] [CrossRef]
- Ra, C.H.; Kim, Y.J.; Lee, S.Y.; Jeong, G.T.; Kim, S.K. Effects of galactose adaptation in yeast for ethanol fermentation from red seaweed, Gracilaria verrucosa. Bioprocess Biosyst. Eng. 2015, 38, 1715–1722. [Google Scholar] [CrossRef]
- Jin, Y.; Yu, S.; Liu, J.J.; Yun, E.J.; Lee, J.W.; Jin, Y.S.; Kim, K.H. Production of neoagarooligosaccharides by probiotic yeast Saccharomyces cerevisiae var. boulardii engineered as a microbial cell factory. Microb. Cell Fact. 2021, 20, 160. [Google Scholar] [CrossRef] [PubMed]
- Singh, D.P.; Prabha, R.; Verma, S.; Meena, K.K.; Yandigeri, M. Antioxidant properties and polyphenolic content in terrestrial cyanobacteria. 3 Biotech 2017, 7, 134. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ren, B.; Wu, M.; Wang, Q.; Peng, X.; Wen, H.; McKinstry, W.J.; Chen, Q. Crystal structure of tannase from Lactobacillus plantarum. J. Mol. Biol. 2013, 425, 2737–2751. [Google Scholar] [CrossRef]
- Ragan, M.A.; Glombitza, K.W. Phlorotannins Brown Algal Polyphenols. Prog. Phycol. Res. 1986, 4, 129–241. [Google Scholar]
- Ahn, M.J.; Yoon, K.D.; Kim, C.Y.; Kim, J.H.; Shin, C.G.; Kim, J. Inhibitory activity on HIV-1 reverse transcriptase and integrase of a carmalol derivative from a brown Alga Ishige okamurae. Phytother. Res. 2006, 20, 711–713. [Google Scholar] [CrossRef]
- Singh, R.; Barden, A.; Mori, T.; Beilin, L. Advanced glycation end-products: A review. Diabetologia 2001, 44, 129–146. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Izgilov, R.; Naftaly, A.; Benayahu, D. Advanced Glycation End Products Effects on Adipocyte Niche Stiffness and Cell Signaling. Int. J. Mol. Sci. 2023, 24, 2261. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, N. Advanced glycation endproducts-role in pathology of diabetic complications. Diabetes Res. Clin. Pract. 2005, 67, 3–21. [Google Scholar] [CrossRef]
- Suzuki, A.; Yabu, A.; Nakamura, H. Advanced glycation end products in musculoskeletal system and disorders. Methods 2022, 203, 179–186. [Google Scholar] [CrossRef]
- Nilsson, B.O. Biological effects of aminoguanidine: An update. Inflamm. Res. 1999, 48, 509–515. [Google Scholar] [CrossRef]
- Kalousová, M.; Zima, T.; Tesar, V.; Stípek, S.; Sulková, S. Advanced glycation end products in clinical nephrology. Kidney Blood Press. Res. 2004, 27, 18–28. [Google Scholar] [CrossRef] [PubMed]
- Motta, B.P.; Kaga, A.K.; Oliveira, J.O.; Inacio, M.D.; da Silva, C.F.; de Sousa Junior, P.T.; Brunetti, I.L.; Baviera, A.M. In vitro inhibition of protein glycation and advanced glycation end products formation by hydroethanolic extract and two fractions of Simaba trichilioides roots. Nat. Prod. Res. 2020, 34, 2389–2393. [Google Scholar] [CrossRef] [PubMed]
- Schalkwijk, C.G.; Stehouwer, C.D.A. Methylglyoxal a Highly Reactive Dicarbonyl Compound in Diabetes Its Vascular Complications and Other Age-Related Diseases. Physiol. Rev. 2020, 100, 407–461. [Google Scholar] [CrossRef] [PubMed]
- Odani, H.; Shinzato, T.; Matsumoto, Y.; Usami, J.; Maeda, K. Increase in three alphabeta-dicarbonyl compound levels in human uremic plasma: Specific in vivo determination of intermediates in advanced Maillard reaction. Biochem. Biophys. Res. Commun. 1999, 256, 89–93. [Google Scholar] [CrossRef]
- Hanssen, N.M.J.; Teraa, M.; Scheijen, J.L.J.M.; Van de Waarenburg, M.; Gremmels, H.; Stehouwer, C.D.A.; Verhaar, M.C.; Schalkwijk, C.G. Plasma Methylglyoxal Levels Are Associated With Amputations and Mortality in Severe Limb Ischemia Patients With and Without Diabetes. Diabetes Care 2021, 44, 157–163. [Google Scholar] [CrossRef]
- Sugiura, S.; Minami, Y.; Taniguchi, R.; Tanaka, R.; Miyake, H.; Mori, T.; Ueda, M.; Shibata, T. Evaluation of Anti-glycation Activities of Phlorotannins in Human and Bovine Serum Albumin-methylglyoxal Models. Nat. Prod. Commun. 2017, 12, 1793–1796. [Google Scholar] [CrossRef] [Green Version]
- Yagi, M.; Yonei, Y. Glycative stress and anti-aging: 10. Glycative stress and liver disease. Glycative Stress Res. 2018, 5, 177–180. [Google Scholar]
- Ooi, H.; Nasu, R.; Furukawa, A.; Takeuchi, M.; Koriyama, Y. Pyridoxamine and Aminoguanidine Attenuate the Abnormal Aggregation of β-Tubulin and Suppression of Neurite Outgrowth by Glyceraldehyde-Derived Toxic Advanced Glycation End-Products. Front. Pharmacol. 2022, 13, 921611. [Google Scholar] [CrossRef]
- Dong, Z.; Iwata, D.; Kitaichi, N.; Takeuchi, M.; Sato, M.; Endo, N.; Iwabuchi, K.; Ando, R.; Fukuhara, J.; Kinoshita, S.; et al. Amelioration of experimental autoimmune uveoretinitis by inhibition of glyceraldehyde-derived advanced glycation end-product formation. J. Leukoc. Biol. 2014, 96, 1077–1085. [Google Scholar] [CrossRef]
- Takata, T.; Sakasai-Sakai, A.; Takeuchi, M. Impact of intracellular toxic advanced glycation end-products (TAGE) on murine myoblast cell death. Diabetol. Metab. Syndr. 2020, 12, 54. [Google Scholar] [CrossRef]
- Sugiura, S.; Tanaka, R.; Nishioka, Y.; Iwase, R.; Tanaka, R.; Miyake, H.; Mori, T.; Ueda, M.; Shibata, T. Evaluation of Anti-glycation Activities of Phlorotannins in Human and Bovine Serum Albumin-glyceraldehyde Models. Nat. Prod. Commun. 2018, 13, 1007–1010. [Google Scholar] [CrossRef] [Green Version]
- Ames, J.M. Determination of N epsilon-(carboxymethyl)lysine in foods and related systems. Ann. N. Y. Acad. Sci. 2008, 1126, 20–24. [Google Scholar] [CrossRef] [PubMed]
- Alikhani, M.; Maclellan, C.M.; Raptis, M.; Vora, S.; Trackman, P.C.; Graves, D.T. Advanced glycation end products induce apoptosis in fibroblasts through activation of ROS MAP kinases and the FOXO1 transcription factor. Am. J. Physiol. Cell Physiol. 2007, 292, C850-6. [Google Scholar] [CrossRef] [PubMed]
- Sroga, G.E.; Stephen, S.J.; Wang, B.; Vashishth, D. Techniques for advanced glycation end product measurements for diabetic bone disease: Pitfalls and future directions. Curr. Opin. Endocrinol. Diabetes Obes. 2022, 29, 333–342. [Google Scholar] [CrossRef]
- Khosravi, R.; Sodek, K.L.; Faibish, M.; Trackman, P.C. Collagen advanced glycation inhibits its Discoidin Domain Receptor 2 (DDR2)-mediated induction of lysyl oxidase in osteoblasts. Bone 2014, 58, 33–41. [Google Scholar] [CrossRef] [Green Version]
- Murata, N.; Azuma, M.; Yamauchi, K.; Miyake, H.; Tanaka, R.; Shibata, T. Phlorotannins Remarkably Suppress the Formation of Nε-(Carboxymethyl)lysine in a Collagen-Glyoxal Environment. Nat. Prod. Commun. 2020, 15, 1–6. [Google Scholar] [CrossRef]
- Sawabe, T.; Tanaka, R.; Iqbal, M.M.; Tajima, K.; Ezura, Y.; Ivanova, E.P.; Christen, R. Assignment of Alteromonas elyakovii KMM 162T and five strains isolated from spot-wounded fronds of Laminaria japonica to Pseudoalteromonas elyakovii comb. nov. and the extended description of the species. Int. J. Syst. Evol. Microbiol. 2000, 50 Pt 1, 265–271. [Google Scholar] [CrossRef]
- Ivanova, E.P.; Bakunina, I.Y.; Sawabe, T.; Hayashi, K.; Alexeeva, Y.V.; Zhukova, N.V.; Nicolau, D.V.; Zvaygintseva, T.N.; Mikhailov, V.V. Two species of culturable bacteria associated with degradation of brown algae Fucus evanescens. Microb. Ecol. 2002, 43, 242–249. [Google Scholar] [CrossRef]
- Tanaka, R.; Cleenwerck, I.; Mizutani, Y.; Iehata, S.; Shibata, T.; Miyake, H.; Mori, T.; Tamaru, Y.; Ueda, M.; Bossier, P.; et al. Formosa haliotis sp. nov. a brown-alga-degrading bacterium isolated from the gut of the abalone Haliotis gigantea. Int. J. Syst. Evol. Microbiol. 2015, 65, 4388–4393. [Google Scholar] [CrossRef]
- Tanaka, R.; Mizutani, Y.; Shibata, T.; Miyake, H.; Iehata, S.; Mori, T.; Kuroda, K.; Ueda, M. Genome Sequence of Formosa haliotis Strain MA1 a Brown Alga-Degrading Bacterium Isolated from the Gut of Abalone Haliotis gigantea. Genome Announc. 2016, 4, e01312-16. [Google Scholar] [CrossRef] [Green Version]
- Mori, T.; Takahashi, M.; Tanaka, R.; Miyake, H.; Shibata, T.; Chow, S.; Kuroda, K.; Ueda, M.; Takeyama, H. Falsirhodobacter sp. alg1 Harbors Single Homologs of Endo and Exo-Type Alginate Lyases Efficient for Alginate Depolymerization. PLoS ONE 2016, 11, e0155537. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yonemotov, Y.; Tanaka, H.; Hisano, T.; Sakaguchi, K.; Abe, S.; Yamashita, T.; Kimura, A.; Murata, K. Bacterial Alginate Lyase Gene—Nucleotide-Sequence and Molecular Route for Generation of Alginate Lyase Species. J. Ferment. Bioeng. 1993, 75, 336–342. [Google Scholar] [CrossRef]
- Thomas, F.; Barbeyron, T.; Tonon, T.; Genicot, S.; Czjzek, M.; Michel, G. Characterization of the first alginolytic operons in a marine bacterium: From their emergence in marine Flavobacteriia to their independent transfers to marine Proteobacteria and human gut Bacteroides. Environ. Microbiol. 2012, 14, 2379–2394. [Google Scholar] [CrossRef]
- Jagtap, S.S.; Hehemann, J.H.; Polz, M.F.; Lee, J.K.; Zhao, H. Comparative biochemical characterization of three exolytic oligoalginate lyases from Vibrio splendidus reveals complementary substrate scope temperature and pH adaptations. Appl. Environ. Microbiol. 2014, 80, 4207–4214. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ekborg, N.A.; Gonzalez, J.M.; Howard, M.B.; Taylor, L.E.; Hutcheson, S.W.; Weiner, R.M. Saccharophagus degradans gen. nov. sp. nov. a versatile marine degrader of complex polysaccharides. Int. J. Syst. Evol. Microbiol. 2005, 55 Pt 4, 1545–1549. [Google Scholar] [CrossRef] [Green Version]
- Mori, T.; Takahashi, M.; Tanaka, R.; Shibata, T.; Kuroda, K.; Ueda, M.; Takeyama, H. Draft Genome Sequence of Falsirhodobacter sp. Strain alg1 an Alginate-Degrading Bacterium Isolated from Fermented Brown Algae. Genome Announc. 2014, 2, e00826-14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wargacki, A.J.; Leonard, E.; Win, M.N.; Regitsky, D.D.; Santos, C.N.; Kim, P.B.; Cooper, S.R.; Raisner, R.M.; Herman, A.; Sivitz, A.B.; et al. An engineered microbial platform for direct biofuel production from brown macroalgae. Science 2012, 335, 308–313. [Google Scholar] [CrossRef] [Green Version]
- Santos, C.N.S.; Regitsky, D.D.; Yoshikuni, Y. Implementation of stable and complex biological systems through recombinase-assisted genome engineering. Nat. Commun. 2013, 4, 2503. [Google Scholar] [CrossRef] [Green Version]
- Wang, D.M.; Kim, H.T.; Yun, E.J.; Kim, D.H.; Park, Y.C.; Woo, H.C.; Kim, K.H. Optimal production of 4-deoxy-L-erythro-5-hexoseulose uronic acid from alginate for brown macro algae saccharification by combining endo- and exo-type alginate lyases. Bioprocess Biosyst. Eng. 2014, 37, 2105–2111. [Google Scholar] [CrossRef]
- Tanaka, Y.; Murase, Y.; Shibata, T.; Tanaka, R.; Mori, T.; Miyake, H. Production of 4-Deoxy-L-erythro-5-Hexoseulose Uronic Acid Using Two Free and Immobilized Alginate Lyases from Falsirhodobacter sp. Alg1. Molecules 2022, 27, 3308. [Google Scholar] [CrossRef]
- Shibasaki, S.; Ueda, M. Therapeutic antibodies and other proteins obtained by molecular display technologies. Recent Pat. Biotechnol. 2009, 3, 19–27. [Google Scholar] [CrossRef] [PubMed]
- Shibasaki, S. Development of platform technology using molecular display. Yakugaku Zasshi 2009, 129, 1333–1340. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ueda, M. Establishment of cell surface engineering and its development. Biosci. Biotechnol. Biochem. 2016, 80, 1243–1253. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smith, G.P. Filamentous fusion phage: Novel expression vectors that display cloned antigens on the virion surface. Science 1985, 228, 1315–1317. [Google Scholar] [CrossRef] [PubMed]
- Scott, J.K.; Smith, G.P. Searching for peptide ligands with an epitope library. Science 1990, 249, 386–390. [Google Scholar] [CrossRef] [PubMed]
- Bozovičar, K.; Molek, P.; Bizjan, B.J.; Bratkovič, T. Ligand Selection for Affinity Chromatography Using Phage Display. Methods Mol. Biol. 2022, 2466, 159–185. [Google Scholar]
- Georgiou, G.; Poetschke, H.L.; Stathopoulos, C.; Francisco, J.A. Practical applications of engineering gram-negative bacterial cell surfaces. Trends Biotechnol. 1993, 11, 6–10. [Google Scholar] [CrossRef]
- Little, M.; Fuchs, P.; Breitling, F.; Dübel, S. Bacterial surface presentation of proteins and peptides: An alternative to phage technology? Trends Biotechnol. 1993, 11, 3–5. [Google Scholar] [CrossRef]
- Francisco, J.A.; Stathopoulos, C.; Warren, R.A.; Kilburn, D.G.; Georgiou, G. Specific adhesion and hydrolysis of cellulose by intact Escherichia coli expressing surface anchored cellulase or cellulose binding domains. Biotechnology 1993, 11, 491–495. [Google Scholar] [CrossRef]
- Krause, S.; Würdemann, D.; Wentzel, A.; Christmann, A.; Fehr, H.; Kolmar, H.; Friedrich, K. Bacteria displaying interleukin-4 mutants stimulate mammalian cells and reflect the biological activities of variant soluble cytokines. ChemBioChem 2004, 5, 804–810. [Google Scholar] [CrossRef]
- Bule, P.; Cameron, K.; Prates, J.A.M.; Ferreira, L.M.A.; Smith, S.P.; Gilbert, H.J.; Bayer, E.A.; Najmudin, S.; Fontes, C.M.G.A.; Alves, V.D. Structure-function analyses generate novel specificities to assemble the components of multienzyme bacterial cellulosome complexes. J. Biol. Chem. 2018, 293, 4201–4212. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, D.; Kim, W.; Kim, J. New Bacterial Surface Display System Development and Application Based on Bacillus subtilis YuaB Biofilm Component as an Anchoring Motif. Biotechnol. Bioprocess Eng. 2021, 26, 39–46. [Google Scholar] [CrossRef] [PubMed]
- Michon, C.; Langella, P.; Eijsink, V.G.; Mathiesen, G.; Chatel, J.M. Display of recombinant proteins at the surface of lactic acid bacteria: Strategies and applications. Microb. Cell Fact. 2016, 15, 70. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Löfblom, J.; Rosenstein, R.; Nguyen, M.T.; Ståhl, S.; Götz, F. Staphylococcus carnosus: From starter culture to protein engineering platform. Appl. Microbiol. Biotechnol. 2017, 101, 8293–8307. [Google Scholar] [CrossRef] [Green Version]
- Lim, S.; Glasgow, J.E.; Filsinger Interrante, M.; Storm, E.M.; Cochran, J.R. Dual display of proteins on the yeast cell surface simplifies quantification of binding interactions and enzymatic bioconjugation reactions. Biotechnol. J. 2017, 12. [Google Scholar] [CrossRef] [Green Version]
- Shibasaki, S.; Ueda, M.; Ye, K.; Shimizu, K.; Kamasawa, N.; Osumi, M.; Tanaka, A. Creation of cell surface-engineered yeast that display different fluorescent proteins in response to the glucose concentration. Appl. Microbiol. Biotechnol. 2001, 57, 528–533. [Google Scholar]
- Ito, J.; Kosugi, A.; Tanaka, T.; Kuroda, K.; Shibasaki, S.; Ogino, C.; Ueda, M.; Fukuda, H.; Doi, R.H.; Kondo, A. Regulation of the display ratio of enzymes on the Saccharomyces cerevisiae cell surface by the immunoglobulin G and cellulosomal enzyme binding domains. Appl. Environ. Microbiol. 2009, 75, 4149–4154. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shibasaki, S.; Ueda, M.; Iizuka, T.; Hirayama, M.; Ikeda, Y.; Kamasawa, N.; Osumi, M.; Tanaka, A. Quantitative evaluation of the enhanced green fluorescent protein displayed on the cell surface of Saccharomyces cerevisiae by fluorometric and confocal laser scanning microscopic analyses. Appl. Microbiol. Biotechnol. 2001, 55, 471–475. [Google Scholar] [CrossRef]
- Shibasaki, S.; Ninomiya, Y.; Ueda, M.; Iwahashi, M.; Katsuragi, T.; Tani, Y.; Harashima, S.; Tanaka, A. Intelligent yeast strains with the ability to self-monitor the concentrations of intra- and extracellular phosphate or ammonium ion by emission of fluorescence from the cell surface. Appl. Microbiol. Biotechnol. 2001, 57, 702–707. [Google Scholar]
- Fleet, G.H. The Yeasts, 2nd ed.; Rose, A.H., Harrison, J.S., Eds.; Academic Press: Cambridge, MA, USA, 1991; Volume 4, p. 199. [Google Scholar]
- Kipnis, P.; Thomas, N.; Ovalle, R.; Lipke, P.N. The ER-Golgi v-SNARE Bet1p is required for cross-linking alpha-agglutinin to the cell wall in yeast. Microbiology 2004, 150 Pt 10, 3219–3228. [Google Scholar] [CrossRef] [Green Version]
- Lu, C.F.; Montijn, R.C.; Brown, J.L.; Klis, F.; Kurjan, J.; Bussey, H.; Lipke, P.N. Glycosyl phosphatidylinositol-dependent cross-linking of alpha-agglutinin and beta 1,6-glucan in the Saccharomyces cerevisiae cell wall. J. Cell Biol. 1995, 128, 333–340. [Google Scholar] [CrossRef] [PubMed]
- Shibasaki, S.; Tanaka, A.; Ueda, M. Development of combinatorial bioengineering using yeast cell surface display--order-made design of cell and protein for bio-monitoring. Biosens. Bioelectron. 2003, 19, 123–130. [Google Scholar] [CrossRef] [PubMed]
- Shibasaki, S.; Ueda, M. Development of yeast molecular display systems focused on therapeutic proteins enzymes and foods: Functional analysis of proteins and its application to bioconversion. Recent Pat. Biotechnol. 2010, 4, 198–213. [Google Scholar] [CrossRef] [PubMed]
- Shibasaki, S.; Aoki, W.; Nomura, T.; Miyoshi, A.; Tafuku, S.; Sewaki, T.; Ueda, M. An oral vaccine against candidiasis generated by a yeast molecular display system. Pathog. Dis. 2013, 69, 262–268. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shibasaki, S.; Karasaki, M.; Tafuku, S.; Aoki, W.; Sewaki, T.; Ueda, M. Oral Immunization Against Candidiasis Using Lactobacillus casei Displaying Enolase 1 from Candida albicans. Sci. Pharm. 2014, 82, 697–708. [Google Scholar] [CrossRef] [Green Version]
- Shibasaki, S.; Okada, J.; Nakayama, Y.; Yoshida, T.; Ueda, M. Isolation of bacteria which produce yeast cell wall-lytic enzymes and their characterization. Biocontrol Sci. 2008, 13, 91–96. [Google Scholar] [CrossRef] [Green Version]
- Adams, J.M.; Gallagher, J.A.; Donnison, I.S. Fermentation study on Saccharina latissima for bioethanol production considering variable pre-treatments. J. Appl. Phycol. 2009, 21, 569–574. [Google Scholar] [CrossRef]
- Lee, S.M.; Lee, J.H. The isolation and characterization of simultaneous saccharification and fermentation microorganisms for Laminaria japonica utilization. Bioresour. Technol. 2011, 102, 5962–5967. [Google Scholar] [CrossRef]
- Horn, S.J.; Aasen, I.M.; Ostgaard, K. Ethanol production from seaweed extract. J. Ind. Microbiol. Biotechnol. 2000, 25, 249–254. [Google Scholar] [CrossRef]
- Chujo, M.; Yoshida, S.; Ota, A.; Murata, K.; Kawai, S. Acquisition of the ability to assimilate mannitol by Saccharomyces cerevisiae through dysfunction of the general corepressor Tup1-Cyc8. Appl. Environ. Microbiol. 2015, 81, 9–16. [Google Scholar] [CrossRef] [Green Version]
- Motone, K.; Takagi, T.; Sasaki, Y.; Kuroda, K.; Ueda, M. Direct ethanol fermentation of the algal storage polysaccharide laminarin with an optimized combination of engineered yeasts. J. Biotechnol. 2016, 231, 129–135. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hutcheson, S.W.; Zhang, H.; Suvorov, M. Carbohydrase systems of Saccharophagus degradans degrading marine complex polysaccharides. Mar. Drugs 2011, 9, 645–665. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shibasaki, S.; Maeda, H.; Ueda, M. Molecular display technology using yeast--arming technology. Anal. Sci. 2009, 25, 41–49. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kondo, A.; Ueda, M. Yeast cell-surface display--applications of molecular display. Appl. Microbiol. Biotechnol. 2004, 64, 28–40. [Google Scholar] [CrossRef] [PubMed]
- Saha, B.C. Hemicellulose bioconversion. J. Ind. Microbiol. Biotechnol. 2003, 30, 279–291. [Google Scholar] [CrossRef]
- Katahira, S.; Fujita, Y.; Mizuike, A.; Fukuda, H.; Kondo, A. Construction of a xylan-fermenting yeast strain through codisplay of xylanolytic enzymes on the surface of xylose-utilizing Saccharomyces cerevisiae cells. Appl. Environ. Microbiol. 2004, 70, 5407–5414. [Google Scholar] [CrossRef] [Green Version]
- Eliasson, A.; Christensson, C.; Wahlbom, C.F.; Hahn-Hagerdal, B. Anaerobic xylose fermentation by recombinant Saccharomyces cerevisiae carrying XYL1 XYL2 and XKS1 in mineral medium chemostat cultures. Appl. Environ. Microbiol. 2000, 66, 3381–3386. [Google Scholar] [CrossRef] [Green Version]
- Matsushika, A.; Inoue, H.; Kodaki, T.; Sawayama, S. Ethanol production from xylose in engineered Saccharomyces cerevisiae strains: Current state and perspectives. Appl. Microbiol. Biotechnol. 2009, 84, 37–53. [Google Scholar] [CrossRef]
- Kim, D.M.; Choi, S.H.; Ko, B.S.; Jeong, G.Y.; Jang, H.B.; Han, J.G.; Jeong, K.H.; Lee, H.Y.; Won, Y.; Kim, I.C. Reduction of PDC1 expression in S. cerevisiae with xylose isomerase on xylose medium. Bioprocess Biosyst. Eng. 2012, 35, 183–189. [Google Scholar] [CrossRef]
- Usvalampi, A.; Turunen, O.; Valjakka, J.; Pastinen, O.; Leisola, M.; Nyyssölä, A. Production of L-xylose from L-xylulose using Escherichia coli L-fucose isomerase. Enzyme Microb. Technol. 2012, 50, 71–76. [Google Scholar] [CrossRef]
- Lee, S.M.; Jellison, T.; Alper, H.S. Directed evolution of xylose isomerase for improved xylose catabolism and fermentation in the yeast Saccharomyces cerevisiae. Appl. Environ. Microbiol. 2012, 78, 5708–5716. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ota, M.; Sakuragi, H.; Morisaka, H.; Kuroda, K.; Miyake, H.; Tamaru, Y.; Ueda, M. Display of Clostridium cellulovorans xylose isomerase on the cell surface of Saccharomyces cerevisiae and its direct application to xylose fermentation. Biotechnol. Prog. 2013, 29, 346–351. [Google Scholar] [CrossRef] [PubMed]
- Chiang, L.C.; Gong, C.S.; Chen, L.F.; Tsao, G.T. D-Xylulose fermentation to ethanol by Saccharomyces cerevisiae. Appl. Environ. Microbiol. 1981, 42, 284–289. [Google Scholar] [CrossRef] [Green Version]
- Chu, B.C.H.; Lee, H. Genetic improvement of Saccharomyces cerevisiae for xylose fermentation. Biotechnol. Adv. 2007, 25, 425–441. [Google Scholar] [CrossRef] [PubMed]
- Hartley, B.S.; Hanlon, N.; Jackson, R.J.; Rangarajan, M. Glucose isomerase: Insights into protein engineering for increased thermostability. Biochim. Biophys. Acta 2000, 1543, 294–335. [Google Scholar] [CrossRef]
- Sasaki, Y.; Takagi, T.; Motone, K.; Kuroda, K.; Ueda, M. Enhanced direct ethanol production by cofactor optimization of cell surface-displayed xylose isomerase in yeast. Biotechnol. Prog. 2017, 33, 1068–1076. [Google Scholar] [CrossRef]
- Weiner, R.M.; Taylor, L.E., II; Henrissat, B.; Hauser, L.; Land, M.; Coutinho, P.M.; Rancurel, C.; Saunders, E.H.; Longmire, A.G.; Zhang, H.; et al. Complete genome sequence of the complex carbohydrate-degrading marine bacterium Saccharophagus degradans strain 2-40 T. PLoS Genet. 2008, 4, e1000087. [Google Scholar] [CrossRef] [Green Version]
- Selig, M.J.; Knoshaug, E.P.; Decker, S.R.; Baker, J.O.; Himmel, M.E.; Adney, W.S. Heterologous expression of Aspergillus niger beta-D-xylosidase (XlnD): Characterization on lignocellulosic substrates. Appl. Biochem. Biotechnol. 2008, 146, 57–68. [Google Scholar] [CrossRef]
- Nerinckx, W.; Broberg, A.; Duus, J.O.; Ntarima, P.; Parolis, L.A.; Parolis, H.; Claeyssens, M. Hydrolysis of Nothogenia erinacea xylan by xylanases from families 10 and 11. Carbohydr. Res. 2004, 339, 1047–1060. [Google Scholar] [CrossRef]
- Enquist-Newman, M.; Faust, A.M.E.; Bravo, D.D.; Santos, C.N.S.; Raisner, R.M.; Hanel, A.; Sarvabhowman, P.; Le, C.; Regitsky, D.D.; Cooper, S.R.; et al. Efficient ethanol production from brown macroalgae sugars by a synthetic yeast platform. Nature 2014, 505, 239–243. [Google Scholar] [CrossRef]
- Takagi, T.; Yokoi, T.; Shibata, T.; Morisaka, H.; Kuroda, K.; Ueda, M. Engineered yeast whole-cell biocatalyst for direct degradation of alginate from macroalgae and production of non-commercialized useful monosaccharide from alginate. Appl. Microbiol. Biotechnol. 2016, 100, 1723–1732. [Google Scholar] [CrossRef] [PubMed]
- Takagi, T.; Sasaki, Y.; Motone, K.; Shibata, T.; Tanaka, R.; Miyake, H.; Mori, T.; Kuroda, K.; Ueda, M. Construction of bioengineered yeast platform for direct bioethanol production from alginate and mannitol. Appl. Microbiol. Biotechnol. 2017, 101, 6627–6636. [Google Scholar] [CrossRef]
- Bae, J.; Kuroda, K.; Ueda, M. Proximity effect among cellulose-degrading enzymes displayed on the Saccharomyces cerevisiae cell surface. Appl. Environ. Microbiol. 2015, 81, 59–66. [Google Scholar] [CrossRef] [Green Version]
- Sasaki, Y.; Takagi, T.; Motone, K.; Shibata, T.; Kuroda, K.; Ueda, M. Direct bioethanol production from brown macroalgae by co-culture of two engineered Saccharomyces cerevisiae strains. Biosci. Biotechnol. Biochem. 2018, 82, 1459–1462. [Google Scholar] [CrossRef] [PubMed]
- Kawai, S.; Murata, K. Biofuel production based on carbohydrates from both brown and red macroalgae: Recent developments in key biotechnologies. Int. J. Mol. Sci. 2016, 17, 145. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iwao, T.; Kurashima, A.; Maegawa, M. Effect of seasonal changes in the photosynthates mannitol and laminaran on maturation of Ecklonia cava (Phaeophyceae, Laminariales) in Nishiki Bay central Japan. Phycol. Res. 2008, 56, 1–6. [Google Scholar] [CrossRef]
- Kwak, I.S.; Won, S.W.; Chung, Y.S.; Yun, Y.S. Ruthenium recovery from acetic acid waste water through sorption with bacterial biosorbent fibers. Bioresour. Technol. 2013, 128, 30–35. [Google Scholar] [CrossRef]
- Kato, Y.; Kimura, S.; Kogure, T.; Suzuki, M. Deposition of Lead Phosphate by Lead-Tolerant Bacteria Isolated from Fresh Water near an Abandoned Mine. Int. J. Mol. Sci. 2022, 23, 2483. [Google Scholar] [CrossRef]
- Syed, Z.; Sogani, M.; Rajvanshi, J.; Sonu, K. Microbial Biofilms for Environmental Bioremediation of Heavy Metals: A Review. Appl. Biochem. Biotechnol. 2022. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, H.; Nie, Q.; Ding, Y.; Lei, Z.; Zhang, Z.; Shimizu, K.; Yuan, T. Pb(II) bioremediation using fresh algal-bacterial aerobic granular sludge and its underlying mechanisms highlighting the role of extracellular polymeric substances. J. Hazard. Mater. 2023, 444 Pt B, 130452. [Google Scholar] [CrossRef]
- Carreira, A.R.F.; Veloso, T.; Macário, I.P.E.; Pereira, J.L.; Ventura, S.P.M.; Passos, H.; Coutinho, J.A.P. The role of biomass elemental composition and ion-exchange in metal sorption by algae. Chemosphere 2023, 314, 137675. [Google Scholar] [CrossRef]
- Figueira, P.; Henriques, B.; Teixeira, A.; Lopes, C.B.; Reis, A.T.; Monteiro, R.J.; Duarte, A.C.; Pardal, M.A.; Pereira, E. Comparative study on metal biosorption by two macroalgae in saline waters: Single and ternary systems. Environ. Sci. Pollut. Res. Int. 2016, 23, 11985–11997. [Google Scholar] [CrossRef] [PubMed]
- Fernando, I.P.S.; Sanjeewa, K.K.A.; Kim, S.Y.; Lee, J.S.; Jeon, Y.J. Reduction of heavy metal (Pb2+) biosorption in zebrafish model using alginic acid purified from Ecklonia cava and two of its synthetic derivatives. Int. J. Biol. Macromol. 2018, 106, 330–337. [Google Scholar] [CrossRef] [PubMed]
- Milinovic, J.; Vale, C.; Botelho, M.J.; Pereira, E.; Sardinha, J.; Murton, B.J.; Noronha, J.P. Selective incorporation of rare earth elements by seaweeds from Cape Mondego western Portuguese coast. Sci. Total Environ. 2021, 795, 148860. [Google Scholar] [CrossRef] [PubMed]
- Fabre, E.; Dias, M.; Costa, M.; Henriques, B.; Vale, C.; Lopes, C.B.; Pinheiro-Torres, J.; Silva, C.M.; Pereira, E. Negligible effects of potentially toxic elements and rare earth elements on mercury removal from contaminated waters by green brown and red living marine macroalgae. Sci. Total Environ. 2020, 724, 138133. [Google Scholar] [CrossRef]
- Ferreira, N.; Ferreira, A.; Viana, T.; Lopes, C.B.; Costa, M.; Pinto, J.; Soares, J.; Pinheiro-Torres, J.; Henriques, B.; Pereira, E. Assessment of marine macroalgae potential for gadolinium removal from contaminated aquatic systems. Sci. Total Environ. 2020, 749, 141488. [Google Scholar] [CrossRef]
- Ownsworth, E.; Selby, D.; Ottley, C.J.; Unsworth, E.; Raab, A.; Feldmann, J.; Sproson, A.D.; Kuroda, J.; Faidutti, C.; Bücker, P. Tracing the natural and anthropogenic influence on the trace elemental chemistry of estuarine macroalgae and the implications for human consumption. Sci. Total Environ. 2019, 685, 259–272. [Google Scholar] [CrossRef] [Green Version]
- Kuroda, K.; Ueda, M. Engineering of microorganisms towards recovery of rare metal ions. Appl. Microbiol. Biotechnol. 2010, 87, 53–60. [Google Scholar] [CrossRef]
- Shibasaki, S.; Ueda, M. Bioadsorption strategies with yeast molecular display technology. Biocontrol Sci. 2014, 19, 157–164. [Google Scholar] [CrossRef] [Green Version]
- Kuroda, K.; Shibasaki, S.; Ueda, M.; Tanaka, A. Cell surface-engineered yeast displaying a histidine oligopeptide (hexa-His) has enhanced adsorption of and tolerance to heavy metal ions. Appl. Microbiol. Biotechnol. 2001, 57, 697–701. [Google Scholar] [CrossRef]
- Kuroda, K.; Ueda, M. Bioadsorption of cadmium ion by cell surface-engineered yeasts displaying metallothionein and hexa-His. Appl. Microbiol. Biotechnol. 2003, 63, 182–186. [Google Scholar] [CrossRef] [PubMed]
- Kuroda, K.; Ueda, M.; Shibasaki, S.; Tanaka, A. Cell surface-engineered yeast with ability to bind and self-aggregate in response to copper ion. Appl. Microbiol. Biotechnol. 2002, 59, 259–264. [Google Scholar]
- Kuroda, K.; Ueda, M. Effective display of metallothionein tandem repeats on the bioadsorption of cadmium ion. Appl. Microbiol. Biotechnol. 2006, 70, 458–463. [Google Scholar] [CrossRef] [PubMed]
- Nishitani, T.; Shimada, M.; Kuroda, K.; Ueda, M. Molecular design of yeast cell surface for adsorption and recovery of molybdenum one of rare metals. Appl. Microbiol. Biotechnol. 2010, 86, 641–648. [Google Scholar] [CrossRef]
- Kuroda, K.; Ebisutani, K.; Iida, K.; Nishitani, T.; Ueda, M. Enhanced adsorption and recovery of uranyl ions by NikR mutant-displaying yeast. Biomolecules 2014, 4, 390–401. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Motone, K.; Takagi, T.; Aburaya, S.; Miura, N.; Aoki, W.; Ueda, M. A Zeaxanthin-Producing Bacterium Isolated from the Algal Phycosphere Protects Coral Endosymbionts from Environmental Stress. mBio 2020, 11, e01019-19. [Google Scholar] [CrossRef] [Green Version]
Algae (Original Area) | HAS-MGO (mg/mL) | BSA-MGO (mg/mL) |
---|---|---|
Eck. Cava (Mie) | 0.53 | 0.51 |
Eck. Kurome (Fukuoka) | 0.45 | 0.46 |
Eck. Kurome (Kumamoto) | 0.53 | 0.50 |
Cultured Eck. Kurome (Kumamoto) | 0.46 | 0.46 |
Eck. Stolonifera (Yamaguchi) | 0.52 | 0.47 |
Eis. arborea (Mie) | 0.46 | 0.53 |
Eis. bicyclis (Fukuoka) | 0.45 | 0.43 |
Algae (Original Area) | HAS-GA (mg/mL) | BSA-GA (mg/mL) |
---|---|---|
Eck. Cava (Mie) | 0.70 | 0.75 |
Eck. Kurome (Fukuoka) | 0.58 | 0.55 |
Eck. Kurome (Kumamoto) | 0.61 | 0.59 |
Cultured Eck. Kurome (Kumamoto) | 0.52 | 0.58 |
Eck. Stolonifera (Yamaguchi) | 0.54 | 0.56 |
Eis. arborea (Mie) | 0.51 | 0.61 |
Eis. bicyclis (Fukuoka) | 0.48 | 0.52 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shibasaki, S.; Ueda, M. Utilization of Macroalgae for the Production of Bioactive Compounds and Bioprocesses Using Microbial Biotechnology. Microorganisms 2023, 11, 1499. https://doi.org/10.3390/microorganisms11061499
Shibasaki S, Ueda M. Utilization of Macroalgae for the Production of Bioactive Compounds and Bioprocesses Using Microbial Biotechnology. Microorganisms. 2023; 11(6):1499. https://doi.org/10.3390/microorganisms11061499
Chicago/Turabian StyleShibasaki, Seiji, and Mitsuyoshi Ueda. 2023. "Utilization of Macroalgae for the Production of Bioactive Compounds and Bioprocesses Using Microbial Biotechnology" Microorganisms 11, no. 6: 1499. https://doi.org/10.3390/microorganisms11061499
APA StyleShibasaki, S., & Ueda, M. (2023). Utilization of Macroalgae for the Production of Bioactive Compounds and Bioprocesses Using Microbial Biotechnology. Microorganisms, 11(6), 1499. https://doi.org/10.3390/microorganisms11061499