Whole Genome Sequencing of Avian Pathogenic Escherichia coli Causing Bacterial Chondronecrosis and Osteomyelitis in Australian Poultry
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection and Bacteriology
2.2. DNA Extraction, Whole Genome Sequencing and Assembly
2.3. Comparative APECcolibac Collection
2.4. Genomic Assembly and Assembly Stats
2.5. Quality Control
2.6. Strain Typing
2.7. Genotyping
2.8. Pangenomic Analysis
2.9. Non-Metric Multidimensional Scaling
2.10. ColV Plasmid Typing
2.11. Phylogenetic Analysis
3. Results
3.1. Phylogenetic Analysis
3.2. F Plasmid Carriage
3.3. Virulence Gene Carriage
3.4. Infection Dynamics
3.5. Phylogenetic Comparisons with APECcolibac
3.6. Accessory Genome Clustering and Genome-Wide Association Studies
3.7. Carriage of ColV-like Plasmids
4. Discussion
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nolan, L.K.; Barnes, H.J.; Vaillancourt, J.-P.; Abdul-Aziz, T.; Logue, C.M. Colibacillosis. In Diseases of Poultry; John Wiley & Sons: Hoboken, NJ, USA, 2013; pp. 751–805. [Google Scholar]
- Maluta, R.P.; Logue, C.M.; Casas, M.R.; Meng, T.; Guastalli, E.A.; Rojas, T.C.; Montelli, A.C.; Sadatsune, T.; de Carvalho Ramos, M.; Nolan, L.K.; et al. Overlapped sequence types (STs) and serogroups of avian pathogenic (APEC) and human extra-intestinal pathogenic (ExPEC) Escherichia coli isolated in Brazil. PLoS ONE 2014, 9, e105016. [Google Scholar] [CrossRef]
- Barbieri, N.L.; de Oliveira, A.L.; Tejkowski, T.M.; Pavanelo, D.B.; Matter, L.B.; Pinheiro, S.R.; Vaz, T.M.; Nolan, L.K.; Logue, C.M.; de Brito, B.G.; et al. Molecular characterization and clonal relationships among Escherichia coli strains isolated from broiler chickens with colisepticemia. Foodborne Pathog. Dis. 2015, 12, 74–83. [Google Scholar] [CrossRef]
- Dho-Moulin, M.; Fairbrother, J.M. Avian pathogenic Escherichia coli (APEC). Vet. Res. 1999, 30, 299–316. [Google Scholar] [PubMed]
- Collingwood, C.; Kemmett, K.; Williams, N.; Wigley, P. Is the Concept of Avian Pathogenic Escherichia coli as a Single Pathotype Fundamentally Flawed? Front. Vet. Sci. 2014, 1, 5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wideman, R.F., Jr. Bacterial chondronecrosis with osteomyelitis and lameness in broilers: A review. Poult. Sci. 2016, 95, 325–344. [Google Scholar] [CrossRef] [PubMed]
- Wijesurendra, D.S.; Chamings, A.N.; Bushell, R.N.; Rourke, D.O.; Stevenson, M.; Marenda, M.S.; Noormohammadi, A.H.; Stent, A. Pathological and microbiological investigations into cases of bacterial chondronecrosis and osteomyelitis in broiler poultry. Avian Pathol. 2017, 46, 683–694. [Google Scholar] [CrossRef] [Green Version]
- McNamee, P.T.; Smyth, J.A. Bacterial chondronecrosis with osteomyelitis (‘femoral head necrosis’) of broiler chickens: A review. Avian Pathol. 2000, 29, 477–495. [Google Scholar] [CrossRef]
- Weimer, S.L.; Wideman, R.F.; Scanes, C.G.; Mauromoustakos, A.; Christensen, K.D.; Vizzier-Thaxton, Y. Impact of experimentally induced bacterial chondronecrosis with osteomyelitis (BCO) lameness on health, stress, and leg health parameters in broilers. Poult. Sci. 2021, 100, 101457. [Google Scholar] [CrossRef]
- Johnson, T.J.; Logue, C.M.; Johnson, J.R.; Kuskowski, M.A.; Sherwood, J.S.; Barnes, H.J.; DebRoy, C.; Wannemuehler, Y.M.; Obata-Yasuoka, M.; Spanjaard, L.; et al. Associations between multidrug resistance, plasmid content, and virulence potential among extraintestinal pathogenic and commensal Escherichia coli from humans and poultry. Foodborne Pathog. Dis. 2012, 9, 37–46. [Google Scholar] [CrossRef] [Green Version]
- Rodriguez-Siek, K.E.; Giddings, C.W.; Doetkott, C.; Johnson, T.J.; Nolan, L.K. Characterizing the APEC pathotype. Vet. Res. 2005, 36, 241–256. [Google Scholar] [CrossRef] [Green Version]
- Mageiros, L.; Méric, G.; Bayliss, S.C.; Pensar, J.; Pascoe, B.; Mourkas, E.; Calland, J.K.; Yahara, K.; Murray, S.; Wilkinson, T.S. Genome evolution and the emergence of pathogenicity in avian Escherichia coli. Nat. Commun. 2021, 12, 765. [Google Scholar] [CrossRef] [PubMed]
- Skyberg, J.A.; Johnson, T.J.; Johnson, J.R.; Clabots, C.; Logue, C.M.; Nolan, L.K. Acquisition of avian pathogenic Escherichia coli plasmids by a commensal E. coli isolate enhances its abilities to kill chicken embryos, grow in human urine, and colonize the murine kidney. Infect. Immun. 2006, 74, 6287–6292. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cummins, M.L.; Reid, C.J.; Chowdhury, P.R.; Bushell, R.N.; Esbert, N.; Tivendale, K.A.; Noormohammadi, A.H.; Islam, S.; Marenda, M.S.; Browning, G.F. Whole genome sequence analysis of Australian avian pathogenic Escherichia coli that carry the class 1 integrase gene. Microb. Genom. 2019, 5, e000250. [Google Scholar] [CrossRef]
- Poulsen, L.L.; Kudirkiene, E.; Jørgensen, S.L.; Djordjevic, S.P.; Cummins, M.L.; Christensen, J.P.; Christensen, H.; Bisgaard, M.; Thøfner, I. Whole genome sequence comparison of avian pathogenic Escherichia coli from acute and chronic salpingitis of egg laying hens. BMC Vet. Res. 2020, 16, 148. [Google Scholar] [CrossRef] [PubMed]
- Reid, C.J.; Wyrsch, E.R.; Roy Chowdhury, P.; Zingali, T.; Liu, M.; Darling, A.E.; Chapman, T.A.; Djordjevic, S.P. Porcine commensal Escherichia coli: A reservoir for class 1 integrons associated with IS26. Microb. Genom. 2017, 3, e000143. [Google Scholar] [CrossRef]
- Chen, L.; Yang, J.; Yu, J.; Yao, Z.; Sun, L.; Shen, Y.; Jin, Q. VFDB: A reference database for bacterial virulence factors. Nucleic Acids Res. 2005, 33, D325–D328. [Google Scholar] [CrossRef] [Green Version]
- Parks, D.H.; Imelfort, M.; Skennerton, C.T.; Hugenholtz, P.; Tyson, G.W. CheckM: Assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 2015, 25, 1043–1055. [Google Scholar] [CrossRef] [Green Version]
- Roer, L.; Tchesnokova, V.; Allesøe, R.; Muradova, M.; Chattopadhyay, S.; Ahrenfeldt, J.; Thomsen, M.C.; Lund, O.; Hansen, F.; Hammerum, A.M. Development of a web tool for Escherichia coli subtyping based on fimH alleles. J. Clin. Microbiol. 2017, 55, 2538–2543. [Google Scholar] [CrossRef] [Green Version]
- Bessonov, K.; Laing, C.; Robertson, J.; Yong, I.; Ziebell, K.; Gannon, V.P.; Nichani, A.; Arya, G.; Nash, J.H.; Christianson, S. ECTyper: In silico Escherichia coli serotype and species prediction from raw and assembled whole-genome sequence data. Microb. Genom. 2021, 7, 000728. [Google Scholar] [CrossRef]
- Beghain, J.; Bridier-Nahmias, A.; Le Nagard, H.; Denamur, E.; Clermont, O. ClermonTyping: An easy-to-use and accurate in silico method for Escherichia genus strain phylotyping. Microb. Genom. 2018, 4, e000192. [Google Scholar] [CrossRef]
- Waters, N.R.; Abram, F.; Brennan, F.; Holmes, A.; Pritchard, L. Easy phylotyping of Escherichia coli via the EzClermont web app and command-line tool. Access Microbiol. 2020, 2, e000143. [Google Scholar] [CrossRef] [PubMed]
- Carattoli, A.; Zankari, E.; García-Fernández, A.; Larsen, M.V.; Lund, O.; Villa, L.; Aarestrup, F.M.; Hasman, H. In silico detection and typing of plasmids using PlasmidFinder and plasmid multilocus sequence typing. Antimicrob. Agents Chemother. 2014, 58, 3895–3903. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, Z.; Alikhan, N.-F.; Mohamed, K.; Fan, Y.; Agama Study Group; Achtman, M. The user’s guide to comparative genomics with EnteroBase, including case studies on transmissions of micro-clades of Salmonella, the phylogeny of ancient and modern Yersinia pestis genomes, and the core genomic diversity of all Escherichia. bioRxiv 2019, 613554. [Google Scholar] [CrossRef] [Green Version]
- Siguier, P.; Pérochon, J.; Lestrade, L.; Mahillon, J.; Chandler, M. ISfinder: The reference centre for bacterial insertion sequences. Nucleic Acids Res. 2006, 34, D32–D36. [Google Scholar] [CrossRef] [Green Version]
- Sherry, N.L.; Horan, K.A.; Ballard, S.A.; Gonçalves da Silva, A.; Gorrie, C.L.; Schultz, M.B.; Stevens, K.; Valcanis, M.; Sait, M.L.; Stinear, T.P. An ISO-certified genomics workflow for identification and surveillance of antimicrobial resistance. Nat. Commun. 2023, 14, 60. [Google Scholar] [CrossRef]
- Feldgarden, M.; Brover, V.; Gonzalez-Escalona, N.; Frye, J.G.; Haendiges, J.; Haft, D.H.; Hoffmann, M.; Pettengill, J.B.; Prasad, A.B.; Tillman, G.E. AMRFinderPlus and the Reference Gene Catalog facilitate examination of the genomic links among antimicrobial resistance, stress response, and virulence. Sci. Rep. 2021, 11, 12728. [Google Scholar] [CrossRef]
- Seemann, T. Prokka: Rapid prokaryotic genome annotation. Bioinformatics 2014, 30, 2068–2069. [Google Scholar] [CrossRef] [Green Version]
- Tonkin-Hill, G.; MacAlasdair, N.; Ruis, C.; Weimann, A.; Horesh, G.; Lees, J.A.; Gladstone, R.A.; Lo, S.; Beaudoin, C.; Floto, R.A. Producing polished prokaryotic pangenomes with the Panaroo pipeline. Genome Biol. 2020, 21, 180. [Google Scholar] [CrossRef]
- Köster, J.; Rahmann, S. Snakemake—A scalable bioinformatics workflow engine. Bioinformatics 2012, 28, 2520–2522. [Google Scholar] [CrossRef] [Green Version]
- Brynildsrud, O.; Bohlin, J.; Scheffer, L.; Eldholm, V. Rapid scoring of genes in microbial pan-genome-wide association studies with Scoary. Genome Biol. 2016, 17, 238. [Google Scholar] [CrossRef] [Green Version]
- Altschul, S.F.; Gish, W.; Miller, W.; Myers, E.W.; Lipman, D.J. Basic local alignment search tool. J. Mol. Biol. 1990, 215, 403–410. [Google Scholar] [CrossRef]
- Oksanen, J.; Blanchet, F.G.; Kindt, R.; Legendre, P.; Minchin, P.R.; O’hara, R.; Simpson, G.L.; Solymos, P.; Stevens, M.H.H.; Wagner, H. Package ‘vegan’. Community Ecol. Package Version 2013, 2, 1–295. [Google Scholar]
- Venables, W.N.; Ripley, B.D. Modern Applied Statistics with S-PLUS; Springer Science & Business Media: New York, NY, USA, 2013. [Google Scholar]
- Liu, C.M.; Stegger, M.; Aziz, M.; Johnson, T.J.; Waits, K.; Nordstrom, L.; Gauld, L.; Weaver, B.; Rolland, D.; Statham, S. Escherichia coli ST131-H22 as a foodborne uropathogen. mBio 2018, 9, e00470-18. [Google Scholar] [CrossRef] [Green Version]
- Page, A.J.; Taylor, B.; Delaney, A.J.; Soares, J.; Seemann, T.; Keane, J.A.; Harris, S.R. SNP-sites: Rapid efficient extraction of SNPs from multi-FASTA alignments. bioRxiv 2016, 038190. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, L.-T.; Schmidt, H.A.; Von Haeseler, A.; Minh, B.Q. IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 2015, 32, 268–274. [Google Scholar] [CrossRef]
- Harris, S.R. SKA: Split kmer analysis toolkit for bacterial genomic epidemiology. bioRxiv 2018, 453142. [Google Scholar] [CrossRef]
- Manges, A.R.; Harel, J.; Masson, L.; Edens, T.J.; Portt, A.; Reid-Smith, R.J.; Zhanel, G.G.; Kropinski, A.M.; Boerlin, P. Multilocus sequence typing and virulence gene profiles associated with Escherichia coli from human and animal sources. Foodborne Pathog. Dis. 2015, 12, 302–310. [Google Scholar] [CrossRef] [PubMed]
- Johnson, T.J.; Siek, K.E.; Johnson, S.J.; Nolan, L.K. DNA sequence of a ColV plasmid and prevalence of selected plasmid-encoded virulence genes among avian Escherichia coli strains. J. Bacteriol. 2006, 188, 745–758. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, L.; Li, W.; Li, Q.; Chen, X.; Ni, J.; Shang, F.; Xue, T. Role of LsrR in the regulation of antibiotic sensitivity in avian pathogenic Escherichia coli. Poult. Sci. 2020, 99, 3675–3687. [Google Scholar] [CrossRef]
- González Barrios, A.F.; Zuo, R.; Hashimoto, Y.; Yang, L.; Bentley, W.E.; Wood, T.K. Autoinducer 2 controls biofilm formation in Escherichia coli through a novel motility quorum-sensing regulator (MqsR, B3022). J. Bacteriol. 2006, 188, 305–316. [Google Scholar] [CrossRef] [Green Version]
- Lopilato, J.E.; Garwin, J.; Emr, S.; Silhavy, T.; Beckwith, J. D-ribose metabolism in Escherichia coli K-12: Genetics, regulation, and transport. J. Bacteriol. 1984, 158, 665–673. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hammerum, A.M.; Sandvang, D.; Andersen, S.R.; Seyfarth, A.M.; Porsbo, L.J.; Frimodt-Moller, N.; Heuer, O.E. Detection of sul1, sul2 and sul3 in sulphonamide resistant Escherichia coli isolates obtained from healthy humans, pork and pigs in Denmark. Int. J. Food Microbiol. 2006, 106, 235–237. [Google Scholar] [CrossRef] [PubMed]
ST | Phylogroup | O-Types | H-Types | fimH Types | APECBCO |
---|---|---|---|---|---|
117 | G | NT ^, 111, 115, 119, 149, 167, 24, 45, 53, 71, 78, 86 | 10, 4 | 96, 917 | 62/205 (30.2%) |
95 | B2 | 1, 2 | 5, 7 | 27, 30, 526 | 38/205 (18.5%) |
69 | D | 15, 153 | 18, 49, 6 | 27 | 25/205 (12.2%) |
57 | E | 128, 176, 182, 24, 86 | 25, 26, 32 | 54, 158, 759 | 23/205 (11.2%) |
1818 | A | 116 | 16 | 86 | 8/205 (3.9%) |
355 | B2 | 2 | 5 | 154 | 6/205 (2.9%) |
101 | B1 | 154, 88 | 8 | 86 | 5/205 (2.4%) |
93 | A | 15, 5 | 4 | 32, None | 4/205 (2.0%) |
155 | B1 | 111, 88 | 25, 4 | 121, 366 | 4/205 (2.0%) |
1640 | E | 53 | 18 | 27 | 3/205 (1.5%) |
10 | A | 8, 89 | 10, 30 | 54, None | 3/205 (1.5%) |
135 | B2 | 2 | 1 | 8 ^^ | 3/205 (1.5%) |
752 | A | NT ^ | 40 | 24 | 3/205 (1.5%) |
13152 * | G | 8 | 4 | 97 | 2/205 (1.0%) |
1914 | D | 22 | 2 | 550 | 2/205 (1.0%) |
88 | C | 9/104 | 12 | 25 | 1/205 (0.5%) |
11026 * | A | 40 | 48 | 54 | 1/205 (0.5%) |
1137 | A | 88 | 38 | 54 | 1/205 (0.5%) |
1286 | A | 16 | 32 | 23 | 1/205 (0.5%) |
13151 * | G | 71 | 4 | 97 | 1/205 (0.5%) |
13296 * | D | 15 | 18 | 27 | 1/205 (0.5%) |
11026 * | A | 40 | 48 | 54 | 1/205 (0.5%) |
167 | A | 89 | 9 | None | 1/205 (0.5%) |
1722 | F | 1 | 25 | 153 | 1/205 (0.5%) |
212 | B1 | 18 | 49 | 38 | 1/205 (0.5%) |
4710 | A | 116 | 16 | 86 | 1/205 (0.5%) |
48 | A | 113 | 16 | 23 | 1/205 (0.5%) |
803 | B2 | 85 | 31 | 88 | 1/205 (0.5%) |
665 | A | 78 | 4 | 30 | 1/205 (0.5%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cummins, M.L.; Li, D.; Ahmad, A.; Bushell, R.; Noormohammadi, A.H.; Wijesurendra, D.S.; Stent, A.; Marenda, M.S.; Djordjevic, S.P. Whole Genome Sequencing of Avian Pathogenic Escherichia coli Causing Bacterial Chondronecrosis and Osteomyelitis in Australian Poultry. Microorganisms 2023, 11, 1513. https://doi.org/10.3390/microorganisms11061513
Cummins ML, Li D, Ahmad A, Bushell R, Noormohammadi AH, Wijesurendra DS, Stent A, Marenda MS, Djordjevic SP. Whole Genome Sequencing of Avian Pathogenic Escherichia coli Causing Bacterial Chondronecrosis and Osteomyelitis in Australian Poultry. Microorganisms. 2023; 11(6):1513. https://doi.org/10.3390/microorganisms11061513
Chicago/Turabian StyleCummins, Max L., Dmitriy Li, Aeman Ahmad, Rhys Bushell, Amir H. Noormohammadi, Dinidu S. Wijesurendra, Andrew Stent, Marc S. Marenda, and Steven P. Djordjevic. 2023. "Whole Genome Sequencing of Avian Pathogenic Escherichia coli Causing Bacterial Chondronecrosis and Osteomyelitis in Australian Poultry" Microorganisms 11, no. 6: 1513. https://doi.org/10.3390/microorganisms11061513
APA StyleCummins, M. L., Li, D., Ahmad, A., Bushell, R., Noormohammadi, A. H., Wijesurendra, D. S., Stent, A., Marenda, M. S., & Djordjevic, S. P. (2023). Whole Genome Sequencing of Avian Pathogenic Escherichia coli Causing Bacterial Chondronecrosis and Osteomyelitis in Australian Poultry. Microorganisms, 11(6), 1513. https://doi.org/10.3390/microorganisms11061513