Gonococcal Genetic Island in the Global Neisseria gonorrhoeae Population: A Model of Genetic Diversity and Association with Resistance to Antimicrobials
Abstract
:1. Introduction
2. Materials and Methods
2.1. Genomes from the Databases
2.2. Genome-Based Prediction of Resistance to Antimicrobial Drugs
2.3. Search for GGI Alleles in Genomes—Multiple GGI Alignment
2.4. Construction of Phylogenetic Trees
2.5. Clustering of GGI Sequences from the Multiple Alignment
2.6. Searching for Mutations Resulting in a Loss of GGI Functionality
2.7. Nucleotide Diversity θπ and Tajima’s D Test
2.8. dN/dS Calculation
2.9. Statistical Processing of the Data
3. Results
3.1. GGI Genetic Diversity
3.2. Relationship between the GGI Phylogeny and NG-MAST and MLST Types
3.3. Association between GGI Type and Antimicrobial Resistance
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- World Health Organization. Global progress report on HIV, viral hepatitis and sexually transmitted infections, 2021. In The Global Health Sector Strategies 2016–2021: Actions for Impact; World Health Organization: Geneva, Switzerland, 2021. [Google Scholar]
- Shaskolskiy, B.; Kandinov, I.; Dementieva, E.; Gryadunov, D. Antibiotic resistance in Neisseria gonorrhoeae: Challenges in research and treatment. Microorganisms 2022, 10, 1699. [Google Scholar] [CrossRef] [PubMed]
- Quillin, S.J.; Seifert, H.S. Neisseria gonorrhoeae host adaptation and pathogenesis. Nat. Rev. Microbiol. 2018, 16, 226–240. [Google Scholar] [CrossRef]
- Koomey, M. Competence for natural transformation in Neisseria gonorrhoeae: A model system for studies of horizontal gene transfer. APMIS Suppl. 1998, 106, 56–61. [Google Scholar] [CrossRef] [PubMed]
- Hamilton, H.L.; Dillard, J.P. Neisseria gonorrhoeae secretes chromosomal DNA via a novel type IV secretion system. Mol. Microbiol. 2005, 55, 1704–1721. [Google Scholar] [CrossRef] [PubMed]
- Hamilton, H.L.; Dillard, J.P. Natural transformation of Neisseria gonorrhoeae: From DNA donation to homologous recombination. Mol. Microbiol. 2006, 59, 376–385. [Google Scholar] [CrossRef] [PubMed]
- Guzmán-Herrador, D.L.; Fernández-Gámez, A.; Llosa, M. Recruitment of heterologous substrates by bacterial secretion systems for transkingdom translocation. Front. Cell. Infect. Microbiol. 2023, 13, 1146000. [Google Scholar] [CrossRef]
- Kohler, P.L.; Chan, Y.A.; Hackett, K.T.; Turner, N.; Hamilton, H.L.; Cloud-Hansen, K.A.; Dillard, J.P. Mating pair formation homologue TraG is a variable membrane protein essential for contact-independent type IV secretion of chromosomal DNA by Neisseria gonorrhoeae. J. Bacteriol. 2013, 195, 1666–1679. [Google Scholar] [CrossRef] [Green Version]
- Zweig, M.; Schork, S.; Koerdt, A.; Siewering, K.; Sternberg, C.; Thormann, K.; Albers, S.V.; Molin, S.; van der Does, C. Secreted single-stranded DNA is involved in the initial phase of biofilm formation by Neisseria gonorrhoeae. Environ. Microbiol. 2014, 16, 1040–1052. [Google Scholar] [CrossRef] [Green Version]
- Youngblom, M.A.; Shockey, A.C.; Callaghan, M.M.; Dillard, J.P.; Pepperell, C.S. The Gonococcal Genetic Island defines distinct sub-populations of Neisseria gonorrhoeae. Microb. Genom. 2023, 9, 000985. [Google Scholar] [CrossRef]
- Callaghan, M.M.; Heilers, J.H.; van der Does, C.; Dillard, J.P. Secretion of chromosomal DNA by the Neisseria gonorrhoeae Type IV Secretion System. Curr. Top. Microbiol. Immunol. 2017, 413, 323–345. [Google Scholar] [CrossRef]
- Callaghan, M.M.; Klimowicz, A.K.; Shockey, A.C.; Kane, J.; Pepperell, C.S.; Dillard, J.P. Transcriptional and translational responsiveness of the Neisseria gonorrhoeae Type IV Secretion System to conditions of host infections. Infect. Immun. 2021, 89, e0051921. [Google Scholar] [CrossRef]
- Rotman, E.; Seifert, H.S. The genetics of Neisseria species. Annu. Rev. Genet. 2014, 48, 405–431. [Google Scholar] [CrossRef]
- Domínguez, N.M.; Hackett, K.T.; Dillard, J.P. XerCD-mediated site-specific recombination leads to loss of the 57-kilobase gonococcal genetic island. J. Bacteriol. 2011, 193, 377–388. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hamilton, H.L.; Schwartz, K.J.; Dillard, J.P. Insertion-duplication mutagenesis of Neisseria: Use in characterization of DNA transfer genes in the gonococcal genetic island. J. Bacteriol. 2001, 183, 4718–4726. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pachulec, E.; Siewering, K.; Bender, T.; Heller, E.M.; Salgado-Pabon, W.; Schmoller, S.K.; Woodhams, K.L.; Dillard, J.P.; van der Does, C. Functional analysis of the gonococcal genetic island of Neisseria gonorrhoeae. PLoS ONE 2014, 9, e109613. [Google Scholar] [CrossRef] [Green Version]
- Koch, B.; Callaghan, M.M.; Tellechea-Luzardo, J.; Seeger, A.Y.; Dillard, J.P.; Krasnogor, N. Protein interactions within and between two F-type type IV secretion systems. Mol. Microbiol. 2020, 114, 823–838. [Google Scholar] [CrossRef] [PubMed]
- Dillard, J.P.; Seifert, H.S. A variable genetic island specific for Neisseria gonorrhoeae is involved in providing DNA for natural transformation and is found more often in disseminated infection isolates. Mol. Microbiol. 2001, 41, 263–277. [Google Scholar] [CrossRef]
- Harrison, O.B.; Clemence, M.; Dillard, J.P.; Tang, C.M.; Trees, D.; Grad, Y.H.; Maiden, M.C. Genomic analyses of Neisseria gonorrhoeae reveal an association of the gonococcal genetic island with antimicrobial resistance. J. Infect. 2016, 73, 578–587. [Google Scholar] [CrossRef] [Green Version]
- Shaskolskiy, B.; Kravtsov, D.; Kandinov, I.; Gorshkova, S.; Kubanov, A.; Solomka, V.; Deryabin, D.; Dementieva, E.; Gryadunov, D. Comparative Whole-genome analysis of Neisseria gonorrhoeae isolates revealed changes in the gonococcal genetic island and specific genes as a link to antimicrobial resistance. Front. Cell. Infect. Microbiol. 2022, 12, 831336. [Google Scholar] [CrossRef]
- Shaskolskiy, B.; Kravtsov, D.; Kandinov, I.; Dementieva, E.; Gryadunov, D. Genomic diversity and chromosomal rearrangements in Neisseria gonorrhoeae and Neisseria meningitidis. Int. J. Mol. Sci. 2022, 23, 15644. [Google Scholar] [CrossRef]
- Nosov, N.; Kubanov, A.; Solomka, V.; Deryabin, D. Biochemical atypia in Russian Neisseria gonorrhoeae clinical isolates belonging to the G807 NG-MAST genogroup/ST1594 MLST. Microorganisms 2022, 10, 2271. [Google Scholar] [CrossRef]
- Sánchez-Busó, L.; Yeats, C.A.; Taylor, B.; Goater, R.J.; Underwood, A.; Abudahab, K.; Argimón, S.; Ma, K.C.; Mortimer, T.D.; Golparian, D.; et al. A community-driven resource for genomic epidemiology and antimicrobial resistance prediction of Neisseria gonorrhoeae at Pathogenwatch. Genom. Med. 2021, 13, 61. [Google Scholar] [CrossRef] [PubMed]
- Criscuolo, A.; Gribaldo, S. BMGE (Block Mapping and Gathering with Entropy): A new software for selection of phylogenetic informative regions from multiple sequence alignments. BMC Evol. Biol. 2010, 10, 210. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martin, I.M.; Ison, C.A.; Aanensen, D.M.; Fenton, K.A.; Spratt, B.G. Rapid sequence-based identification of gonococcal transmission clusters in a large metropolitan area. J. Infect. Dis. 2004, 189, 1497–1505. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maiden, M.C.; Bygraves, J.A.; Feil, E.; Morelli, G.; Russell, J.E.; Urwin, R.; Zhang, Q.; Zhou, J.; Zurth, K.; Caugant, D.A.; et al. Multilocus sequence typing: A portable approach to the identification of clones within populations of pathogenic microorganisms. Proc. Natl. Acad. Sci. USA 1998, 95, 3140–3145. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Larsson, A. AliView: A fast and lightweight alignment viewer and editor for large datasets. Bioinformatics 2014, 30, 3276–3278. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, L.T.; Schmidt, H.A.; von Haeseler, A.; Minh, B.Q. IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 2015, 32, 268–274. [Google Scholar] [CrossRef]
- Hoang, D.T.; Chernomor, O.; von Haeseler, A.; Minh, B.Q.; Vinh, L.S. UFBoot2: Improving the Ultrafast Bootstrap Approximation. Mol. Biol. Evol. 2018, 35, 518–522. [Google Scholar] [CrossRef]
- Zhou, Z.; Alikhan, N.F.; Sergeant, M.J.; Luhmann, N.; Vaz, C.; Francisco, A.P.; Carriço, J.A.; Achtman, M. GrapeTree: Visualization of core genomic relationships among 100,000 bacterial pathogens. Genom. Res. 2018, 28, 1395–1404. [Google Scholar] [CrossRef] [Green Version]
- Huson, D.H.; Scornavacca, C. Dendroscope 3: An interactive tool for rooted phylogenetic trees and networks. Syst. Biol. 2012, 61, 1061–1067. [Google Scholar] [CrossRef] [Green Version]
- Hahsler, M.; Piekenbrock, M.; Doran, D. dbscan: Fast Density-based clustering with R. J. Stat. Soft. 2019, 91, 1–30. [Google Scholar] [CrossRef] [Green Version]
- Tamura, K.; Nei, M. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol. Biol. Evol. 1993, 10, 512–526. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tajima, F. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 1989, 123, 585–595. [Google Scholar] [CrossRef] [PubMed]
- Kimura, M. Preponderance of synonymous changes as evidence for the neutral theory of molecular evolution. Nature 1977, 267, 275–276. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Bielawski, J.P. Statistical methods for detecting molecular adaptation. Trends Ecol. Evol. 2000, 15, 496–503. [Google Scholar] [CrossRef] [PubMed]
- Spencer-Smith, R.; Roberts, S.; Gurung, N.; Snyder, L.A.S. DNA uptake sequences in Neisseria gonorrhoeae as intrinsic transcriptional terminators and markers of horizontal gene transfer. Microb. Genom. 2016, 2, e000069. [Google Scholar] [CrossRef]
- Trembizki, E.; Doyle, C.; Jennison, A.; Smith, H.; Bates, J.; Lahra, M.; Whiley, D. A Neisseria gonorrhoeae strain with a meningococcal mtrR sequence. J. Med. Microbiol. 2014, 63, 1113–1115. [Google Scholar] [CrossRef] [Green Version]
- Kandinov, I.; Shaskolskiy, B.; Kravtsov, D.; Vinokurova, A.; Gorshkova, S.; Kubanov, A.; Solomka, V.; Shagabieva, J.; Deryabin, D.; Dementieva, E.; et al. Azithromycin susceptibility testing and molecular investigation of Neisseria gonorrhoeae isolates collected in Russia, 2020–2021. Antibiotics 2023, 12, 170. [Google Scholar] [CrossRef]
- Kandinov, I.; Dementieva, E.; Filippova, M.; Vinokurova, A.; Gorshkova, S.; Kubanov, A.; Solomka, V.; Shagabieva, J.; Deryabin, D.; Shaskolskiy, B.; et al. Emergence of azithromycin-resistant Neisseria gonorrhoeae isolates belonging to the NG-MAST genogroup 12302 in Russia. Microorganisms 2023, 11, 1226. [Google Scholar] [CrossRef]
- Whittles, L.K.; White, P.J.; Didelot, X. Estimating the fitness cost and benefit of cefixime resistance in Neisseria gonorrhoeae to inform prescription policy: A modelling study. PLoS Med. 2017, 14, e1002416. [Google Scholar] [CrossRef] [Green Version]
- Burstein, G.R.; Workowski, K.A. Sexually transmitted diseases treatment guidelines. Curr. Opin. Pediatr. 2003, 15, 391–397. [Google Scholar] [CrossRef] [PubMed]
- Morbidity and Mortality Weekly Report, April 13, 2007. Update to CDC’s Sexually Transmitted Diseases Treatment Guidelines, 2006: Fluoroquinolones No Longer Recommended for Treatment of Gonococcal Infections. Available online: https://www.cdc.gov/mmwr/preview/mmwrhtml/mm5614a3.htm (accessed on 12 April 2023).
- Morbidity and Mortality Weekly Report, 18 December 2020. Update to CDC’s Treatment Guidelines for Gonococcal Infection, 2020. Available online: https://www.cdc.gov/mmwr/volumes/69/wr/mm6950a6.htm (accessed on 12 April 2023).
- Bignell, C.; Fitzgerald, M.; Guideline Development Group; British Association for Sexual Health and HIV UK. UK national guideline for the management of gonorrhoea in adults, 2011. Int. J. STD AIDS 2011, 22, 541–547. [Google Scholar] [CrossRef] [PubMed]
- Bignell, C.; Unemo, M.; European STI Guidelines Editorial Board. 2012 European guideline on the diagnosis and treatment of gonorrhoea in adults. Int. J. STD AIDS 2013, 24, 85–92. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Heidrich, N.; Ampattu, B.J.; Gunderson, C.W.; Seifert, H.S.; Schoen, C.; Vogel, J.; Sontheimer, E.J. Processing-independent CRISPR RNAs limit natural transformation in Neisseria meningitidis. Mol. Cell 2013, 50, 488–503. [Google Scholar] [CrossRef] [Green Version]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kravtsov, D.; Gryadunov, D.; Shaskolskiy, B. Gonococcal Genetic Island in the Global Neisseria gonorrhoeae Population: A Model of Genetic Diversity and Association with Resistance to Antimicrobials. Microorganisms 2023, 11, 1547. https://doi.org/10.3390/microorganisms11061547
Kravtsov D, Gryadunov D, Shaskolskiy B. Gonococcal Genetic Island in the Global Neisseria gonorrhoeae Population: A Model of Genetic Diversity and Association with Resistance to Antimicrobials. Microorganisms. 2023; 11(6):1547. https://doi.org/10.3390/microorganisms11061547
Chicago/Turabian StyleKravtsov, Dmitry, Dmitry Gryadunov, and Boris Shaskolskiy. 2023. "Gonococcal Genetic Island in the Global Neisseria gonorrhoeae Population: A Model of Genetic Diversity and Association with Resistance to Antimicrobials" Microorganisms 11, no. 6: 1547. https://doi.org/10.3390/microorganisms11061547
APA StyleKravtsov, D., Gryadunov, D., & Shaskolskiy, B. (2023). Gonococcal Genetic Island in the Global Neisseria gonorrhoeae Population: A Model of Genetic Diversity and Association with Resistance to Antimicrobials. Microorganisms, 11(6), 1547. https://doi.org/10.3390/microorganisms11061547