Isolation and Evaluation of the Antagonistic Activity of Cnidium officinale Rhizosphere Bacteria against Phytopathogenic fungi (Fusarium solani)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Isolation of Bacteria from the Rhizosphere and Roots
2.2. Identification of Rhizosphere and Root Bacteria
2.3. In Vitro Antagonistic Activity of the Selected Strains
2.4. In Planta Tests
2.5. Temperature Tolerance Assay
2.6. In Vitro Test of PGP Traits
2.6.1. Protease Production Assay
2.6.2. Cellulase Production Assay
2.6.3. Chitinase Production Assay
2.6.4. Hydrogen Cyanide (HCN) Production
2.6.5. Phosphate Solubilization
2.6.6. Siderophore Production
2.6.7. Indole-3-Acetic Acid Production
2.7. Exoenzyme Activity
3. Results
3.1. Isolation of Bacteria from the Rhizosphere Soil and Roots
3.2. In Vitro Antagonistic Activity of the Selected Strains
3.3. In Planta Tests
3.4. Growth Traits in Response to Temperature
3.5. In Vitro Test of PGP Traits
3.6. Exoenzyme Activity
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- OH, Y.J.; Seo, H.R.; Choi, Y.M.; Jung, D.S. Evaluation of antioxidant activity of the extracts from the aerial parts of Cnidium officinale Makino. Korean J. Med. Crop Sci. 2010, 18, 373–378. [Google Scholar]
- Leem, H.H.; Kim, E.O.; Seo, M.J.; Choi, S.W. Anti-inflammatory effects of volatile flavor extract from herbal medicinal pre-scriptions including Cnidium officinale Makino and Angelica gigas Nakai. J. Soc. Cosmet. Sci. Korea 2011, 37, 199–210. [Google Scholar]
- Seo, D.-J.; Kim, H.-C.; Lee, H.S.; Lee, S.; Lee, W.-Y.; Han, S.-H.; Kang, J.W. Review of Long-term Climate Change Research Facilities for Forests. Korean J. Agric. For. Meteorol. 2016, 18, 274–286. [Google Scholar] [CrossRef] [Green Version]
- Kim, K.K.; Kim, S.N.; Yoo, S.O.; An, J.G.; Kim, C.S.; Lee, M.S.; Kim, S.Y. Agricultural Technology Guide 007, Medicinal Crops; Hwang, J.W., Cho, E.H., Lim, E.S., Jang, J.G., Park, C.G., Eds.; Rural Development Administration: Jeonju, Republic of Korea, 2019; pp. 245–252. ISBN 978-89-480-3525-4-95520.
- Kim, Y.I.; Yu, H.H.; Yu, D.Y.; Jung, J.T.; Eom, Y.R. Changes in major components of Angelica Gigantis Radix and Glycyrrhizae Radix by storage temperature and period. Korean Med. Crop Soc. Conf. Pap. 2015, 23, 336–337. [Google Scholar]
- Kim, K.Y.; Han, K.M.; Kim, H.J.; Kim, C.W.; Jeon, K.S.; Jung, C.R. Effect of Soil Properties on Soil Fungal Community in First and Continuous Cultivation Fields of Cnidium officinale Makino. Korean J. Med. Crop. Sci. 2020, 28, 209–220. [Google Scholar] [CrossRef]
- Kim, H.S.; Kim, J.-Y.; Lee, S.M.; Park, H.-J.; Lee, S.-H.; Jang, J.S.; Lee, M.H. Isolation and Characterization of Various Strains of Bacillus sp. having Antagonistic Effect Against Phytopathogenic Fungi. Microbiol. Biotechnol. Lett. 2019, 47, 603–613. [Google Scholar] [CrossRef]
- Ons, L.; Bylemans, D.; Thevissen, K.; Cammue, B.P. Combining Biocontrol Agents with Chemical Fungicides for Integrated Plant Fungal Disease Control. Microorganisms 2020, 8, 1930. [Google Scholar] [CrossRef] [PubMed]
- National Center for Biotechnology Information (NCBI). Bethesda (MD): National Library of Medicine (US), National Center for Biotechnology Information. 1988. Available online: https://www.ncbi.nlm.nih.gov/ (accessed on 1 December 2022).
- Tamura, K.; Stecher, G.; Kumar, S. MEGA11: Molecular Evolutionary Genetics Analysis Version 11. Mol. Biol. Evol. 2021, 38, 3022–3027. [Google Scholar] [CrossRef]
- Kim, Y.S.; Kim, S.W.; Lamsal, K.; Lee, Y.S. Evaluation of Rhizobacterial Isolates for Their Antagonistic Effects against Various Phytopathogenic Fungi. Korean J. Mycol. 2016, 44, 36–47. [Google Scholar] [CrossRef] [Green Version]
- Mekonnen, E.; Kebede, A.; Nigussie, A.; Kebede, G.; Tafesse, M. Isolation and Characterization of Urease-Producing Soil Bacteria. Int. J. Microbiol. 2021, 2021, 8888641. [Google Scholar] [CrossRef]
- Ahmad, M.S.; Noor, Z.M.; Ariffin, Z.Z. Isolation and identification fibrinolytic protease endophytic fungi from Hibiscus leaves in Shah Alam. Int. J. Biol. Vet. Agric. Food Eng. 2014, 8, 1027–1030. [Google Scholar]
- Gohel, H.; Contractor, C.N.; Ghosh, S.K.; Braganza, V.J. A comparative study of various staining techniques for determination of extra cellular cellulase activity on Carboxy Methyl Cellulose (CMC) agar plates. Int. J. Curr. Microbiol. App. Sci. 2014, 3, 261–266. [Google Scholar]
- Ramírez, M.G.; Avelizapa, L.R.; Avelizapa, N.R.; Camarillo, R.C. Colloidal chitin stained with Remazol Brilliant Blue R®, a useful substrate to select chitinolytic microorganisms and to evaluate chitinases. J. Microbiol. Methods 2004, 56, 213–219. [Google Scholar] [CrossRef]
- Liu, K.; Ding, H.; Yu, Y.; Chen, B. A cold-adapted chitinase-producing bacterium from Antarctica and its potential in biocon-trol of plant pathogenic fungi. Mar. Drugs 2019, 17, 695. [Google Scholar] [CrossRef] [Green Version]
- Deshwal, V.K.; Kumar, P. Production of plant growth promoting substance by Pseudomonads. J. Acad. Ind. Res. 2013, 2, 215–221. [Google Scholar]
- Nautiyal, C.S. An efficient microbiological growth medium for screening phosphate solubilizing microorganisms. FEMS Mi-Crobiology Lett. 1999, 170, 265–270. [Google Scholar] [CrossRef]
- Louden, B.C.; Haarmann, D.; Lynne, A.M. Use of Blue Agar CAS Assay for Siderophore Detection. J. Microbiol. Biol. Educ. 2011, 12, 51–53. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Glickmann, E.; Dessaux, Y. A critical examination of the specificity of the salkowski reagent for indolic compounds produced by phytopathogenic bacteria. Appl. Environ. Microbiol. 1995, 61, 793–796. [Google Scholar] [CrossRef] [Green Version]
- Gordon, T.R.; Okamoto, D.; Jacobson, D.J. Colonization of muskmelon and nonsusceptible crops by Fusarium oxysporum f. sp. melonis and other species of Fusarium. Phytopathology 1989, 79, 1095–1100. [Google Scholar] [CrossRef] [Green Version]
- Wang, B.; Brubaker, C.L.; Burdon, J.J. Fusarium species and Fusarium wilt pathogens associated with native Gossypium populations in Australia. Mycol. Res. 2004, 108, 35–44. [Google Scholar] [CrossRef]
- National Institute of Horticultural and Herbal Science, Korean Society for Horticultural Science. History of Korean Horticul-Ture; Korean Society for Horticultural Science: Suwon, Korea, 2013; pp. 399–402. ISBN 978-89-97776-67-2-93520. [Google Scholar]
- Vaughan, A.; Guilbault, G.G.; Hackney, D. Fluorometric methods for analysis of acid and alkaline phosphatase. Anal. Chem. 1971, 43, 721–724. [Google Scholar] [CrossRef]
- Janckila, A.J.; Takahashi, K.; Sun, S.Z.; Yam, L.T. Naphthol-ASBI Phosphate as a Preferred Substrate for Tartrate-Resistant Acid Phosphatase Isoform 5b. J. Bone Miner. Res. 2001, 16, 788–793. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, E.; Holmström, S.J. Siderophores in environmental research: Roles and applications. Microb. Biotechnol. 2014, 7, 196–208. [Google Scholar] [CrossRef] [PubMed]
- Saha, M.; Sarkar, S.; Sarkar, B.; Sharma, B.K.; Bhattacharjee, S.; Tribedi, P. Microbial siderophores and their potential applica-tions: A review. Environ. Sci. Pollut. Res. 2016, 23, 3984–3999. [Google Scholar] [CrossRef]
- Cochard, B.; Giroud, B.; Crovadore, J.; Chablais, R.; Arminjon, L.; Lefort, F. Endophytic PGPR from Tomato Roots: Isolation, In Vitro Characterization and In Vivo Evaluation of Treated Tomatoes (Solanum lycopersicum L.). Microorganisms 2022, 10, 765. [Google Scholar] [CrossRef]
- Nabila, N.; Kasiamdari, R.S. Antagonistic activity of siderophore-producing bacteria from black rice rhizosphere against rice blast fungus Pyricularia oryzae. Microbiol. Biotechnol. Lett. 2021, 49, 217–224. [Google Scholar] [CrossRef]
- Woo, S.M.; Woo, J.W.; Kim, S.D. Purification and Characterization of the Siderophore from Bacillus licheniformis K11, a Multi-functional Plant Growth Promoting Rhizobacterium. Microbiol. Biotechnol. Lett. 2007, 35, 128–134. [Google Scholar]
- Jung, T.-K.; Kim, J.-H.; Song, H.-G. Antifungal Activity and Plant Growth Promotion by Rhizobacteria Inhibiting Growth of Plant Pathogenic Fungi. Korean J. Microbiol. 2012, 48, 16–21. [Google Scholar] [CrossRef] [Green Version]
- Ohtakara, A. Chitinase and β-N-acetylhexosaminidase from Pycnoporus cinnabarinus. InMethods Enzymol. 1988, 161, 462–470. [Google Scholar] [CrossRef]
- Mamarabadi, M.; Jensen, D.F.; Lübeck, M. An N-acetyl-β-d-glucosaminidase gene, cr-nag1, from the biocontrol agent Clonostachys rosea is up-regulated in antagonistic interactions with Fusarium culmorum. Mycol. Res. 2009, 113, 33–43. [Google Scholar] [CrossRef]
- Tamura, K.; Sakazaki, R.; Kosako, Y.; Yoshizaki, E. Leclercia adecarboxylata Gen. Nov., Comb. Nov., formerly known as Escherichia adecarboxylata. Curr. Microbiol. 1986, 13, 179–184. [Google Scholar] [CrossRef]
- Richard, C. New Enterobacteriaceae found in medical bacteriology Moellerella wisconsensis, Koserella trabulsii, Leclercia adecarboxylata, Escherichia fergusonii, Enterobacter asbutiae, Rahnella aquatilis. Ann. De Biol. Clin. 1989, 47, 231–236. [Google Scholar]
- Leclerc, H. Etude biochimique d’Enterobacteriaceae pigmentees. Ann. Inst. Pasteur 1962, 102, 726–741. [Google Scholar]
- Ahmed, B.; Shahid, M.; Syed, A.; Rajput, V.D.; Elgorban, A.M.; Minkina, T.; Bahkali, A.H.; Lee, J. Drought Tolerant Entero-bacter sp./Leclercia adecarboxylata Secretes Indole-3-acetic Acid and Other Biomolecules and Enhances the Biological Attrib-utes of Vigna radiata (L.) R. Wilczek in Water Deficit Conditions. Biology 2021, 10, 1149. [Google Scholar] [CrossRef]
- Danish, S.; Zafer-ul-Hye, M. Co-application of ACC-deaminase producing PGPR and timber-waste biochar improves pig-ments formation, growth and yield of wheat under drought stress. Sci. Rep. 2019, 9, 5999. [Google Scholar] [CrossRef] [Green Version]
- Sahu, K.P.; Kumar, A.; Patel, A.; Kumar, M.; Gopalakrishnan, S.; Prakash, G.; Rathour, R.; Gogoi, R. Rice blast lesions: An unexplored phyllosphere microhabitat for novel antagonistc bacterial species against Magnaporthe oryzae. Microb. Ecol. 2021, 81, 731–745. [Google Scholar] [CrossRef] [PubMed]
- Bendaha, M.E.A.; Belaouni, H.A. Effect of the endophytic plant growth promoting EB4B on tomato growth. Hell. Plant Prot. J. 2020, 13, 54–65. [Google Scholar]
- Steinkellner, S.; Mammerler, R.; Vierheilig, H. Microconidia germination of the tomato pathogen Fusarium oxysporum in the presence of root exudates. J. Plant Interact. 2005, 1, 23–30. [Google Scholar] [CrossRef]
- Farda, B.; Djebaili, R.; Bernardi, M.; Pace, L.; Del Gallo, M.; Pellegrini, M. Bacterial Microbiota and Soil Fertility of Crocus sativus L. Rhizosphere in the Presence and Absence of Fusarium spp. Land 2022, 11, 2048. [Google Scholar] [CrossRef]
- Kabisch, J.; Thürmer, A.; Hübel, T.; Popper, L.; Daniel, R.; Schweder, T. Characterization and optimization of Bacillus subtilis ATCC 6051 as an expression host. J. Biotechnol. 2013, 163, 97–104. [Google Scholar] [CrossRef] [PubMed]
- Goto, K.; Omura, T.; Hara, Y.; Sadaie, Y. Application of the partial 16S rDNA sequence as an index for rapid identification of species in the genus Bacillus. J. Gen. Appl. Microbiol. 2000, 46, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yarza, P.; Spröer, C.; Swiderski, J.; Mrotzek, N.; Spring, S.; Tindall, B.J.; Gronow, S.; Pukall, R.; Klenk, H.P.; Lang, E.; et al. Se-quencing orphan species initiative (SOS): Filling the gaps in the 16S rRNA gene sequence database for all species with validly published names. Syst. Appl. Microbiol. 2013, 36, 69–73. [Google Scholar] [CrossRef] [Green Version]
- Kamali, M.; Guo, D.; Naeimi, S.; Ahmadi, J. Perception of Biocontrol Potential of Bacillus inaquosorum KR2-7 against Tomato Fusarium Wilt through Merging Genome Mining with Chemical Analysis. Biology 2022, 11, 137. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Selvaraj, J.N.; Xing, F.; Zhou, L.; Wang, Y.; Song, H.; Tan, X.; Sun, L.; Sangare, L.; Folly, Y.M.E.; et al. Antagonistic Action of Bacillus subtilis Strain SG6 on Fusarium graminearum. PLoS ONE 2014, 9, e92486. [Google Scholar] [CrossRef]
- Zhao, Z.; Wang, Q.; Wang, K.; Brian, K.; Liu, C.; Gu, Y. Study of the antifungal activity of Bacillus vallismortis ZZ185 in vitro and identification of its antifungal components. Bioresour. Technol. 2010, 101, 292–297. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, N.; Shimomura, T. Action of rice α-glucosidase on maltose and starch. Agric. Biol. Chem. 1973, 37, 67–74. [Google Scholar] [CrossRef]
- Morant, A.V.; Jørgensen, K.; Jørgensen, C.; Paquette, S.M.; Sánchez-Pérez, R.; Møller, B.L.; Bak, S. β-Glucosidases as deto-nators of plant chemical defense. Phytochemistry 2008, 69, 1795–1813. [Google Scholar] [CrossRef]
- Zhang, D.; Spadaro, D.; Valente, S.; Garibaldi, A.; Gullino, M.L. Cloning, characterization, expression and antifungal activity of an alkaline serine protease of Aureobasidium pullulans PL5 involved in the biological control of postharvest pathogens. Int. J. Food Microbiol. 2012, 153, 453–464. [Google Scholar] [CrossRef]
- Martinez, M.; Gómez-Cabellos, S.; Gimenez, M.J.; Barro, F.; Diaz, I.; Diaz-Mendoza, M. Plant Proteases: From Key Enzymes in Germination to Allies for Fighting Human Gluten-Related Disorders. Front. Plant Sci. 2019, 10, 721. [Google Scholar] [CrossRef] [Green Version]
- Hashem, A.; Tabassum, B.; Fathi Abd Allah, E. Bacillus subtilis: A plant-growth promoting rhizobacterium that also impacts biotic stress. Saudi J. Biol. Sci. 2019, 26, 1291–1297. [Google Scholar] [CrossRef]
- Sivasakthi, S.; Usharani, G.; Saranraj, P. Biocontrol potentiality of plant growth promoting bacteria (PGPR)-Pseudomonas fluorescens and Bacillus subtilis: A review. Afr. J. Agric. Res. 2014, 9, 1265–1277. [Google Scholar]
- Almaghrabi, O.A.; Abdelmoneim, T.S.; Albishri, H.M.; Moussa, T.A. Enhancement of maize growth using some plant growth promoting rhizobacteria (PGPR) under laboratory conditions. Life Sci. J. 2014, 11, 764–772. [Google Scholar]
- Baldrian, P. Forest microbiome: Diversity, complexity and dynamics. FEMS Microbiol. Rev. 2017, 41, 109–130. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Liu, R.; You, M.P.; Barbetti, M.J.; Chen, Y. Pathogen Biocontrol Using Plant Growth-Promoting Bacteria (PGPR): Role of Bacterial Diversity. Microorganisms 2021, 9, 1988. [Google Scholar] [CrossRef] [PubMed]
- Doty, S.L.; Freeman, J.L.; Cohu, C.M.; Burken, J.G.; Firrincieli, A.; Simon, A.; Khan, Z.; Isebrands, J.G.; Lukas, J.; Blaylock, M.J. Enhanced Degradation of TCE on a Superfund Site Using Endophyte-Assisted Poplar Tree Phytoremediation. Environ. Sci. Technol. 2017, 51, 10050–10058. [Google Scholar] [CrossRef] [PubMed]
Strains | 16S rRNA Identification 1 | GenBank Accession No. 1 | Similarity (%) | Isolated Sources/Medium |
---|---|---|---|---|
ST7 | Bacillus inaquosorum | NR_104873.1 | 99 | Rhizosphere soil/TSA 2 |
ST8 | Bacillus subtilis | CP019663.1 | 99 | Rhizosphere soil/TSA 2 |
SP4 | Bacillus vallismortis | NR_024696.1 | 99 | Rhizosphere soil/PDA 3 |
PT1 | Leclercia adecarboxylata | NR_104933.1 | 99 | Root tissue/TSA 2 |
Strain | Protease | Cellulase | Chitinase | HCN | PS | SP | IAA (ppm) |
---|---|---|---|---|---|---|---|
PT1 | − | − | − | − | + | + | 13.19 ± 4.22 |
SP4 | + | + | − | − | − | − | NA |
ST7 | − | − | − | − | + | + | NA |
ST8 | + | + | − | − | − | − | NA |
Enzyme | PT1 | SP4 | ST7 | ST8 |
---|---|---|---|---|
Alkaline phosphatase | + | + | + | + |
Esterase (C4) | + | + | + | + |
Esterase lipase (C8) | + | + | + | + |
Lipase (C14) | − | − | − | − |
Leucine arylamidase | − | − | − | − |
Valine arylamidase | − | − | − | − |
Crystine arylamidase | − | − | − | − |
Trypsin | − | − | − | − |
a-chymotrypsin | − | − | − | − |
Acid phospatase | + | − | + | + |
Naphthol-AS-BI-phosphohydrolase | + | + | + | + |
α-galactosidase | − | − | − | − |
β-glucuronidase | − | − | − | − |
β-glucosidase | − | − | − | − |
α-glucosidase | − | + | − | + |
β-glucosidase | − | − | + | + |
N-acetyl-β-glucosaminidase | + | − | − | − |
α-mannosidase | − | − | − | − |
α-fucosidase | − | − | − | − |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, S.H.; Jeon, S.H.; Park, J.Y.; Kim, D.S.; Kim, J.A.; Jeong, H.Y.; Kang, J.W. Isolation and Evaluation of the Antagonistic Activity of Cnidium officinale Rhizosphere Bacteria against Phytopathogenic fungi (Fusarium solani). Microorganisms 2023, 11, 1555. https://doi.org/10.3390/microorganisms11061555
Lee SH, Jeon SH, Park JY, Kim DS, Kim JA, Jeong HY, Kang JW. Isolation and Evaluation of the Antagonistic Activity of Cnidium officinale Rhizosphere Bacteria against Phytopathogenic fungi (Fusarium solani). Microorganisms. 2023; 11(6):1555. https://doi.org/10.3390/microorganisms11061555
Chicago/Turabian StyleLee, Seok Hui, Su Hong Jeon, Jun Young Park, Dae Sol Kim, Ji Ah Kim, Hui Yeong Jeong, and Jun Won Kang. 2023. "Isolation and Evaluation of the Antagonistic Activity of Cnidium officinale Rhizosphere Bacteria against Phytopathogenic fungi (Fusarium solani)" Microorganisms 11, no. 6: 1555. https://doi.org/10.3390/microorganisms11061555
APA StyleLee, S. H., Jeon, S. H., Park, J. Y., Kim, D. S., Kim, J. A., Jeong, H. Y., & Kang, J. W. (2023). Isolation and Evaluation of the Antagonistic Activity of Cnidium officinale Rhizosphere Bacteria against Phytopathogenic fungi (Fusarium solani). Microorganisms, 11(6), 1555. https://doi.org/10.3390/microorganisms11061555