The Potential Role of Gut Bacteriome Dysbiosis as a Leading Cause of Periprosthetic Infection: A Comprehensive Literature Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Eligibility Criteria and Search Strategy
2.2. Risk of Bias Assessment
3. Results
3.1. Review of the Included Studies
3.2. Study Quality Assessment and Risk of Bias Assessment
4. Discussion
4.1. Limitations
4.2. Considerations
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kurtz, S.M.; Lau, E.; Schmier, J.; Ong, K.L.; Zhao, K.; Parvizi, J. Infection Burden for Hip and Knee Arthroplasty in the United States. J. Arthroplast. 2008, 23, 984–991. [Google Scholar] [CrossRef] [PubMed]
- Ong, K.L.; Kurtz, S.M.; Lau, E.; Bozic, K.J.; Berry, D.J.; Parvizi, J. Prosthetic Joint Infection Risk After Total Hip Arthroplasty in the Medicare Population. J. Arthroplast. 2009, 24, 105–109. [Google Scholar] [CrossRef]
- Di Martino, A.; Di Carlo, G.; Pederiva, D.; Rossomando, V.; Pilla, F.; Brunello, M.; D’agostino, C.; Tassinari, L.; Zamparini, E.; Faldini, C. Which Patients with Chronic Periprosthetic Joint Infection Are Less Suitable to Successful Two Stage Exchange Arthroplasty Surgery? A Retrospective Clinical Trial. Clin. Pract. 2023, 13, 190–199. [Google Scholar] [CrossRef] [PubMed]
- Parvizi, J.; Gehrke, T.; Chen, A.F. Proceedings of the International Consensus on Periprosthetic Joint Infection. Bone Jt. J. 2013, 95-B, 1450–1452. [Google Scholar] [CrossRef]
- Osmon, D.R.; Berbari, E.F.; Berendt, A.R.; Lew, D.; Zimmerli, W.; Steckelberg, J.M.; Rao, N.; Hanssen, A.; Wilson, W.R. Executive Summary: Diagnosis and Management of Prosthetic Joint Infection: Clinical Practice Guidelines by the Infectious Diseases Society of America. Clin. Infect. Dis. 2013, 56, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tai, D.B.G.; Patel, R.; Abdel, M.P.; Berbari, E.F.; Tande, A.J. Microbiology of hip and knee periprosthetic joint infections: A database study. Clin. Microbiol. Infect. 2022, 28, 255–259. [Google Scholar] [CrossRef]
- Pignatti, G.; Nitta, S.; Rani, N.; Dallari, D.; Sabbioni, G.; Stagni, C.; Giunti, A. Two Stage Hip Revision in Periprosthetic Infection: Results of 41 Cases. Open Orthop. J. 2010, 4, 193–200. [Google Scholar] [CrossRef] [Green Version]
- Goud, A.L.; Harlianto, N.I.; Ezzafzafi, S.; Veltman, E.S.; Bekkers, J.E.J.; van der Wal, B.C.H. Reinfection rates after one- and two-stage revision surgery for hip and knee arthroplasty: A systematic review and meta-analysis. Arch. Orthop. Trauma Surg. 2021, 143, 829–838. [Google Scholar] [CrossRef]
- Morcos, M.W.; Kooner, P.; Marsh, J.; Howard, J.; Lanting, B.; Vasarhelyi, E. The economic impact of periprosthetic infection in total knee arthroplasty. Can. J. Surg. 2021, 64, E144–E148. [Google Scholar] [CrossRef]
- Kurtz, S.M.; Lau, E.; Watson, H.; Schmier, J.K.; Parvizi, J. Economic Burden of Periprosthetic Joint Infection in the United States. J. Arthroplast. 2012, 27, 61–65.e1. [Google Scholar] [CrossRef]
- Premkumar, A.; Kolin, D.A.; Farley, K.X.; Wilson, J.M.; McLawhorn, A.S.; Cross, M.B.; Sculco, P.K. Projected Economic Burden of Periprosthetic Joint Infection of the Hip and Knee in the United States. J. Arthroplast. 2021, 36, 1484–1489.e3. [Google Scholar] [CrossRef]
- Robertsson, O.; Bizjajeva, S.; Fenstad, A.M.; Furnes, O.; Lidgren, L.; Mehnert, F.; Odgaard, A.; Pedersen, A.B.; Havelin, L.I. Knee arthroplasty in Denmark, Norway and Sweden. Acta Orthop. 2010, 81, 82–89. [Google Scholar] [CrossRef] [PubMed]
- Leitner, L.; Türk, S.; Heidinger, M.; Stöckl, B.; Posch, F.; Maurer-Ertl, W.; Leithner, A.; Sadoghi, P. Trends and Economic Impact of Hip and Knee Arthroplasty in Central Europe: Findings from the Austrian National Database. Sci. Rep. 2018, 8, 4707. [Google Scholar] [CrossRef] [Green Version]
- Klug, A.; Pfluger, D.H.; Gramlich, Y.; Hoffmann, R.; Drees, P.; Kutzner, K.P. Future burden of primary and revision hip arthroplasty in Germany: A socio-economic challenge. Arch. Orthop. Trauma Surg. 2021, 141, 2001–2010. [Google Scholar] [CrossRef]
- Izakovicova, P.; Borens, O.; Trampuz, A. Periprosthetic joint infection: Current concepts and outlook. EFORT Open Rev. 2019, 4, 482–494. [Google Scholar] [CrossRef]
- Rakow, A.; Perka, C.; Trampuz, A.; Renz, N. Origin and characteristics of haematogenous periprosthetic joint infection. Clin. Microbiol. Infect. 2019, 25, 845–850. [Google Scholar] [CrossRef]
- Sender, R.; Fuchs, S.; Milo, R. Revised Estimates for the Number of Human and Bacteria Cells in the Body. PLoS Biol. 2016, 14, e1002533. [Google Scholar] [CrossRef] [Green Version]
- Berg, G.; Rybakova, D.; Fischer, D.; Cernava, T.; Vergès, M.-C.C.; Charles, T.; Chen, X.; Cocolin, L.; Eversole, K.; Corral, G.; et al. Microbiome definition re-visited: Old concepts and new challenges. Microbiome 2020, 8, 103. [Google Scholar] [CrossRef]
- Guinane, C.M.; Tadrous, A.; Fouhy, F.; Ryan, C.A.; Dempsey, E.M.; Murphy, B.; Andrews, E.; Cotter, P.D.; Stanton, C.; Ross, R.P. Microbial Composition of Human Appendices from Patients following Appendectomy. mBio 2013, 4, e00366-12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Greenhalgh, K.; Meyer, K.M.; Aagaard, K.M.; Wilmes, P. The human gut microbiome in health: Establishment and resilience of microbiota over a lifetime. Environ. Microbiol. 2016, 18, 2103–2116. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mohammadkhah, A.I.; Simpson, E.B.; Patterson, S.G.; Ferguson, J.F. Development of the Gut Microbiome in Children, and Lifetime Implications for Obesity and Cardiometabolic Disease. Children 2018, 5, 160. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wen, L.; Duffy, A. Factors Influencing the Gut Microbiota, Inflammation, and Type 2 Diabetes. J. Nutr. 2017, 147, 1468S–1475S. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Federici, S.; Nobs, S.P.; Elinav, E. Phages and their potential to modulate the microbiome and immunity. Cell. Mol. Immunol. 2021, 18, 889–904. [Google Scholar] [CrossRef]
- Vemuri, R.; Gundamaraju, R.; Shastri, M.D.; Shukla, S.D.; Kalpurath, K.; Ball, M.; Tristram, S.; Shankar, E.M.; Ahuja, K.; Eri, R. Gut Microbial Changes, Interactions, and Their Implications on Human Lifecycle: An Ageing Perspective. BioMed Res. Int. 2018, 2018, 4178607. [Google Scholar] [CrossRef]
- Tlaskalova-Hogenova, H.; Stepankova, R.; Kozakova, H.; Hudcovic, T.; Vannucci, L.; Tuckova, L.; Rossmann, P.; Hrncir, T.; Kverka, M.; Zakostelska, Z.; et al. The role of gut microbiota (commensal bacteria) and the mucosal barrier in the pathogenesis of inflammatory and autoimmune diseases and cancer: Contribution of germ-free and gnotobiotic animal models of human diseases. Cell Mol. Immunol. 2011, 8, 110–120. [Google Scholar] [CrossRef] [Green Version]
- Jandhyala, S.M.; Talukdar, R.; Subramanyam, C.; Vuyyuru, H.; Sasikala, M.; Nageshwar Reddy, D. Role of the normal gut microbiota. World J. Gastroenterol. 2015, 21, 8787–8803. [Google Scholar] [CrossRef]
- DeGruttola, A.K.; Low, D.; Mizoguchi, A.; Mizoguchi, E. Current Understanding of Dysbiosis in Disease in Human and Animal Models. Inflamm. Bowel Dis. 2016, 22, 1137–1150. [Google Scholar] [CrossRef] [Green Version]
- Carding, S.; Verbeke, K.; Vipond, D.T.; Corfe, B.M.; Owen, L.J. Dysbiosis of the gut microbiota in disease. Microb. Ecol. Health Dis. 2015, 26, 26191. [Google Scholar] [CrossRef]
- Hernandez, C.J. Musculoskeletal microbiology: The utility of the microbiome in orthopedics. J. Orthop. Res. 2021, 39, 251–257. [Google Scholar] [CrossRef] [PubMed]
- Chisari, E.; Cho, J.; Wouthuyzen-Bakker, M.; Parvizi, J. Periprosthetic Joint Infection and the Trojan Horse Theory: Examining the Role of Gut Dysbiosis and Epithelial Integrity. J. Arthroplast. 2022, 37, 1369–1374. [Google Scholar] [CrossRef]
- Remily, E.A.; Sax, O.C.; Douglas, S.J.; Salib, C.G.; Salem, H.S.; Monárrez, R.G.; Delanois, R.E. Inflammatory bowel disease is associated with increased complications after total knee arthroplasty. Knee 2023, 40, 313–318. [Google Scholar] [CrossRef]
- Chisari, E.; Cho, J.; Wouthuyzen-Bakker, M.; Parvizi, J. Gut permeability may be associated with periprosthetic joint infection after total hip and knee arthroplasty. Sci. Rep. 2022, 12, 15094. [Google Scholar] [CrossRef] [PubMed]
- Chisari, E.; D’mello, D.; Sherman, M.B.; Parvizi, J. Inflammatory Bowel Diseases Increase the Risk of Periprosthetic Joint Infection. J. Bone Jt. Surg. 2022, 104, 160–165. [Google Scholar] [CrossRef] [PubMed]
- Zhu, H.; Jin, H.; Zhang, C.; Yuan, T. Intestinal methicillin-resistant Staphylococcus aureus causes prosthetic infection via ‘Trojan Horse’ mechanism: Evidence from a rat model. Bone Jt. Res. 2020, 9, 152–161. [Google Scholar] [CrossRef] [PubMed]
- Hernandez, C.J.; Yang, X.; Ji, G.; Niu, Y.; Sethuraman, A.S.; Koressel, J.; Shirley, M.; Fields, M.W.; Chyou, S.; Li, T.M.; et al. Disruption of the Gut Microbiome Increases the Risk of Periprosthetic Joint Infection in Mice. Clin. Orthop. Relat. Res. 2019, 477, 2588–2598. [Google Scholar] [CrossRef]
- Hooijmans, C.R.; Rovers, M.M.; de Vries, R.B.; Leenaars, M.; Ritskes-Hoitinga, M.; Langendam, M.W. SYRCLE’s risk of bias tool for animal studies. BMC Med. Res. Methodol. 2014, 14, 43. [Google Scholar] [CrossRef] [Green Version]
- Kunutsor, S.K.; Whitehouse, M.R.; Blom, A.W.; Beswick, A.D.; Team, I. Patient-Related Risk Factors for Periprosthetic Joint Infection after Total Joint Arthroplasty: A Systematic Review and Meta-Analysis. PLoS ONE 2016, 11, e0150866. [Google Scholar] [CrossRef]
- Cunningham, D.J.; Kavolus, J.J.; Bolognesi, M.P.; Wellman, S.S.; Seyler, T.M. Specific Infectious Organisms Associated with Poor Outcomes in Treatment for Hip Periprosthetic Infection. J. Arthroplast. 2017, 32, 1984–1990.e5. [Google Scholar] [CrossRef]
- Deane, K.D.; El-Gabalawy, H. Pathogenesis and prevention of rheumatic disease: Focus on preclinical RA and SLE. Nat. Rev. Rheumatol. 2014, 10, 212–228. [Google Scholar] [CrossRef] [Green Version]
- Shive, C.L.; Jiang, W.; Anthony, D.D.; Lederman, M.M. Soluble CD14 is a nonspecific marker of monocyte activation. Aids 2015, 29, 1263–1265. [Google Scholar] [CrossRef] [Green Version]
- Tsai, Y.-L.; Lin, T.-L.; Chang, C.-J.; Wu, T.-R.; Lai, W.-F.; Lu, C.-C.; Lai, H.-C. Probiotics, prebiotics and amelioration of diseases. J. Biomed. Sci. 2019, 26, 3. [Google Scholar] [CrossRef]
- Chakaroun, R.M.; Massier, L.; Kovacs, P. Gut Microbiome, Intestinal Permeability, and Tissue Bacteria in Metabolic Disease: Perpetrators or Bystanders? Nutrients 2020, 12, 1082. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iannotti, F.; Prati, P.; Fidanza, A.; Iorio, R.; Ferretti, A.; Pèrez Prieto, D.; Kort, N.; Violante, B.; Pipino, G.; Schiavone Panni, A.; et al. Prevention of Periprosthetic Joint Infection (PJI): A Clinical Practice Protocol in High-Risk Patients. Trop. Med. Infect. Dis. 2020, 5, 186. [Google Scholar] [CrossRef] [PubMed]
- Sartor, R.B.; Wu, G.D. Roles for Intestinal Bacteria, Viruses, and Fungi in Pathogenesis of Inflammatory Bowel Diseases and Therapeutic Approaches. Gastroenterology 2017, 152, 327–339.e4. [Google Scholar] [CrossRef] [Green Version]
- Manzanares, W.; Lemieux, M.; Langlois, P.L.; Wischmeyer, P.E. Probiotic and synbiotic therapy in critical illness: A systematic review and meta-analysis. Crit. Care 2016, 20, 262. [Google Scholar] [CrossRef] [Green Version]
- Jovic, D.; Liang, X.; Zeng, H.; Lin, L.; Xu, F.; Luo, Y. Single-cell RNA sequencing technologies and applications: A brief overview. Clin. Transl. Med. 2022, 12, e694. [Google Scholar] [CrossRef]
- Camilleri, M. Leaky gut: Mechanisms, measurement and clinical implications in humans. Gut 2019, 68, 1516–1526. [Google Scholar] [CrossRef]
- Pérez, J.C. Fungi of the human gut microbiota: Roles and significance. Int. J. Med. Microbiol. 2021, 311, 151490. [Google Scholar] [CrossRef]
- Wu, S.; Schmitz, U. Single-cell and long-read sequencing to enhance modelling of splicing and cell-fate determination. Comput. Struct. Biotechnol. J. 2023, 21, 2373–2380. [Google Scholar] [CrossRef]
- Benito, N.; Mur, I.; Ribera, A.; Soriano, A.; Rodríguez-Pardo, D.; Sorlí, L.; Cobo, J.; Fernández-Sampedro, M.; del Toro, M.; Guío, L.; et al. The Different Microbial Etiology of Prosthetic Joint Infections according to Route of Acquisition and Time after Prosthesis Implantation, Including the Role of Multidrug-Resistant Organisms. J. Clin. Med. 2019, 8, 673. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Houshyar, Y.; Massimino, L.; Lamparelli, L.A.; Danese, S.; Ungaro, F. Going Beyond Bacteria: Uncovering the Role of Archaeome and Mycobiome in Inflammatory Bowel Disease. Front. Physiol. 2021, 12, 783295. [Google Scholar] [CrossRef] [PubMed]
- Krawczyk, A.; Salamon, D.; Kowalska-Duplaga, K.; Bogiel, T.; Gosiewski, T. Association of Fungi and Archaea of the Gut Microbiota with Crohn’s Disease in Pediatric Patients—Pilot Study. Pathogens 2021, 10, 1119. [Google Scholar] [CrossRef] [PubMed]
- Olyaiee, A.; Sadeghi, A.; Yadegar, A.; Mirsamadi, E.S.; Mirjalali, H. Gut Microbiota Shifting in Irritable Bowel Syndrome: The Mysterious Role of Blastocystis sp. Front. Med. 2022, 9. [Google Scholar] [CrossRef]
- Jadallah, K.A.; Nimri, L.F.; Ghanem, R.A. Protozoan parasites in irritable bowel syndrome: A case-control study. World J. Gastrointest. Pharmacol. Ther. 2017, 8, 201–207. [Google Scholar] [CrossRef] [PubMed]
- Qv, L.; Mao, S.; Li, Y.; Zhang, J.; Li, L. Roles of Gut Bacteriophages in the Pathogenesis and Treatment of Inflammatory Bowel Disease. Front. Cell. Infect. Microbiol. 2021, 11. [Google Scholar] [CrossRef]
Authors | Date Published | Type of Study | Dysbiosis Type | N. of Patients/ Subjects | Length of Follow-Up | Analysed Variables | Results |
---|---|---|---|---|---|---|---|
Remily et al. [31] | 12/2022 | Retrospective Cohort Study | Crohn’s Disease and Ulcerative Colitis | 1,380,536 | 2 years | PJI cases in control, Crohn’s disease, and ulcerative colitis patients. Results adjusted for confounding variables of obesity, tobacco usage, and diabetes | PJI odds ratio at 90 days: 1.37 for Crohn’s disease (p < 0.01) and 1.31 for ulcerative colitis (p < 0.01) |
Chisari et al. [32] | 9/2022 | Prospective Cohort Study | IBD—Gut Permeability | 134 | n/a | Zonulin, LPS, sCD14 (markers of gut permeability) | CD14 and Zonulin higher in PJI vs. non-PJI patients (555 ± 216 ng/mL, p < 0.05 and 7.642 ± 6.077 ng/mL, p < 0.001 respectively). Zonulin higher in acute PJI group vs. chronic (10.7 ± 6.2 ng/mL vs. 5.8 ± 4.8 ng/mL, p = 0.005) |
Chisari et al. [33] | 1/2022 | Retrospective Cohort Study | IBD | 608 | 2 years | PJI cases in IBD patient group and non-IBD group. Analysed using univariable regression with a cox regression model | IBD group more likely to develop PJI vs. non-IBD control (4.61% vs. 0.88%, p = 0.0024). IBD associated with 5.4-fold higher incidence of PJI (p = 0.007) |
Zhu et al. [34] | 4/2020 | Preclinical—Rat Study | Intestinal MRSA | 100 | 10 days | Stool analysis on days 1–10. After sacrifice, specimens from knee joint, femur, and implanted K-wire harvested and cultured for bacterial identification. 16S ribosomal DNA, GFP gene expression, and PCR used for analysis | MRSA strain: 25% of rats in the 8 h group and 10% of rats in the 72 h group developed PJI. MRSA isolate: 30% of rats in isolate 1 and 35% in isolate 2 developed PJI. Control: 0 rats developed PJI |
Hernandez et al. [35] | 7/2019 | Mouse study | Altered gut microbiota due to antibiotics | 82 | 5 days | Bacterial load (CFU) on implant surface. Shannon diversity index for microbiome diversity | Higher PJI occurrence in altered gut microbiota mice vs. control (72.5% vs. 50%, p = 0.03) and lower microbiome diversity (2.36 ± 0.57 vs. 3.87 ± 0.28, p < 0.001) |
Study | Study Design | Selection | Performance | Detection | Attrition | Reporting | Total Score | ||||
---|---|---|---|---|---|---|---|---|---|---|---|
Sequence Generation | Baseline Characteristics | Allocation Concealment | Random Housing | Blinding Researchers | Random Outcome Assessment | Blinding Assessors | Incomplete Outcome Data | Selective Outcome Reporting | |||
Hernandez et al. [35] | Mouse Study | + | + | − | − | − | − | − | + | − | 3 |
Zhu et al. [34] | Rat Study | − | + | − | − | − | − | − | + | − | 2 |
Study | Study Design | Selection | Comparability | Outcome | Total Score | |||||
---|---|---|---|---|---|---|---|---|---|---|
Exposed Cohort Representative? | Selection of Non-Exposed Cohort | Ascertainment of Exposure | Outcome Not Present at Study Start? | Based on Design or Analysis | Assessment of Outcome | Timing of Follow-Up | Adequate Follow-Up | |||
Chisari et al. [32] | Cohort Study | + | + | + | + | ++ | + | + | − | 8 |
Chisari et al. [33] | Cohort Study | + | + | + | + | ++ | + | + | − | 8 |
Remily et al. [31] | Cohort Study | − | + | + | + | ++ | + | + | − | 7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Valtetsiotis, K.; Di Martino, A.; Brunello, M.; Tassinari, L.; D’Agostino, C.; Traina, F.; Faldini, C. The Potential Role of Gut Bacteriome Dysbiosis as a Leading Cause of Periprosthetic Infection: A Comprehensive Literature Review. Microorganisms 2023, 11, 1778. https://doi.org/10.3390/microorganisms11071778
Valtetsiotis K, Di Martino A, Brunello M, Tassinari L, D’Agostino C, Traina F, Faldini C. The Potential Role of Gut Bacteriome Dysbiosis as a Leading Cause of Periprosthetic Infection: A Comprehensive Literature Review. Microorganisms. 2023; 11(7):1778. https://doi.org/10.3390/microorganisms11071778
Chicago/Turabian StyleValtetsiotis, Konstantinos, Alberto Di Martino, Matteo Brunello, Leonardo Tassinari, Claudio D’Agostino, Francesco Traina, and Cesare Faldini. 2023. "The Potential Role of Gut Bacteriome Dysbiosis as a Leading Cause of Periprosthetic Infection: A Comprehensive Literature Review" Microorganisms 11, no. 7: 1778. https://doi.org/10.3390/microorganisms11071778
APA StyleValtetsiotis, K., Di Martino, A., Brunello, M., Tassinari, L., D’Agostino, C., Traina, F., & Faldini, C. (2023). The Potential Role of Gut Bacteriome Dysbiosis as a Leading Cause of Periprosthetic Infection: A Comprehensive Literature Review. Microorganisms, 11(7), 1778. https://doi.org/10.3390/microorganisms11071778