Biologically Active Compounds from Probiotic Microorganisms and Plant Extracts Used as Biopreservatives
Abstract
:1. Introduction
2. Biologically Active Compounds from Probiotic Microorganisms as Biopreservatives
2.1. Bacterial Metabolites
2.1.1. Organic Acids, Diacetyl, Hydrogen Peroxide, and Reuterin
2.1.2. Bacteriocins from Lactic Acid Bacteria
2.2. Yeast Metabolites
3. Biologically Active Compounds of Plant Origin Used as Biopreservatives
3.1. Polyphenolic Compounds
3.2. Terpenes
3.3. Alkaloids
4. Practical Examples for the Application of Probiotic Microorganisms and Plant Extracts Used as Biopreservatives
4.1. Application of Microorganisms
Food Substrates | Probiotics Used in Biopreservation | Observed Biopreservation Effect | References |
---|---|---|---|
Mayonnaise | L. plantarum | Exclusion of mesophilic aerobic and facultative anaerobic microorganisms | [41,68] |
L. casei and L. acidophilus | Exclusion of pathogenic microorganisms | ||
Fresh pork sausages | L. sakei | Exclusion of pathogenic microorganisms | [69,70] |
Fermented sausage | L. plantarum | ||
Yoghurt | Propionibacterium jensenii | Exclusion of spoilage molds and yeasts | [71] |
Cheese | L. paracasei subsp. paracasei | ||
Bread | L. plantarum, | Exclusion of spoilage molds and yeasts | [72] |
L. paracasei and | |||
Leuconostoc mesenteroides | |||
Chocolates | L. delbrueckii subsp. bulgaricus | Fermentation—low pH Exclusion of mesophilic aerobic and facultative anaerobic microorganisms | [73,74] |
Chocolate mousses | L. plantarum | ||
Cantaloupe juice | L. casei | Fermentation—low pH | [75,76,77] |
Orange juice | P. acidilactici | ||
Pineapple juice | L. casei |
4.2. Application of Plant Extracts
4.3. Combined Application of Probiotic Microorganisms and Plant Extracts
5. Regulatory Status of Microbial and Plant Biopreservatives
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yuan, Q.; Xiao, R.; Afolabi, M.; Bomma, M.; Xiao, Z. Evaluation of antibacterial activity of selenium nanoparticles against food-borne pathogens. Microorganisms 2023, 11, 1519. [Google Scholar] [CrossRef]
- Schneider, G.; Steinbach, A.; Putics, Á.; Solti-Hodován, Á.; Palkovics, T. Potential of essential oils in the control of Listeria monocytogenes. Microorganisms 2023, 11, 1364. [Google Scholar] [CrossRef]
- Delgado, J.; Álvarez, M.; Cebrián, E.; Martín, I.; Roncero, E.; Rodríguez, M. Biocontrol of pathogen microorganisms in ripened foods of animal origin. Microorganisms 2023, 11, 1578. [Google Scholar] [CrossRef]
- Ray, B.; Bhunia, A. Fundamental Food Microbiology, 5th ed.; CRC Press, Taylor and Francis Group: Boca Raton, FL, USA, 2014; pp. 1–663. [Google Scholar]
- Murgov, I.; Denkova, Z. Microbiology, 3rd ed.; UFT Academic Publishing House: Plovdiv, Bulgaria, 2012. [Google Scholar]
- Petrova, P.; Arsov, A.; Tsvetanova, F.; Parvanova-Mancheva, T.; Vasileva, E.; Tsigoriyna, L.; Petrov, K. The complex role of lactic acid bacteria in food detoxification. Nutrients 2022, 14, 2038. [Google Scholar] [CrossRef]
- Goranov, B. Production of Lactic Acid with Free and Immobilized Cells of Lactic Acid Bacteria and Its Application in Food Production. Doctoral dissertation, University of Food Technology, Plovdiv, Bulgaria, 2015. [Google Scholar]
- Bhattacharya, D.; Nanda, P.K.; Pateiro, M.; Lorenzo, J.M.; Dhar, P.; Das, A.K. Lactic acid bacteria and bacteriocins: Novel biotechnological approach for biopreservation of meat and meat products. Microorganisms 2022, 10, 2058. [Google Scholar] [CrossRef]
- Cotter, P.D.; Ross, R.P.; Hill, C. Bacteriocins—A viable alternative to antibiotics? Nat. Rev. Microbiol. 2013, 11, 95–105. [Google Scholar] [CrossRef]
- Sidhu, P.K.; Nehra, K. Bacteriocins of lactic acid bacteria as potent antimicrobial peptides against food pathogens. In Biomimetics; Habib, M.K., Martín-Gómez, C., Eds.; IntechOpen: London, UK, 2021; Volume 8. [Google Scholar] [CrossRef]
- Alvarez-Sieiro, P.; Montalbán-López, M.; Mu, D.; Kuipers, O. Bacteriocins of lactic acid bacteria: Extending the family. Appl. Microbiol. Biotechnol. 2016, 100, 2939–2951. [Google Scholar] [CrossRef] [Green Version]
- Pérez-Ramos, A.; Madi-Moussa, D.; Coucheney, F.; Drider, D. Current knowledge of the mode of action and immunity mechanisms of LAB-bacteriocins. Microorganisms 2021, 9, 2107. [Google Scholar] [CrossRef]
- Blin, K.; Medema, M.H.; Kazempour, D.; Fischbach, M.A.; Breitling, R.; Takano, E.; Weber, T. AntiSMASH 2.0—A versatile platform for genome mining of secondary metabolite producers. Nucleic Acids Res. 2013, 41, 204–212. [Google Scholar] [CrossRef] [Green Version]
- van Heel, A.J.; de Jong, A.; Montalbán-López, M.; Kok, J.; Kuipers, O.P. BAGEL3: Automated identification of genes encoding bacteriocins and (non-)bactericidal posttranslationally modified peptides. Nucleic Acids Res. 2013, 41, 448–453. [Google Scholar] [CrossRef]
- Cui, Y.; Luo, L.; Wang, X.; Lu, Y.; Yi, Y.; Shan, Y.; Liu, B.; Zhou, Y.; Lü, X. Mining, heterologous expression, purification, antibactericidal mechanism, and application of bacteriocins: A review. Compr. Rev. Food Sci. Food Saf. 2021, 20, 863–899. [Google Scholar] [CrossRef] [PubMed]
- Cotter, P.D.; Hill, C.; Ross, R.P. Bacteriocins: Developing innate immunity for food. Nat. Rev. Microbiol. 2005, 3, 777–788. [Google Scholar] [CrossRef]
- Pena, W.E.; de Massaguer, P.R. Microbial modeling of Alicyclobacillus acidoterrestris CRA 7152 growth in orange juice with nisin added. J. Food Prot. 2006, 69, 1904–1912. [Google Scholar] [CrossRef]
- Maresca, D.; de Prisco, A.; La Storia, A.; Cirillo, T.; Esposito, F.; Mauriello, G. Microencapsulation of nisin in alginate beads by vibrating technology: Preliminary investigation. LWT-Food Sci. Technol. 2016, 66, 436–443. [Google Scholar] [CrossRef]
- Govaris, A.; Solomakos, N.; Pexara, A.; Chatzopoulou, P. The antimicrobial effect of oregano essential oil, nisin and their combination against Salmonella enteritidis in minced sheep meat during refrigerated storage. Int. J. Food Microbiol. 2010, 137, 175–180. [Google Scholar] [CrossRef]
- Grattepanche, F.; Miescher-Schwenninger, S.; Meile, L.; Lacroix, C. Recent developments in cheese cultures with protective and probiotic functionalities. Dairy Sci. Technol. 2008, 88, 421–444. [Google Scholar] [CrossRef] [Green Version]
- Scannell, A.G.M.; Hill, C.; Buckley, D.J.; Arendt, E.K. Determination of the influence of organic acids and nisin on shelf-life and microbiological safety aspects of fresh pork sausage. J. Appl. Microbiol. 1997, 83, 407–412. [Google Scholar] [CrossRef]
- Scannell, A.G.M.; Ross, R.P.; Hill, C.; Arendt, E.K. An effective lacticin biopreservative in fresh pork sausage. J. Food Prot. 2000, 63, 370–375. [Google Scholar] [CrossRef]
- Jin, J.; Nguyen, T.; Humayun, S.; Park, S.; Oh, H.; Lim, S.; Mok, I.; Li, Y.; Pal, K.; Kim, D. Characteristics of sourdough bread fermented with Pediococcus pentosaceus and Saccharomyces cerevisiae and its biopreservative effect against Aspergillus flavus. Food Chem. 2021, 345, 128787. [Google Scholar] [CrossRef]
- Younis, G.; Awad, A.; Dawod, R.E.; Yousef, N.E. Antimicrobial activity of yeasts against some pathogenic bacteria. Vet. World. 2017, 10, 979–983. [Google Scholar] [CrossRef] [Green Version]
- Ng, K.R.; Lyu, X.; Mark, R.; Chen, W.N. Antimicrobial and antioxidant activities of phenolic metabolites from flavonoid-producing yeast: Potential as natural food preservatives. Food Chem. 2019, 270, 123–129. [Google Scholar] [CrossRef]
- Walker, G.M. Pichia anomala: Cell physiology and biotechnology relative to other yeasts. Antonie Van Leeuwenhoek 2011, 99, 25–34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ambati, R.R.; Phang, S.M.; Ravi, S.; Aswathanarayana, R.G. Astaxanthin: Sources, extraction, stability, biological activities and its commercial applications—A review. Mar. Drugs 2014, 12, 128–152. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koli, S.H.; Suryawanshi, R.K.; Patil, C.D.; Patil, S.V. Fluconazole treatment enhances extracellular release of red pigments in the fungus Monascus purpureus. FEMS Microbiol. Lett. 2017, 364, 28333308. [Google Scholar] [CrossRef] [PubMed]
- Nath, A.; Vatai, G.; Bánvölgyi, S. Functional foods and bioactive compounds through environmentally benign emerging processes. Processes 2023, 11, 1182. [Google Scholar] [CrossRef]
- Azmir, J.; Zaidul, I.S.M.; Rahman, M.M.; Sharif, K.M.; Mohamed, A.; Sahena, F.; Jahurul, M.H.A.; Ghafoor, K.; Norulaini, N.A.N.; Omar, A.K.M. Techniques for extraction of bioactive compounds from plant materials: A review. J. Food Eng. 2013, 117, 426–436. [Google Scholar] [CrossRef]
- Charles, D.J. Antioxidant Properties of Spices, Herbs and Other Sources; Springer: New York, NY, USA, 2013; pp. 1–612. [Google Scholar] [CrossRef]
- Jakobek, L.; Šeruga, M.; Medvidovic-Kosanović, M.; Novak, I. Antioxidant activity and polyphenols of aronia in comparison to other berry species. Agric. Conspec. Sci. 2007, 72, 301–306. [Google Scholar]
- Shahid, M.; Ahmad, A.; Yusuf, M.; Khan, M.I.; Khan, S.A.; Manzoor, N.; Mohammad, F. Dyeing, fastness and antimicrobial properties of woolen yarns dyed with gallnut (Quercus infectoria Olivier) extract. Dye. Pigment. 2012, 95, 53–61. [Google Scholar] [CrossRef]
- Solórzano-Santos, F.; Miranda-Novales, M.G. Essential oils from aromatic herbs as antimicrobial agents. Curr. Opin. Biotechnol. 2012, 23, 136–141. [Google Scholar] [CrossRef] [PubMed]
- Atanasova, A.; Petrova, A.; Teneva, D.; Ognyanov, M.; Georgiev, Y.; Nenov, N.; Denev, P. Subcritical water extraction of rosmarinic acid from lemon balm (Melissa officinalis L.) and its effect on plant cell wall constituents. Antioxidants 2023, 12, 888. [Google Scholar] [CrossRef] [PubMed]
- Hernández-Ochoa, L.; Aguirre-Prieto, Y.B.; Nevárez-Moorillón, G.V.; Gutierrez-Mendez, N.; Salas-Muñoz, E. Use of essential oils and extracts from spices in meat protection. J. Food Sci. Technol. 2014, 51, 957–963. [Google Scholar] [CrossRef] [Green Version]
- da Cruz Cabral, L.; Pinto, V.F.; Patriarca, A. Application of plant derived compounds to control fungal spoilage and mycotoxin production in foods. Int. J. Food Microbiol. 2013, 166, 1–14. [Google Scholar] [CrossRef]
- Tosi, E.A.; Ré, E.; Ortega, M.E.; Cazzoli, A.F. Food preservative based on propolis: Bacteriostatic activity of propolis polyphenols and flavonoids upon Escherichia coli. Food Chem. 2007, 104, 1025–1029. [Google Scholar] [CrossRef]
- El-Nagerabi, S.A.; Al-Bahry, S.N.; Elshafie, A.E.; Al Hilali, S. Effect of Hibiscus sabdariffa extract and Nigella sativa oil on the growth and aflatoxin B1 production of Aspergillus flavus and Aspergillus parasiticus strains. Food Control 2012, 25, 59–63. [Google Scholar] [CrossRef]
- Dandapat, R.; Jena, B.S.; Negi, P.S. Antimutagenic and antibacterial activities of Peltophorum ferrugineum flower extracts. Asian Pac. J. Trop. Dis. 2012, 2, 778–782. [Google Scholar] [CrossRef]
- Teneva, D.; Denkova, Z.; Denkova-Kostova, R.; Goranov, B.; Kostov, G.; Slavchev, A.; Hristova-Ivanova, Y.; Uzunova, G.; Degraeve, P. Biological preservation of mayonnaise with Lactobacillus plantarum LBRZ12, dill, and basil essential oils. Food Chem. 2021, 344, 128707. [Google Scholar] [CrossRef] [PubMed]
- Teneva, D.; Goranov, B.; Denkova-Kostova, R.; Hristova-Ivanova, Y.; Klisurova, D.; Slavchev, A.; Denkova, Z.; Kostov, G. Chemical composition, antioxidant and antimicrobial activity of essential oils from leaves and flowers of Rosmarinus officinalis L. Bulg. Chem. Commun. 2020, 52, 54–59. [Google Scholar]
- Denkova-Kostova, R.; Teneva, D.; Tomova, T.; Goranov, B.; Denkova, Z.; Shopska, V.; Slavchev, A.; Hristova-Ivanova, Y. Chemical composition, antioxidant and antimicrobial activity of essential oils from tangerine (Citrus reticulata L.), grapefruit (Citrus paradisi L.), lemon (Citrus lemon L.) and cinnamon (Cinnamomum zeylanicum Blume). Z. Für Naturforschung C 2021, 76, 175–185. [Google Scholar] [CrossRef] [PubMed]
- Miceli, A.; Francesca, N.; Moschetti, G.; Settanni, L. The influence of addition of Borago officinalis with antibacterial activity on the sensory quality of fresh pasta. Int. J. Gastron. Food Sci. 2015, 2, 93–97. [Google Scholar] [CrossRef] [Green Version]
- Tomadoni, B.; Cassani, L.; Moreira, M.R.; Ponce, A. Efficacy of vanillin and geraniol in reducing Escherichia coli O157: H7 on strawberry juice. LWT-Food Sci. Technol. 2015, 64, 554–557. [Google Scholar] [CrossRef]
- Sarhan, M.A.; Shati, A.A.; Elsaid, F.G. Biochemical and molecular studies on the possible influence of the Brassica oleracea and Beta vulgaris extracts to mitigate the effect of food preservatives and food chemical colorants on albino rats. Saudi J. Biol. Sci. 2014, 21, 342–354. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Caleja, C.; Barros, L.; Antonio, A.L.; Carocho, M.; Oliveira, M.B.P.; Ferreira, I.C. Fortification of yogurts with different antioxidant preservatives: A comparative study between natural and synthetic additives. Food Chem. 2016, 210, 262–268. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smaoui, S.; Hsouna, A.B.; Lahmar, A.; Ennouri, K.; Mtibaa-Chakchouk, A.; Sellem, I.; Najah, S.; Bouaziz, M.; Mellouli, L. Bio-preservative effect of the essential oil of the endemic Mentha piperita used alone and in combination with BacTN635 in stored minced beef meat. Meat Sci. 2016, 117, 196–204. [Google Scholar] [CrossRef] [PubMed]
- Lu, X.; Tang, K.; Li, P. Plant metabolic engineering strategies for the production of pharmaceutical terpenoids. Front. Plant Sci. 2017, 7, 1647. [Google Scholar] [CrossRef] [Green Version]
- Taiz, L.; Zeiger, E. Plant Physiology, 3rd ed.; Sinauer Associates: Sunderland, MA, USA, 2003; pp. 1–690. [Google Scholar] [CrossRef] [Green Version]
- Santos, M.I.S.; Marques, C.; Mota, J.; Pedroso, L.; Lima, A. Applications of essential oils as antibacterial agents in minimally processed fruits and vegetables—A review. Microorganisms 2022, 10, 760. [Google Scholar] [CrossRef]
- Loreto, F.; Förster, A.; Dürr, M.; Csiky, O.; Seufert, G. On the monoterpene emission under heat stress and on the increased thermotolerance of leaves of Quercus Ilex L. fumigated with selected monoterpenes. Plant Cell Environ. 2002, 21, 101–107. [Google Scholar] [CrossRef]
- Badawy, M.E.I.; Marei, G.I.K.; Rabea, E.I.; Taktak, N.E.M. Antimicrobial and antioxidant activities of hydrocarbon and oxygenated monoterpenes against some foodborne pathogens through in vitro and in silico studies. Pestic. Biochem. Physiol. 2019, 158, 185–200. [Google Scholar] [CrossRef]
- Li, H.Y.; Yang, W.Q.; Zhou, X.Z.; Shao, F.; Shen, T.; Guan, H.Y.; Zheng, J.; Zhang, L.M. Antibacterial and antifungal sesquiterpenoids: Chemistry, resource, and activity. Biomolecules 2022, 12, 1271. [Google Scholar] [CrossRef]
- Aminimoghadamfarouj, N.; Nematollahi, A. Propolis diterpenes as a remarkable bio-source for drug discovery development: A review. Int. J. Mol. Sci. 2017, 18, 1290. [Google Scholar] [CrossRef] [Green Version]
- Tran, Q.T.N.; Wong, W.S.F.; Chai, C.L.L. Labdane diterpenoids as potential anti-inflammatory agents. Pharmacol. Res. 2017, 124, 43–63. [Google Scholar] [CrossRef]
- Guvvala, V.; Polkam, N.; Chidambaram, V.S.; Galla, R.; Anireddy, S.J. Pharmacological evaluation of abietane diterpenoids from Plectranthus bishopianus as potent antibacterial, antioxidant and their cytotoxic agents. Nat. Prod. J. 2019, 9, 229–237. [Google Scholar] [CrossRef]
- Teneva, D.; Denkova-Kostova, R.; Goranov, B.; Hristova-Ivanova, Y.; Slavchev, A.; Denkova, Z.; Kostov, G. Chemical composition, antioxidant activity and antimicrobial activity of essential oil from Citrus aurantium L zest against some pathogenic microorganisms. Z. Für Naturforschung C 2019, 74, 105–111. [Google Scholar] [CrossRef] [Green Version]
- Singh, P.; Shukla, R.; Prakash, B.; Kumar, A.; Singh, S.; Mishra, P.K.; Dubey, N.K. Chemical profile, antifungal, antiaflatoxigenic and antioxidant activity of Citrus maxima Burm. and Citrus sinensis (L.) Osbeck essential oils and their cyclic monoterpene, DL-limonene. Food Chem. Toxicol. 2010, 48, 1734–1740. [Google Scholar] [CrossRef]
- Güçlü-Ustündağ, O.; Mazza, G. Saponins: Properties, applications and processing. Crit. Rev. Food Sci. Nutr. 2007, 47, 231–258. [Google Scholar] [CrossRef]
- Atarés, L.; Chiralt, A. Essential oils as additives in biodegradable films and coatings for active food packaging. Trends Food Sci. Technol. 2016, 48, 51–62. [Google Scholar] [CrossRef]
- Bissinger, R.; Modicano, P.; Alzoubi, K.; Honisch, S.; Faggio, C.; Abed, M.; Lang, F. Effect of saponin on erythrocytes. Int. J. Hematol. 2014, 100, 51–59. [Google Scholar] [CrossRef]
- Juneja, V.K.; Dwivedi, H.P.; Yan, X. Novel natural food antimicrobials. Annu. Rev. Food Sci. Technol. 2012, 3, 381–403. [Google Scholar] [CrossRef] [PubMed]
- Kong, W.; Wei, J.; Abidi, P.; Lin, M.; Inaba, S.; Li, C.; Wang, Y.; Wang, Z.; Si, S.; Pan, H.; et al. Berberine is a novel cholesterol-lowering drug working through a unique mechanism distinct from statins. Nat. Med. 2004, 10, 1344–1351. [Google Scholar] [CrossRef] [PubMed]
- He, K.; Ma, H.; Xu, H.; Zou, Z.; Feng, M.; Li, X.; Ye, X. Anti-hyperlipidemic effects of Rhizoma Coptidis alkaloids are achieved through modulation of the enterohepatic circulation of bile acids and cross-talk between the gut microbiota and the liver. J. Funct. Foods 2017, 35, 205–215. [Google Scholar] [CrossRef]
- Pruthviraj, P.; Suchita, B.; Shital, K.; Shilpa, K. Evaluation of antibacterial activity of caffeine. Int. J. Res. Ayurveda Pharm. 2011, 2, 1354–1357. [Google Scholar]
- Zapaśnik, A.; Sokołowska, B.; Bryła, M. Role of lactic acid bacteria in food preservation and Safety. Foods 2022, 11, 1283. [Google Scholar] [CrossRef]
- Bigdelian, E.; Razavi, S. Evaluation of survival rate and physicochemical properties of encapsulated bacteria in alginate and resistant starch in mayonnaise sauce. J. Bioprocess. Biotech. 2014, 4, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Gelinski, J.M.L.N.; Baratto, C.M.; Casagrande, M.; de Oliveira, T.P.; Megiolaro, F.; de Martini Soares, F.A.S.; de Souza, E.M.B.; Vicente, V.A.; Fonseca, G.G. Control of pathogens in fresh pork sausage by inclusion of Lactobacillus sakei BAS0117. Can. J. Microbiol. 2019, 65, 831–841. [Google Scholar] [CrossRef]
- Kamiloğlu, A.; Kaban, G.; Kaya, M. Effects of autochthonous Lactobacillus plantarum strains on Listeria monocytogenes in sucuk during ripening. J. Food Saf. 2019, 39, e12618. [Google Scholar] [CrossRef]
- Schwenninger, S.M.; Meile, L. A mixed culture of Propionibacterium jensenii and Lactobacillus paracasei subsp. paracasei inhibits food spoilage yeasts. Syst. Appl. Microbiol. 2004, 27, 229–237. [Google Scholar] [CrossRef] [PubMed]
- Ouiddir, M.; Bettache, G.; Leyva-Salas, M.; Pawtowski, A.; Donot, C.; Brahimi, S.; Mabrouk, K.; Coton, E.; Mounier, J. Selection of Algerian lactic acid bacteria for use as antifungal bioprotective cultures and application in dairy and bakery products. Food Microbiol. 2019, 82, 160–170. [Google Scholar] [CrossRef]
- Hossain, M.N.; Ranadheera, C.S.; Fang, Z.; Masum, A.K.M.; Ajlouni, S. Viability of Lactobacillus delbrueckii in chocolates during storage and in vitro bioaccessibility of polyphenols and SCFAs. Curr. Res. Food Sci. 2022, 5, 1266–1275. [Google Scholar] [CrossRef] [PubMed]
- Denkova-Kostova, R.; Goranov, B.; Teneva, D.; Tomova, T.; Denkova, Z.; Shopska, V.; Mihaylova-Ivanova, Y. Biopreservation of chocolate mousse with free and immobilized cells of Lactobacillus plantarum D2 and lemon (Citrus lemon L.) or grapefruit (Citrus paradisi L.) zest essential oils. Acta Sci. Pol. Technol. Aliment. 2021, 20, 5–16. [Google Scholar] [CrossRef]
- Fonteles, T.V.; Costa, M.G.M.; de Jesus, A.L.T.; Rodrigues, S. Optimization of the fermentation of cantaloupe juice by Lactobacillus casei NRRL B-442. Food Bioprocess Technol. 2012, 5, 2819–2826. [Google Scholar] [CrossRef]
- de Oliveira Vieira, K.C.; Da Silva Ferreira, C.; Toso Bueno, E.B.; De Moraes, Y.A.; Campagnolo Gonçalves Toledo, A.C.; Nakagaki, W.R.; Pereira, V.C.; Winkelstroter, L.K. Development and viability of probiotic orange juice supplemented by Pediococcus acidilactici CE51. Lwt 2020, 130, 109637. [Google Scholar] [CrossRef]
- Costa, M.G.M.; Fonteles, T.V.; De Jesus, A.L.T.; Rodrigues, S. Sonicated pineapple juice as substrate for L. casei cultivation for probiotic beverage development: Process optimisation and product stability. Food Chem. 2013, 139, 261–266. [Google Scholar] [CrossRef] [Green Version]
- Udayakumar, S.; Rasika, D.M.D.; Priyashantha, H.; Vidanarachchi, J.K.; Ranadheera, C.S. Probiotics and beneficial microorganisms in biopreservation of plant-based foods and beverages. Appl. Sci. 2022, 12, 11737. [Google Scholar] [CrossRef]
- de Niederhäusern, S.; Bondi, M.; Camellini, S.; Sabia, C.; Messi, P.; Iseppi, R. Plant extracts for the control of Listeria monocytogenes in meat products. Appl. Sci. 2021, 11, 10820. [Google Scholar] [CrossRef]
- Ahmadi-Dastgerdi, A.; Gholami-Ahangaran, M.; Saafizadeh, Z. Antibacterial and antifungal effect of Achillea millefolium essential oil during shelf life of mayonnaise. Food Sci. Technol. 2019, 13, 12–20. [Google Scholar] [CrossRef]
- Selim, S. Antimicrobial activity of essential oils against vancomycin-resistant enterococci (vre) and Escherichia coli O157:h7 in feta soft cheese and minced beef meat. Braz. J. Microbiol. 2011, 42, 187–196. [Google Scholar] [CrossRef] [Green Version]
- Paparella, A.; Taccogna, L.; Aguzzi, I.; Chaves-López, C.; Serio, A.; Marsilio, F.; Suzzi, G. Flow cytometric assessment of the antimicrobial activity of essential oils against Listeria monocytogenes. Food Control 2008, 19, 1174–1182. [Google Scholar] [CrossRef]
- Vasileva, I.; Denkova, R.; Chochkov, R.; Teneva, D.; Denkova, Z.; Dessev, T.; Denev, P.; Slavov, A. Effect of lavender (Lavandula angustifolia) and melissa (Melissa Officinalis) waste on quality and shelf life of bread. Food Chem. 2018, 253, 13–21. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, F.; Coimbra, A.T.; Silva, L.; Duarte, A.P.; Ferreira, S. Melissa officinalis essential oil as an antimicrobial agent against Listeria monocytogenes in watermelon juice. Food Microbiol. 2023, 109, 104105. [Google Scholar] [CrossRef] [PubMed]
- de Sousa Guedes, J.P.; de Souza, E.L. Investigation of damage to Escherichia coli, Listeria monocytogenes and Salmonella enteritidis exposed to Mentha arvensis L. and M. piperita L. essential oils in pineapple and mango juice by flow cytometry. Food Microbiol. 2018, 76, 564–571. [Google Scholar] [CrossRef] [PubMed]
- Kuley, E.; Durmus, M.; Ucar, Y.; Kosker, A.Z.; Tumerkan, E.T.A.; Regenstein, J.M.; Ozogul, F. Combined effects of plant and cell-free extracts of lactic acid bacteria on biogenic amines and bacterial load of fermented sardine stored at 3 ± 1 °C. Food Biosci. 2018, 24, 127–136. [Google Scholar] [CrossRef]
- Chaikham, P. Stability of probiotics encapsulated with Thai herbal extracts in fruit juices and yoghurt during refrigerated storage. Food Biosci. 2015, 12, 61–66. [Google Scholar] [CrossRef]
- Shori, A.B.; Baba, A.C. Survival of Bifidobacterium bifidum in cow- and camel-milk yogurts enriched with Cinnamomum verum and Allium sativum. J. Assoc. Arab. Univ. Basic Appl. Sci. 2015, 18, 7–11. [Google Scholar] [CrossRef] [Green Version]
- Mogensen, G.; Salminen, S.; O’Brien, J.; Ouwehand, A.; Holzapfel, W.; Shortt, C.; Fonden, R.; Miller, G.D.; Donohue, D.; Playne, M.; et al. Food microorganisms—Health benefits, safety evaluation and strains with documented history of use in foods. Bull. IDF 2002, 377, 4–9. [Google Scholar]
- Mogensen, G.; Salminen, S.; O’Brien, J.; Ouwehand, A.; Holzapfel, W.; Shortt, C.; Fonden, R.; Miller, G.D.; Donohue, D.; Playne, M.; et al. Inventory of microorganisms with a documented history of use in foods. Bull. IDF 2002, 377, 10–19. [Google Scholar]
- Carr, F.J.; Chill, D.; Maida, N. The lactic acid bacteria: A literature survey. Crit. Rev. Microbiol. 2002, 28, 281–370. [Google Scholar] [CrossRef]
- Fallico, V.; McAuliffe, O.; Ross, R.P.; Fitzgerald, G.F.; Hill, C. The potential of lacticin 3147, enterocin AS-48, lacticin 481, variacin and sakacin P for food biopreservation. In Protective Cultures, Antimicrobial Metabolites and Bacteriophages for Food and Beverage Biopreservation; Lacroix, C., Ed.; Woodhead Publishing: Cambridge, UK, 2011; Volume 4, pp. 100–128. [Google Scholar] [CrossRef]
- Hugo, C.J.; Hugo, A. Current trends in natural preservatives for fresh sausage products. Trends Food Sci. Technol. 2015, 45, 12–23. [Google Scholar] [CrossRef]
- Angane, M.; Swift, S.; Huang, K.; Butts, C.A.; Quek, S.Y. Essential oils and their major components: An updated review on antimicrobial activities, mechanism of action and their potential application in the food industry. Foods 2022, 11, 464. [Google Scholar] [CrossRef]
- European Commission. Regulation (EC) No 1334/2008 of the European Parliament and of the Council of 16 December 2008 on Flavourings and Certain Food Ingredients with Flavouring Properties for Use in and on Foods and Amending Council Regulation (EEC) No 1601/91, Regulations (EC) No 2232/96 and (EC) No 110/2008 and Directive 2000/13/EC. 2008. Available online: https://eur-lex.europa.eu/eli/reg/2008/1334/oj (accessed on 1 January 2022).
Classification | Carbon Atoms | Identification | Application and Uses | References |
---|---|---|---|---|
Monoterpenes | C10 | Essential oils and plant extracts | Flavorings and antimicrobial agents | [52,53] |
Sesquiterpenes | C15 | Essential oils and plant extracts | Antimicrobial agents | [54] |
Diterpenes | C20 | Bitter plant substances | Anti-inflammatory and antimicrobial agents | [55,56,57] |
Triterpenes | C30 | Essential oils and plant extracts | Emulsifiers, flavorings, and preservatives | [50,51] |
Food Substrates | Essential Oil/ Plant Extract Used for Biopreservation | Observed Biopreservation Effect | References |
---|---|---|---|
Mayonnaise | Dill and basil oils | Exclusion of mesophilic aerobic and facultative anaerobic microorganisms Inhibition of lipid oxidation | [41,80] |
Yarrow oil | |||
Sausages | Garlic and onion plant extracts | Exclusion of pathogenic microorganisms | [79,81,82] |
Minced beef meat | Eucalyptus, juniper, mint, rosemary, sage, clove, and thyme oils | ||
Pork fillets | Oregano oil | ||
Cheese | Eucalyptus, juniper, mint, rosemary, sage, clove, and thyme oils | Exclusion of pathogenic microorganisms | [81] |
Bread | Lavender and melissa plant extracts | Exclusion of spoilage molds and yeasts | [83] |
Chocolate mousses | Lemon and grapefruit oils | Exclusion of mesophilic aerobic and facultative anaerobic microorganisms | [74] |
Watermelon juice | Melissa oil | Exclusion of pathogenic microorganisms | [84,85] |
Pineapple and mango juice | Wild mint and peppermint oils |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Teneva, D.; Denev, P. Biologically Active Compounds from Probiotic Microorganisms and Plant Extracts Used as Biopreservatives. Microorganisms 2023, 11, 1896. https://doi.org/10.3390/microorganisms11081896
Teneva D, Denev P. Biologically Active Compounds from Probiotic Microorganisms and Plant Extracts Used as Biopreservatives. Microorganisms. 2023; 11(8):1896. https://doi.org/10.3390/microorganisms11081896
Chicago/Turabian StyleTeneva, Desislava, and Petko Denev. 2023. "Biologically Active Compounds from Probiotic Microorganisms and Plant Extracts Used as Biopreservatives" Microorganisms 11, no. 8: 1896. https://doi.org/10.3390/microorganisms11081896
APA StyleTeneva, D., & Denev, P. (2023). Biologically Active Compounds from Probiotic Microorganisms and Plant Extracts Used as Biopreservatives. Microorganisms, 11(8), 1896. https://doi.org/10.3390/microorganisms11081896