Microbial Risks Caused by Livestock Excrement: Current Research Status and Prospects
Abstract
:1. Introduction
2. Features of the Microbiome of Livestock Excrement and Microbiome Cycling
2.1. Input of the Livestock Excrement Microbiome
2.2. Output of Livestock Excrement Microbiome
2.3. Factors Affecting Livestock Excrement Microbiome
3. Microbial Risks of Livestock Excrement
3.1. Pathogens Residing in Livestock Excrement
3.2. Transmission of Antibiotic-Resistant Genes
3.3. Toxic Chemicals Produced by Livestock Excrement Microbiome
4. Strategies to Predict, Prevent the Microbial Risks of Livestock Excrement, and Beyond
4.1. Prediction of Livestock Excrement Microbial Risks
4.2. Prevention and Management of Livestock Excrement Microbial Risks
5. Limitations of the Current Microbial Research of Livestock Excrement
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sakawi, Z.; Ismail, L. Managing odour pollution from livestock sources in Malaysia: Issues and challenges. Geografia 2015, 11, 96–103. [Google Scholar]
- Zhu, L.-D.; Hiltunen, E. Application of livestock waste compost to cultivate microalgae for bioproducts production: A feasible framework. Renew. Sustain. Energy Rev. 2016, 54, 1285–1290. [Google Scholar]
- Choi, H.L.; Sudiarto, S.I.; Renggaman, A. Prediction of livestock manure and mixture higher heating value based on fundamental analysis. Fuel 2014, 116, 772–780. [Google Scholar]
- Noorollahi, Y.; Kheirrouz, M.; Asl, H.F.; Yousefi, H.; Hajinezhad, A. Biogas production potential from livestock manure in Iran. Renew. Sustain. Energy Rev. 2015, 50, 748–754. [Google Scholar]
- Smith, K.A.; Williams, A.G. Production and management of cattle manure in the UK and implications for land application practice. Soil Use Manag. 2016, 32, 73–82. [Google Scholar]
- Khalil, M.; Berawi, M.A.; Heryanto, R.; Rizalie, A. Waste to energy technology: The potential of sustainable biogas production from animal waste in Indonesia. Renew. Sustain. Energy Rev. 2019, 105, 323–331. [Google Scholar]
- Wang, Y.; Zhang, Y.; Li, J.; Lin, J.-G.; Zhang, N.; Cao, W. Biogas energy generated from livestock manure in China: Current situation and future trends. J. Environ. Manag. 2021, 297, 113324. [Google Scholar]
- Chmielowiec-Korzeniowska, A.; Tymczyna, L.; Wlazło, Ł.; Trawińska, B.; Ossowski, M. Emissions of Gaseous Pollutants from Pig Farms and Methods for their Reduction—A Review. Ann. Anim. Sci. 2022, 22, 89–107. [Google Scholar]
- Shih, J.-S.; Burtraw, D.; Palmer, K.; Siikamäki, J. Air Emissions of Ammonia and Methane from Livestock Operations: Valuation and Policy Options. J. Air Waste Manag. Assoc. 2008, 58, 1117–1129. [Google Scholar]
- Wongsaroj, L.; Chanabun, R.; Tunsakul, N.; Prombutara, P.; Panha, S.; Somboonna, N. First reported quantitative microbiota in different livestock manures used as organic fertilizers in the Northeast of Thailand. Sci. Rep. 2021, 11, 102. [Google Scholar]
- Cao, Y.; Zhao, J.; Wang, Q.; Bai, S.; Yang, Q.; Wei, Y.; Wang, R. Industrial aerobic composting and the addition of microbial agents largely reduce the risks of heavy metal and ARG transfer through livestock manure. Ecotoxicol. Environ. Saf. 2022, 239, 113964. [Google Scholar]
- Wei, S.; Zhu, Z.; Zhao, J.; Chadwick, D.R.; Dong, H. Policies and Regulations for Promoting Manure Management for Sustainable Livestock Production in China: A Review. Front. Agric. Sci. Eng. 2021, 8, 45. [Google Scholar]
- Yang, Q.; Tian, H.; Li, X.; Ren, W.; Zhang, B.; Zhang, X.; Wolf, J. Spatiotemporal patterns of livestock manure nutrient production in the conterminous United States from 1930 to 2012. Sci. Total Environ. 2016, 541, 1592–1602. [Google Scholar] [PubMed]
- Cambra-López, M.; Aarnink, A.J.A.; Zhao, Y.; Calvet, S.; Torres, A.G. Airborne particulate matter from livestock production systems: A review of an air pollution problem. Environ. Pollut. 2010, 158, 1–17. [Google Scholar]
- Borlée, F.; Yzermans, C.J.; van Dijk, C.E.; Heederik, D.; Smit, L.A. Increased respiratory symptoms in COPD patients living in the vicinity of livestock farms. Eur. Respir. J. 2015, 46, 1605–1614. [Google Scholar] [PubMed] [Green Version]
- Li, F.; Li, C.; Chen, Y.; Liu, J.; Zhang, C.; Irving, B.; Fitzsimmons, C.; Plastow, G.; Guan, L.L. Host genetics influence the rumen microbiota and heritable rumen microbial features associate with feed efficiency in cattle. Microbiome 2019, 7, 92. [Google Scholar]
- Cholewińska, P.; Wołoszyńska, M.; Michalak, M.; Czyż, K.; Rant, W.; Smoliński, J.; Wyrostek, A.; Wojnarowski, K. Influence of selected factors on the Firmicutes, Bacteroidetes phyla and the Lactobacillaceae family in the digestive tract of sheep. Sci. Rep. 2021, 11, 23801. [Google Scholar]
- Pitta, D.W.; Indugu, N.; Toth, J.D.; Bender, J.S.; Baker, L.D.; Hennessy, M.L.; Vecchiarelli, B.; Aceto, H.; Dou, Z. The distribution of microbiomes and resistomes across farm environments in conventional and organic dairy herds in Pennsylvania. Environ. Microbiome 2020, 15, 21. [Google Scholar]
- Griffith, G.; Ozkose, E.; Theodorou, M.; Davies, D. Diversity of anaerobic fungal populations in cattle revealed by selective enrichment culture using different carbon sources. Fungal Ecol. 2009, 2, 87–97. [Google Scholar]
- Wang, Y.; Gong, J.; Li, J.; Xin, Y.; Hao, Z.; Chen, C.; Li, H.; Wang, B.; Ding, M.; Li, W.; et al. Insights into bacterial diversity in compost: Core microbiome and prevalence of potential pathogenic bacteria. Sci. Total Environ. 2020, 718, 137304. [Google Scholar]
- Silva, J.; Leite, D.; Fernandes, M.; Mena, C.; Gibbs, P.A.; Teixeira, P. Campylobacter spp. as a Foodborne Pathogen: A Review. Front. Microbiol. 2011, 2, 200. [Google Scholar] [PubMed] [Green Version]
- Li, Y. Basic routes of transmission of respiratory pathogens—A new proposal for transmission categorization based on respiratory spray, inhalation, and touch. Indoor Air 2021, 31, 3–6. [Google Scholar] [PubMed]
- Pohanka, M. Bacillus anthracis as a biological warfare agent: Infection, diagnosis and countermeasures. Bratisl Lek Listy 2020, 121, 175–181. [Google Scholar]
- Janse, I.; van der Plaats, R.Q.J.; de Roda Husman, A.M.; van Passel, M.W.J. Environmental Surveillance of Zoonotic Francisella tularensis in the Netherlands. Front. Cell Infect. Microbiol. 2018, 8, 140. [Google Scholar] [PubMed]
- Yang, R.; Cui, Y.; Bi, Y. Perspectives on Yersinia pestis: A Model for Studying Zoonotic Pathogens. Adv. Exp. Med. Biol. 2016, 918, 377–391. [Google Scholar] [PubMed]
- Ohlopkova, O.V.; Yakovlev, S.A.; Emmanuel, K.; Kabanov, A.A.; Odnoshevsky, D.A.; Kartashov, M.Y.; Moshkin, A.D.; Tuchkov, I.V.; Nosov, N.Y.; Kritsky, A.A.; et al. Epidemiology of Zoonotic Coxiella burnetii in The Republic of Guinea. Microorganisms 2023, 11, 1433. [Google Scholar]
- Burtnick, M.N.; Brett, P.J.; Nair, V.; Warawa, J.M.; Woods, D.E.; Gherardini, F.C. Burkholderia pseudomallei type III secretion system mutants exhibit delayed vacuolar escape phenotypes in RAW 264.7 murine macrophages. Infect. Immun. 2008, 76, 2991–3000. [Google Scholar]
- Carlson, C.J.; Kracalik, I.T.; Ross, N.; Alexander, K.A.; Hugh-Jones, M.E.; Fegan, M.; Elkin, B.T.; Epp, T.; Shury, T.K.; Zhang, W.; et al. The global distribution of Bacillus anthracis and associated anthrax risk to humans, livestock and wildlife. Nat. Microbiol. 2019, 4, 1337–1343. [Google Scholar]
- Muturi, M.; Gachohi, J.; Mwatondo, A.; Lekolool, I.; Gakuya, F.; Bett, A.; Osoro, E.; Bitek, A.; Thumbi, S.M.; Munyua, P.; et al. Recurrent Anthrax Outbreaks in Humans, Livestock, and Wildlife in the Same Locality, Kenya, 2014–2017. Am. J. Trop. Med. Hyg. 2018, 99, 833–839. [Google Scholar]
- Abdullahi, I.N.; Lozano, C.; Saidenberg, A.B.S.; Latorre-Fernández, J.; Zarazaga, M.; Torres, C. Comparative review of the nasal carriage and genetic characteristics of Staphylococcus aureus in healthy livestock: Insight into zoonotic and anthroponotic clones. Infect. Genet. Evol. 2023, 109, 105408. [Google Scholar]
- Janssen, P.H.; Kirs, M. Structure of the Archaeal Community of the Rumen. Appl. Environ. Microbiol. 2008, 74, 3619–3625. [Google Scholar]
- Zhan, Y.; Chang, Y.; Tao, Y.; Zhang, H.; Lin, Y.; Deng, J.; Ma, T.; Ding, G.; Wei, Y.; Li, J. Insight into the dynamic microbial community and core bacteria in composting from different sources by advanced bioinformatics methods. Environ. Sci. Pollut. Res. 2023, 30, 8956–8966. [Google Scholar]
- Miao, Y.; Li, J.; Li, Y.; Niu, Y.; He, T.; Liu, D.; Ding, W. Long-Term Compost Amendment Spurs Cellulose Decomposition by Driving Shifts in Fungal Community Composition and Promoting Fungal Diversity and Phylogenetic Relatedness. mBio 2022, 13, e0032322. [Google Scholar] [PubMed]
- Sasaki, H.; Nonaka, J.; Otawa, K.; Kitazume, O.; Asano, R.; Sasaki, T.; Nakai, Y. Analysis of the Structure of the Bacterial Community in the Livestock Manure-based Composting Process. Asian-Australas. J. Anim. Sci. 2009, 22, 113–118. [Google Scholar]
- Wan, J.; Wang, X.; Yang, T.; Wei, Z.; Banerjee, S.; Friman, V.-P.; Mei, X.; Xu, Y.; Shen, Q. Livestock Manure Type Affects Microbial Community Composition and Assembly During Composting. Front. Microbiol. 2021, 12, 621126. [Google Scholar]
- Xu, X.; Ma, W.; Zhou, K.; An, B.; Huo, M.; Lin, X.; Wang, L.; Wang, H.; Liu, Z.; Cheng, G.; et al. Effects of composting on the fate of doxycycline, microbial community, and antibiotic resistance genes in swine manure and broiler manure. Sci. Total Environ. 2022, 832, 155039. [Google Scholar]
- Lin, W.-R.; Li, H.-Y.; Lin, L.-C.; Hsieh, S.-Y. Dynamics of Microbial Community during the Co-Composting of Swine and Poultry Manure with Spent Mushroom Substrates at an Industrial Scale. Microorganisms 2022, 10, 2064. [Google Scholar]
- Zhou, Y.; Zhang, Z.; Awasthi, M.K. Exploring the impact of biochar supplement on the dynamics of antibiotic resistant fungi during pig manure composting. Environ. Pollut. 2022, 314, 120325. [Google Scholar]
- Tsilipounidaki, K.; Florou, Z.; Lianou, D.T.; Michael, C.K.; Katsarou, E.I.; Skoulakis, A.; Fthenakis, G.C.; Petinaki, E. Detection of Zoonotic Gastrointestinal Pathogens in Dairy Sheep and Goats by Using FilmArray® Multiplex-PCR Technology. Microorganisms 2022, 10, 714. [Google Scholar] [PubMed]
- Li, S.; Zou, Y.; Zhang, X.-L.; Wang, P.; Chen, X.-Q.; Zhu, X.-Q. Prevalence and Multilocus Genotyping of Giardia lamblia in Cattle in Jiangxi Province, China: Novel Assemblage E Subtypes Identified. Korean J. Parasitol. 2020, 58, 681–687. [Google Scholar]
- Elwin, K.; Hadfield, S.J.; Robinson, G.; Chalmers, R.M. The epidemiology of sporadic human infections with unusual cryptosporidia detected during routine typing in England and Wales, 2000–2008. Epidemiol. Infect. 2012, 140, 673–683. [Google Scholar] [PubMed]
- Kraemer, J.G.; Ramette, A.; Aebi, S.; Oppliger, A.; Hilty, M. Influence of Pig Farming on the Human Nasal Microbiota: Key Role of Airborne Microbial Communities. Appl. Environ. Microbiol. 2018, 84, e02470-17. [Google Scholar] [PubMed] [Green Version]
- Sudatip, D.; Mostacci, N.; Thamlikitkul, V.; Oppliger, A.; Hilty, M. Influence of occupational exposure to pigs or chickens on human gut microbiota composition in Thailand. One Health 2022, 15, 100463. [Google Scholar]
- Zhang, Y.; Xiao, X.; Elhag, O.; Cai, M.; Zheng, L.; Huang, F.; Jordan, H.R.; Tomberlin, J.K.; Sze, S.H.; Yu, Z.; et al. Hermetia illucens L. larvae-associated intestinal microbes reduce the transmission risk of zoonotic pathogens in pig manure. Microb. Biotechnol. 2022, 15, 2631–2644. [Google Scholar] [PubMed]
- Xu, Y.; Lei, B.; Zhang, Q.; Lei, Y.; Li, C.; Li, X.; Yao, R.; Hu, R.; Liu, K.; Wang, Y.; et al. ADDAGMA: A database for domestic animal gut microbiome atlas. Comput. Struct. Biotechnol. J. 2022, 20, 891–898. [Google Scholar] [CrossRef]
- Thomson, J.L.; Cernicchiaro, N.; Zurek, L.; Nayduch, D. Cantaloupe Facilitates Salmonella Typhimurium Survival Within and Transmission Among Adult House Flies (Musca domestica L.). Foodborne Pathog. Dis. 2021, 18, 49–55. [Google Scholar] [PubMed]
- von Salviati, C.; Laube, H.; Guerra, B.; Roesler, U.; Friese, A. Emission of ESBL/AmpC-producing Escherichia coli from pig fattening farms to surrounding areas. Vet. Microbiol. 2015, 175, 77–84. [Google Scholar]
- Boukraa, S.; de La Grandiere, M.A.; Bawin, T.; Raharimalala, F.N.; Zimmer, J.-Y.; Haubruge, E.; Thiry, E.; Francis, F. Diversity and ecology survey of mosquitoes potential vectors in Belgian equestrian farms: A threat prevention of mosquito-borne equine arboviruses. Prev. Veter. Med. 2016, 124, 58–68. [Google Scholar]
- Hu, Y.; Cheng, H.; Tao, S. Environmental and human health challenges of industrial livestock and poultry farming in China and their mitigation. Environ. Int. 2017, 107, 111–130. [Google Scholar]
- Givens, C.E.; Kolpin, D.W.; Borchardt, M.A.; Duris, J.W.; Moorman, T.B.; Spencer, S.K. Detection of hepatitis E virus and other livestock-related pathogens in Iowa streams. Sci. Total Environ. 2016, 566–567, 1042–1051. [Google Scholar]
- Hickman, R.A.; Agarwal, V.; Sjöström, K.; Emanuelson, U.; Fall, N.; Sternberg-Lewerin, S.; Järhult, J.D. Dissemination of Resistant Escherichia coli Among Wild Birds, Rodents, Flies, and Calves on Dairy Farms. Front. Microbiol. 2022, 13, 838339. [Google Scholar] [PubMed]
- Ziemer, C.J.; Bonner, J.M.; Cole, D.; Vinjé, J.; Constantini, V.; Goyal, S.; Gramer, M.; Mackie, R.; Meng, X.J.; Myers, G.; et al. Fate and transport of zoonotic, bacterial, viral, and parasitic pathogens during swine manure treatment, storage, and land application. J. Anim. Sci. 2010, 88 (Suppl. S13), E84–E94. [Google Scholar]
- Spencer, J.L.; Guan, J. Public Health Implications Related to Spread of Pathogens in Manure From Livestock and Poultry Operations. Methods Mol. Biol. 2004, 268, 503–516. [Google Scholar] [PubMed]
- Hutchison, M.L.; Walters, L.D.; Moore, T.; Thomas, D.J.I.; Avery, S.M. Fate of Pathogens Present in Livestock Wastes Spread onto Fescue Plots. Appl. Environ. Microbiol. 2005, 71, 691–696. [Google Scholar] [PubMed] [Green Version]
- Soto-Herranz, M.; Sánchez-Báscones, M.; Antolín-Rodríguez, J.M.; Martín-Ramos, P. Pilot Plant for the Capture of Ammonia from the Atmosphere of Pig and Poultry Farms Using Gas-Permeable Membrane Technology. Membranes 2021, 11, 859. [Google Scholar] [PubMed]
- Ulusoy, Y.; Ulukardesler, A.H.; Arslan, R.; Tekin, Y. Energy and emission benefits of chicken manure biogas production: A case study. Environ. Sci. Pollut. Res. 2021, 28, 12351–12356. [Google Scholar]
- Sohail, M.; Khan, A.; Badshah, M.; Degen, A.; Yang, G.; Liu, H.; Zhou, J.; Long, R. Yak rumen fluid inoculum increases biogas production from sheep manure substrate. Bioresour. Technol. 2022, 362, 127801. [Google Scholar]
- Mazzone, P.; Corneli, S.; Di Paolo, A.; Maresca, C.; Felici, A.; Biagetti, M.; Ciullo, M.; Sebastiani, C.; Pezzotti, G.; Leo, S.; et al. Survival of Mycobacterium avium subsp. paratuberculosis in the intermediate and final digestion products of biogas plants. J. Appl. Microbiol. 2018, 125, 36–44. [Google Scholar]
- Olsen, J.E.; Jørgensen, J.B.; Nansen, P. On the reduction of Mycobacterium paratuberculosis in bovine slurry subjected to batch mesophilic or thermophilic anaerobic digestion. Agric. Wastes 1985, 13, 273–280. [Google Scholar]
- Thiel, N.; Münch, S.; Behrens, W.; Junker, V.; Faust, M.; Biniasch, O.; Kabelitz, T.; Siller, P.; Boedeker, C.; Schumann, P.; et al. Airborne bacterial emission fluxes from manure-fertilized agricultural soil. Microb. Biotechnol. 2020, 13, 1631–1647. [Google Scholar]
- Cao, Y.; Chang, Z.; Wang, J.; Ma, Y.; Fu, G. The fate of antagonistic microorganisms and antimicrobial substances during anaerobic digestion of pig and dairy manure. Bioresour. Technol. 2013, 136, 664–671. [Google Scholar] [PubMed]
- Bagge, E.; Persson, M.; Johansson, K.-E. Diversity of spore-forming bacteria in cattle manure, slaughterhouse waste and samples from biogas plants. J. Appl. Microbiol. 2010, 109, 1549–1565. [Google Scholar] [PubMed]
- Awasthi, M.K.; Chen, H.; Duan, Y.; Liu, T.; Awasthi, S.K.; Wang, Q.; Pandey, A.; Zhang, Z. An assessment of the persistence of pathogenic bacteria removal in chicken manure compost employing clay as additive via meta-genomic analysis. J. Hazard Mater. 2019, 366, 184–191. [Google Scholar]
- Lin, M.; Wang, A.; Ren, L.; Qiao, W.; Wandera, S.M.; Dong, R. Challenges of pathogen inactivation in animal manure through anaerobic digestion: A short review. Bioengineered 2022, 13, 1149–1161. [Google Scholar]
- Meng, L.; Xu, C.; Wu, F. Huhe Microbial co-occurrence networks driven by low-abundance microbial taxa during composting dominate lignocellulose degradation. Sci. Total Environ. 2022, 845, 157197. [Google Scholar] [CrossRef]
- Yu, X.; Li, X.; Ren, C.; Wang, J.; Wang, C.; Zou, Y.; Wang, X.; Li, G.; Li, Q. Co-composting with cow dung and subsequent vermicomposting improve compost quality of spent mushroom. Bioresour. Technol. 2022, 358, 127386. [Google Scholar]
- Lkhagva, E.; Chung, H.-J.; Ahn, J.-S.; Hong, S.-T. Host Factors Affect the Gut Microbiome More Significantly than Diet Shift. Microorganisms 2021, 9, 2520. [Google Scholar] [CrossRef]
- Deng, W.; Zhang, A.; Chen, S.; He, X.; Jin, L.; Yu, X.; Yang, S.; Li, B.; Fan, L.; Ji, L.; et al. Heavy metals, antibiotics and nutrients affect the bacterial community and resistance genes in chicken manure composting and fertilized soil. J. Environ. Manag. 2020, 257, 109980. [Google Scholar]
- Hotchkiss, M.Z.; Poulain, A.J.; Forrest, J.R.K. Pesticide-induced disturbances of bee gut microbiotas. FEMS Microbiol. Rev. 2022, 46, fuab056. [Google Scholar]
- Fernández-Gómez, M.J.; Nogales, R.; Insam, H.; Romero, E.; Goberna, M. Role of vermicompost chemical composition, microbial functional diversity, and fungal community structure in their microbial respiratory response to three pesticides. Bioresour. Technol. 2011, 102, 9638–9645. [Google Scholar]
- Wang, J.; Xu, J.; Ji, X.; Wu, H.; Yang, H.; Zhang, H.; Zhang, X.; Li, Z.; Ni, X.; Qian, M. Determination of veterinary drug/pesticide residues in livestock and poultry excrement using selective accelerated solvent extraction and magnetic material purification combined with ultra-high-performance liquid chromatography–tandem mass spectrometry. J. Chromatogr. A 2020, 1617, 460808. [Google Scholar]
- Mei, L.; Yang, Z.; Zhang, X.; Liu, Z.; Wang, M.; Wu, X.; Chen, X.; Huang, Q.; Huang, R. Sustained Drug Treatment Alters the Gut Microbiota in Rheumatoid Arthritis. Front. Immunol. 2021, 12, 704089. [Google Scholar]
- Ong, S.-Q.; Ab Majid, A.H.; Ahmad, H. Insecticide Residues on Poultry Manures: Field Efficacy Test on Selected Insecticides in Managing Musca Domestica Population. Trop. Life Sci. Res. 2017, 28, 45–55. [Google Scholar]
- Ong, S.-Q.; Ahmad, H.; Jaal, Z.; Rus, A.C. Comparative Effectiveness of Insecticides for Use Against the House Fly (Diptera: Muscidae): Determination of Resistance Levels on a Malaysian Poultry Farm. J. Econ. Èntomol. 2016, 109, 352–359. [Google Scholar]
- Timurkan, M.; Alkan, F. Identification of rotavirus A strains in small ruminants: First detection of G8P[1] genotypes in sheep in Turkey. Arch. Virol. 2020, 165, 425–431. [Google Scholar] [PubMed]
- Alkan, F.; Gulyaz, V.; Timurkan, M.O.; Iyisan, S.; Ozdemir, S.; Turan, N.; Buonavoglia, C.; Martella, V. A large outbreak of enteritis in goat flocks in Marmara, Turkey, by G8P[1] group A rotaviruses. Arch. Virol. 2012, 157, 1183–1187. [Google Scholar]
- Miranda, A.R.M.; Mendes, G.d.S.; Santos, N. Rotaviruses A and C in dairy cattle in the state of Rio de Janeiro, Brazil. Braz. J. Microbiol. 2022, 53, 1657–1663. [Google Scholar] [PubMed]
- Otto, P.H.; Rosenhain, S.; Elschner, M.C.; Hotzel, H.; Machnowska, P.; Trojnar, E.; Hoffmann, K.; Johne, R. Detection of rotavirus species A, B and C in domestic mammalian animals with diarrhoea and genotyping of bovine species A rotavirus strains. Veter. Microbiol. 2015, 179, 168–176. [Google Scholar]
- Eckert, J.; Thompson, R.C.A.; Michael, S.A.; Kumaratilake, L.M.; El-Sawah, H.M. Echinococcus granulosus of camel origin: Development in dogs and parasite morphology. Parasitol. Res. 1989, 75, 536–544. [Google Scholar] [PubMed]
- Jiao, W.; Chai, J.; Osman, I.; Qu, Q. Characteristics of development and morphology of Echinococcus granulosus of camel origin in north Xinjiang. Zhongguo Ji Sheng Chong Xue Yu Ji Sheng Chong Bing Za Zhi Chin. J. Parasitol. Parasit. Dis. 1998, 16, 204–208. [Google Scholar]
- Wilson, B.A.; Ho, M. Pasteurella multocida: From Zoonosis to Cellular Microbiology. Clin. Microbiol. Rev. 2013, 26, 631–655. [Google Scholar]
- Kielstein, P. On the Occurrence of Toxin-Producing Pasteurella-multocida-Strains in Atrophic Rhinitis and in Pneumonias of Swine and Cattle. J. Veter. Med. Ser. B 1986, 33, 418–424. [Google Scholar]
- Guillet, C.; Join-Lambert, O.; Carbonnelle, E.; Ferroni, A.; Vaché, A. Pasteurella multocida Sepsis and Meningitis in 2-Month-Old Twin Infants after Household Exposure to a Slaughtered Sheep. Clin. Infect. Dis. 2007, 45, e80–e81. [Google Scholar] [PubMed]
- Spadafora, R.; Pomero, G.; Delogu, A.; Gozzoli, L.; Gancia, P. A rare case of neonatal sepsis/meningitis caused by Pasteurella multocida complicated with status epilepticus and focal cerebritis. La Pediatr. Medica e Chir. 2011, 33, 199–202. [Google Scholar]
- Ahmed, M.O.; Elmeshri, S.E.; Abuzweda, A.R.; Blauo, M.; Abouzeed, Y.M.; Ibrahim, A.; Salem, H.; Alzwam, F.; Abid, S.; Elfahem, A.; et al. Seroprevalence of brucellosis in animals and human populations in the western mountains region in Libya, December 2006–January 2008. Eurosurveillance 2010, 15, 19625. [Google Scholar]
- Gwida, M.; El-Gohary, A.; Melzer, F.; Khan, I.; Rösler, U.; Neubauer, H. Brucellosis in camels. Res. Vet. Sci. 2012, 92, 351–355. [Google Scholar] [CrossRef]
- Oliveira, M.S.; Dorneles, E.M.S.; Soares, P.M.F.; Fonseca, A.A.; Orzil, L.; de Souza, P.G.; Lage, A.P. Molecular epidemiology of Brucella abortus isolated from cattle in Brazil, 2009–2013. Acta Trop. 2017, 166, 106–113. [Google Scholar]
- Elahi, S.; Thompson, D.R.; Strom, S.; O’Connor, B.; Babiuk, L.A.; Gerdts, V. Infection with Bordetella parapertussis but not Bordetella pertussis causes pertussis-like disease in older pigs. J. Infect. Dis. 2008, 198, 384–392. [Google Scholar] [CrossRef] [Green Version]
- Ngom, A.; Boulanger, D.; Ndiaye, T.; Mboup, S.; Bada-Alambedji, R.; Simondon, F.; Ayih-Akakpo, A.J. Domestic Animals as Carriers ofBordetellaSpecies in Senegal. Vector-Borne Zoonotic Dis. 2006, 6, 179–182. [Google Scholar] [CrossRef]
- Shokri, H.; Khosravi, A. An epidemiological study of animals dermatomycoses in Iran. J. Med. Mycol. 2016, 26, 170–177. [Google Scholar] [CrossRef]
- Dorjee, S.; Heuer, C.; Jackson, R.; West, D.; Collins-Emerson, J.; Midwinter, A.; Ridler, A. Prevalence of pathogenic Leptospira spp. in sheep in a sheep-only abattoir in New Zealand. N. Z. Veter J. 2008, 56, 164–170. [Google Scholar]
- Guedes, I.B.; de Souza, G.O.; Rocha, K.D.S.; Cavalini, M.B.; Neto, M.S.D.; Castro, J.F.D.P.; Filho, A.F.D.S.; Negrão, M.P.; Cortez, A.; de Moraes, C.C.G.; et al. Leptospira strains isolated from cattle in the Amazon region, Brazil, evidence of a variety of species and serogroups with a high frequency of the Sejroe serogroup. Comp. Immunol. Microbiol. Infect. Dis. 2021, 74, 101579. [Google Scholar] [PubMed]
- Chaorattanakawee, S.; Wofford, R.N.; Takhampunya, R.; Poole-Smith, B.K.; Boldbaatar, B.; Lkhagvatseren, S.; Altantogtokh, D.; Musih, E.; Nymadawa, P.; Davidson, S.; et al. Tracking tick-borne diseases in Mongolian livestock using next generation sequencing (NGS). Ticks Tick-Borne Dis. 2022, 13, 101845. [Google Scholar]
- Mannering, S.; West, D.; Fenwick, S.; Marchant, R.; Oconnell, K. Pulsed-field gel electrophoresis of Campylobacter jejuni sheep abortion isolates. Veter. Microbiol. 2006, 115, 237–242. [Google Scholar]
- Damene, H.; Tahir, D.; Diels, M.; Berber, A.; Sahraoui, N.; Rigouts, L. Broad diversity of Mycobacterium tuberculosis complex strains isolated from humans and cattle in Northern Algeria suggests a zoonotic transmission cycle. PLoS Neglect. Trop. Dis. 2020, 14, e0008894. [Google Scholar]
- Infantes-Lorenzo, J.A.; Gortázar, C.; Domínguez, L.; Muñoz-Mendoza, M.; Domínguez, M.; Balseiro, A. Serological technique for detecting tuberculosis prevalence in sheep in Atlantic Spain. Res. Veter. Sci. 2020, 129, 96–98. [Google Scholar] [CrossRef]
- Rahmdel, S.; Shekarforoush, S.S.; Hosseinzadeh, S.; Torriani, S.; Gatto, V. Antimicrobial spectrum activity of bacteriocinogenic Staphylococcus strains isolated from goat and sheep milk. J. Dairy Sci. 2019, 102, 2928–2940. [Google Scholar]
- Pilla, R.; Bonura, C.; Malvisi, M.; Snel, G.G.M.; Piccinini, R.; Dvm, R.P.; Bonura, C.; Malvisi, M.; Dvm, G.G.M.S.; Piccinini, R. Methicillin-resistant Staphylococcus pseudintermedius as causative agent of dairy cow mastitis. Veter. Rec. 2013, 173, 19. [Google Scholar]
- Dharmasena, M.; Jiang, X. Isolation of Toxigenic Clostridium difficile from Animal Manure and Composts Being Used as Biological Soil Amendments. Appl. Environ. Microbiol. 2018, 84, e00738-18. [Google Scholar]
- Yang, H.; Mi, R.; Cheng, L.; Huang, Y.; An, R.; Zhang, Y.; Jia, H.; Zhang, X.; Wang, X.; Han, X.; et al. Prevalence and genetic diversity of Enterocytozoon bieneusi in sheep in China. Parasites Vectors 2018, 11, 587. [Google Scholar] [CrossRef] [Green Version]
- Li, W.-C.; Wang, K.; Gu, Y.-F. Detection and Genotyping Study of Enterocytozoon bieneusi in Sheep and Goats in East-central China. Acta Parasitol. 2019, 64, 44–50. [Google Scholar] [CrossRef]
- Fayer, R.; Santín, M.; Trout, J.M. Enterocytozoon bieneusi in mature dairy cattle on farms in the eastern United States. Parasitol. Res. 2007, 102, 15–20. [Google Scholar] [CrossRef]
- Li, W.; Tao, W.; Jiang, Y.; Diao, R.; Yang, J.; Xiao, L. Genotypic Distribution and Phylogenetic Characterization of Enterocytozoon bieneusi in Diarrheic Chickens and Pigs in Multiple Cities, China: Potential Zoonotic Transmission. PLoS ONE 2014, 9, e108279. [Google Scholar]
- Zhang, Q.; Cai, J.; Li, P.; Wang, L.; Guo, Y.; Li, C.; Lei, M.; Feng, Y.; Xiao, L. Enterocytozoon bieneusi genotypes in Tibetan sheep and yaks. Parasitol. Res. 2018, 117, 721–727. [Google Scholar] [CrossRef]
- Fiuza, V.R.d.S.; Lopes, C.W.G.; Cosendey, R.I.J.; de Oliveira, F.C.R.; Fayer, R.; Santín, M. Zoonotic Enterocytozoon bieneusi genotypes found in brazilian sheep. Res. Veter. Sci. 2016, 107, 196–201. [Google Scholar]
- Qi, M.; Li, J.; Zhao, A.; Cui, Z.; Wei, Z.; Jing, B.; Zhang, L. Host specificity of Enterocytozoon bieneusi genotypes in Bactrian camels (Camelus bactrianus) in China. Parasites Vectors 2018, 11, 219. [Google Scholar] [CrossRef] [Green Version]
- Lee, H.; Lee, S.-H.; Lee, Y.-R.; Kim, H.-Y.; Moon, B.-Y.; Han, J.E.; Rhee, M.H.; Kwon, O.-D.; Kwak, D. Enterocytozoon bieneusi Genotypes and Infections in the Horses in Korea. Korean J. Parasitol. 2021, 59, 639–643. [Google Scholar] [CrossRef]
- Zhang, X.X.; Jiang, J.; Cai, Y.N.; Wang, C.F.; Xu, P.; Yang, G.L.; Zhao, Q. Molecular Characterization of Enterocytozoon bieneusi in Domestic Rabbits (Oryctolagus cuniculus) in Northeastern China. Korean J. Parasitol. 2016, 54, 81–85. [Google Scholar] [CrossRef] [Green Version]
- Bulterys, P.L.; Mharakurwa, S.; Thuma, P.E. Cattle, other domestic animal ownership, and distance between dwelling structures are associated with reduced risk of recurrent Plasmodium falciparum infection in southern Zambia. Trop. Med. Int. Health 2009, 14, 522–528. [Google Scholar] [PubMed]
- Meng, X.-Z.; Kang, C.; Wei, J.; Ma, H.; Liu, G.; Zhao, J.-P.; Zhang, H.-S.; Yang, X.-B.; Wang, X.-Y.; Yang, L.-H.; et al. Meta-Analysis of the Prevalence of Giardia duodenalis in Cattle in China. Foodborne Pathog. Dis. 2023, 20, 17–31. [Google Scholar] [CrossRef] [PubMed]
- Heyworth, M.F. Giardia duodenalis genetic assemblages and hosts. Parasite 2016, 23, 13. [Google Scholar] [CrossRef] [Green Version]
- Liu, A.; Yang, F.; Shen, Y.; Zhang, W.; Wang, R.; Zhao, W.; Zhang, L.; Ling, H.; Cao, J. Genetic Analysis of the Gdh and Bg Genes of Animal-Derived Giardia duodenalis Isolates in Northeastern China and Evaluation of Zoonotic Transmission Potential. PLoS ONE 2014, 9, e95291. [Google Scholar]
- Traversa, D.; Otranto, D.; Milillo, P.; Latrofa, M.S.; Giangaspero, A.; Di Cesare, A.; Paoletti, B. Giardia duodenalis sub-Assemblage of animal and human origin in horses. Infect. Genet. Evol. 2012, 12, 1642–1646. [Google Scholar]
- Farzan, A.; Parrington, L.; Coklin, T.; Cook, A.; Pintar, K.; Pollari, F.; Friendship, R.; Farber, J.; Dixon, B. Detection and characterization of Giardia duodenalis and Cryptosporidium spp. on swine farms in Ontario, Canada. Foodborne Pathog. Dis. 2011, 8, 1207–1213. [Google Scholar] [PubMed]
- Lebbad, M.; Mattsson, J.G.; Christensson, B.; Ljungström, B.; Backhans, A.; Andersson, J.O.; Svärd, S.G. From mouse to moose: Multilocus genotyping of Giardia isolates from various animal species. Vet. Parasitol. 2010, 168, 231–239. [Google Scholar]
- Berrilli, F.; D’alfonso, R.; Giangaspero, A.; Marangi, M.; Brandonisio, O.; Kaboré, Y.; Glé, C.; Cianfanelli, C.; Lauro, R.; Di Cave, D. Giardia duodenalis genotypes and Cryptosporidium species in humans and domestic animals in Côte d’Ivoire: Occurrence and evidence for environmental contamination. Trans. R. Soc. Trop. Med. Hyg. 2012, 106, 191–195. [Google Scholar]
- Parker, A.M.; Mohler, V.L.; Gunn, A.A.; House, J.K. Development of a qPCR for the detection and quantification of Salmonella spp. in sheep feces and tissues. J. Vet. Diagn Investig. 2020, 32, 835–843. [Google Scholar] [CrossRef] [PubMed]
- Bonifait, L.; Thépault, A.; Baugé, L.; Rouxel, S.; Le Gall, F.; Chemaly, M. Occurrence of Salmonella in the Cattle Production in France. Microorganisms 2021, 9, 872. [Google Scholar] [CrossRef] [PubMed]
- Ramatla, T.A.; Mphuthi, N.; Ramaili, T.; Taioe, M.O.; Thekisoe, O.M.; Syakalima, M. Molecular detection of virulence genes in Salmonella spp. isolated from chicken faeces in Mafikeng, South Africa. J. S. Afr. Veter Assoc. 2020, 91, e1–e7. [Google Scholar]
- Fielding, C.L.; Meier, C.A.; Magdesian, K.G.; Pusterla, N. Salmonella spp. fecal shedding detected by real-time PCR in competing endurance horses. Veter. J. 2013, 197, 876–877. [Google Scholar]
- Joutsen, S.; Eklund, K.M.; Laukkanen-Ninios, R.; Stephan, R.; Fredriksson-Ahomaa, M. Sheep carrying pathogenic Yersinia enterocolitica bioserotypes 2/O:9 and 5/O:3 in the feces at slaughter. Vet. Microbiol. 2016, 197, 78–82. [Google Scholar] [CrossRef] [Green Version]
- McNally, A.; Cheasty, T.; Fearnley, C.; Dalziel, R.; Paiba, G.; Manning, G.; Newell, D. Comparison of the biotypes of Yersinia enterocolitica isolated from pigs, cattle and sheep at slaughter and from humans with yersiniosis in Great Britain during 1999-2000. Lett. Appl. Microbiol. 2004, 39, 103–108. [Google Scholar] [CrossRef] [PubMed]
- Donovan, S. Listeriosis: A Rare but Deadly Disease. Clin. Microbiol. Newsl. 2015, 37, 135–140. [Google Scholar] [CrossRef]
- Evans, K.; Smith, M.; McDonough, P.; Wiedmann, M. Eye Infections due to Listeria Monocytogenes in Three Cows and One Horse. J. Veter. Diagn. Investig. 2004, 16, 464–469. [Google Scholar] [CrossRef] [Green Version]
- Iannetti, L.; Schirone, M.; Neri, D.; Visciano, P.; Acciari, V.A.; Centorotola, G.; Mangieri, M.S.; Torresi, M.; Santarelli, G.A.; Di Marzio, V.; et al. Listeria monocytogenes in poultry: Detection and strain characterization along an integrated production chain in Italy. Food Microbiol. 2020, 91, 103533. [Google Scholar]
- Chlebicz, A.; Śliżewska, K. Campylobacteriosis, Salmonellosis, Yersiniosis, and Listeriosis as Zoonotic Foodborne Diseases: A Review. Int. J. Environ. Res. Public Health 2018, 15, 863. [Google Scholar] [PubMed] [Green Version]
- Mao, Y.; Akdeniz, N.; Nguyen, T.H. Quantification of pathogens and antibiotic resistance genes in backyard and commercial composts. Sci. Total Environ. 2021, 797, 149197. [Google Scholar] [CrossRef] [PubMed]
- Dhaouadi, S.; Soufi, L.; Campanile, F.; Dhaouadi, F.; Sociale, M.; Lazzaro, L.; Cherif, A.; Stefani, S.; Elandoulsi, R.B. Prevalence of meticillin-resistant and -susceptible coagulase-negative staphylococci with the first detection of the mecC gene among cows, humans and manure in Tunisia. Int. J. Antimicrob. Agents 2020, 55, 105826. [Google Scholar] [CrossRef]
- Fusco, W.G.; Afonina, G.; Nepluev, I.; Cholon, D.M.; Choudhary, N.; Routh, P.A.; Almond, G.W.; Orndorff, P.E.; Staats, H.; Hobbs, M.M.; et al. Immunization with the Haemophilus ducreyi Hemoglobin Receptor HgbA with Adjuvant Monophosphoryl Lipid A Protects Swine from a Homologous but Not a Heterologous Challenge. Infect. Immun. 2010, 78, 3763–3772. [Google Scholar] [CrossRef] [Green Version]
- Hill, D.; Dubey, J.P. Toxoplasma gondii: Transmission, diagnosis and prevention. Clin. Microbiol. Infect. 2002, 8, 634–640. [Google Scholar]
- Bessi, C.; Ercole, M.; Fariña, F.; Ribicich, M.; Montalvo, F.; Acerbo, M.; Krivokapich, S.; Pasqualetti, M. Study of Trichinella patagoniensis in wild boars. Veter. Parasitol. 2021, 297, 109166. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Cui, J.; Shen, L. The epidemiology of animal trichinellosis in China. Veter J. 2007, 173, 391–398. [Google Scholar]
- Sofronic-Milosavljevic, L.; Pozio, E.; Patrascu, I.V.; Skerovic, N.; Morales, M.G.; Gamble, H.R. Immunodiagnosis of Trichinella infection in the horse. Parasite 2001, 8 (Suppl. 2), S260–S262. [Google Scholar] [CrossRef] [Green Version]
- Flores, P.S.; Costa, F.B.; Amorim, A.R.; Mendes, G.S.; Rojas, M.; Santos, N. Rotavirus A, C, and H in Brazilian pigs: Potential for zoonotic transmission of RVA. J. Veter. Diagn. Investig. 2021, 33, 129–135. [Google Scholar] [CrossRef]
- Anderson, E.J.; Weber, S.G. Rotavirus infection in adults. Lancet Infect. Dis. 2004, 4, 91–99. [Google Scholar] [CrossRef]
- Ye, Q.; Fu, J.-F.; Mao, J.-H.; Shen, H.-Q.; Chen, X.-J.; Shao, W.-X.; Shang, S.-Q.; Wu, Y.-F. Haze is an important medium for the spread of rotavirus. Environ. Pollut. 2016, 216, 324–331. [Google Scholar] [CrossRef]
- Curry, A.; Smith, H.V. Emerging pathogens: Isospora, Cyclospora and microsporidia. Parasitology 1998, 117, S143–S159. [Google Scholar]
- Deng, L.; Chai, Y.; Xiang, L.; Wang, W.; Zhou, Z.; Liu, H.; Zhong, Z.; Fu, H.; Peng, G. First identification and genotyping of Enterocytozoon bieneusi and Encephalitozoon spp. in pet rabbits in China. BMC Veter. Res. 2020, 16, 212. [Google Scholar]
- Didier, E.S.; Stovall, M.E.; Green, L.C.; Brindley, P.J.; Sestak, K.; Didier, P.J. Epidemiology of microsporidiosis: Sources and modes of transmission. Vet. Parasitol. 2004, 126, 145–166. [Google Scholar] [CrossRef] [PubMed]
- Didier, E.S. Microsporidiosis: An emerging and opportunistic infection in humans and animals. Acta Trop. 2005, 94, 61–76. [Google Scholar] [PubMed]
- Patterson-Kane, J.C.; Caplazi, P.; Rurangirwa, F.; Tramontin, R.R.; Wolfsdorf, K. Encephalitozoon Cuniculi Placentitis and Abortion in a Quarterhorse Mare. J. Veter. Diagn. Investig. 2003, 15, 57–59. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marková, J.; Machačová, T.; Bártová, E.; Sedlák, K.; Budíková, M.; Silvestre, P.; Laricchiuta, P.; Russo, M.; Veneziano, V. Toxoplasma gondii, Neospora caninum and Encephalitozoon cuniculi in Animals from Captivity (Zoo and Circus Animals). J. Eukaryot. Microbiol. 2019, 66, 442–446. [Google Scholar] [CrossRef] [PubMed]
- Cisláková, L.; Literák, I.; Bálent, P.; Hipíková, V.; Levkutová, M.; Trávnicek, M.; Novotná, A. Prevalence of antibodies to Encephalitozoon cuniculi (microsporidia) in angora goats—A potential risk of infection for breeders. Ann. Agric. Environ. Med. 2001, 8, 289–291. [Google Scholar]
- Bornay-Llinares, F.J.; da Silva, A.J.; Moura, H.; Schwartz, D.A.; Visvesvara, G.S.; Pieniazek, N.J.; Cruz-López, A.; Hernández-Jaúregui, P.; Guerrero, J.; Enriquez, F.J. Immunologic, microscopic, and molecular evidence of Encephalitozoon intestinalis (Septata intestinalis) infection in mammals other than humans. J. Infect. Dis. 1998, 178, 820–826. [Google Scholar] [CrossRef] [Green Version]
- Del Aguila, C.; Izquierdo, F.; Navajas, R.; Pieniazek, N.J.; Miró, G.; Alonso, A.I.; Da Silva, A.J.; Fenoy, S. Enterocytozoon bieneusi in animals: Rabbits and dogs as new hosts. J. Eukaryot. Microbiol. 1999, 46, 8S–9S. [Google Scholar]
- Reetz, J.; Rinder, H.; Thomschke, A.; Manke, H.; Schwebs, M.; Bruderek, A. First detection of the microsporidium Enterocytozoon bieneusi in non-mammalian hosts (chickens). Int. J. Parasitol. 2002, 32, 785–787. [Google Scholar] [CrossRef]
- McInnes, E.F.; Stewart, C.G. The pathology of subclinical infection of encephalitozoon cuniculi in canine dams producing pups with overt encephalitozoonosis. J. S. Afr. Veter. Assoc. 1991, 62, 51–54. [Google Scholar] [CrossRef] [Green Version]
- Zalewska, M.; Błażejewska, A.; Czapko, A.; Popowska, M. Antibiotics and Antibiotic Resistance Genes in Animal Manure—Consequences of Its Application in Agriculture. Front. Microbiol. 2021, 12, 610656. [Google Scholar] [CrossRef]
- Kyselkovã¡, M.; Jirout, J.; Vrchotovã¡, N.; Schmitt, H.; Elhottovã¡, D. Spread of tetracycline resistance genes at a conventional dairy farm. Front. Microbiol. 2015, 6, 536. [Google Scholar] [CrossRef] [Green Version]
- Liu, C.; Li, G.; Qin, X.; Xu, Y.; Wang, J.; Wu, G.; Feng, H.; Ye, J.; Zhu, C.; Li, X.; et al. Profiles of antibiotic- and heavy metal-related resistance genes in animal manure revealed using a metagenomic analysis. Ecotoxicol. Environ. Saf. 2022, 239, 113655. [Google Scholar] [CrossRef]
- Chen, Z.; Wang, Y.; Wen, Q. Effects of chlortetracycline on the fate of multi-antibiotic resistance genes and the microbial community during swine manure composting. Environ. Pollut. 2018, 237, 977–987. [Google Scholar]
- Pu, C.; Liu, H.; Ding, G.; Sun, Y.; Yu, X.; Chen, J.; Ren, J.; Gong, X. Impact of direct application of biogas slurry and residue in fields: In situ analysis of antibiotic resistance genes from pig manure to fields. J. Hazard. Mater. 2018, 344, 441–449. [Google Scholar]
- Zhang, M.; He, L.-Y.; Liu, Y.-S.; Zhao, J.-L.; Zhang, J.-N.; Chen, J.; Zhang, Q.-Q.; Ying, G.-G. Variation of antibiotic resistome during commercial livestock manure composting. Environ. Int. 2020, 136, 105458. [Google Scholar] [CrossRef]
- Tien, Y.-C.; Li, B.; Zhang, T.; Scott, A.; Murray, R.; Sabourin, L.; Marti, R.; Topp, E. Impact of dairy manure pre-application treatment on manure composition, soil dynamics of antibiotic resistance genes, and abundance of antibiotic-resistance genes on vegetables at harvest. Sci. Total Environ. 2017, 581–582, 32–39. [Google Scholar] [CrossRef]
- Zhu, Y.-G.; Johnson, T.A.; Su, J.-Q.; Qiao, M.; Guo, G.-X.; Stedtfeld, R.D.; Hashsham, S.A.; Tiedje, J.M. Diverse and abundant antibiotic resistance genes in Chinese swine farms. Proc. Natl. Acad. Sci. USA 2013, 110, 3435–3440. [Google Scholar]
- Tao, C.-W.; Hsu, B.-M.; Ji, W.-T.; Hsu, T.-K.; Kao, P.-M.; Hsu, C.-P.; Shen, S.-M.; Shen, T.-Y.; Wan, T.-J.; Huang, Y.-L. Evaluation of five antibiotic resistance genes in wastewater treatment systems of swine farms by real-time PCR. Sci. Total Environ. 2014, 496, 116–121. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Wang, P.-L.; Yang, Q.-X.; Yu, N. Distribution of Multidrug-Resistant Bacteria and Antibiotic-Resistant Genes in Livestock Manures. Huan Jing Ke Xue Huanjing Kexue 2018, 39, 460–466. [Google Scholar] [PubMed]
- Gou, M.; Hu, H.-W.; Zhang, Y.-J.; Wang, J.-T.; Hayden, H.; Tang, Y.-Q.; He, J.-Z. Aerobic composting reduces antibiotic resistance genes in cattle manure and the resistome dissemination in agricultural soils. Sci. Total Environ. 2018, 612, 1300–1310. [Google Scholar]
- Fang, H.; Han, L.; Zhang, H.; Long, Z.; Cai, L.; Yu, Y. Dissemination of antibiotic resistance genes and human pathogenic bacteria from a pig feedlot to the surrounding stream and agricultural soils. J. Hazard. Mater. 2018, 357, 53–62. [Google Scholar] [CrossRef]
- Qian, X.; Gu, J.; Sun, W.; Wang, X.-J.; Su, J.-Q.; Stedfeld, R. Diversity, abundance, and persistence of antibiotic resistance genes in various types of animal manure following industrial composting. J. Hazard. Mater. 2018, 344, 716–722. [Google Scholar] [CrossRef] [PubMed]
- Luiken, R.E.; Heederik, D.J.; Scherpenisse, P.; Van Gompel, L.; van Heijnsbergen, E.; Greve, G.D.; Jongerius-Gortemaker, B.G.; Tersteeg-Zijderveld, M.H.; Fischer, J.; Juraschek, K.; et al. Determinants for antimicrobial resistance genes in farm dust on 333 poultry and pig farms in nine European countries. Environ. Res. 2022, 208, 112715. [Google Scholar] [CrossRef]
- Kong, Y.; Wang, G.; Chen, W.; Yang, Y.; Ma, R.; Li, D.; Shen, Y.; Li, G.; Yuan, J. Phytotoxicity of farm livestock manures in facultative heap composting using the seed germination index as indicator. Ecotoxicol. Environ. Saf. 2022, 247, 114251. [Google Scholar] [CrossRef]
- Cai, G.; Li, J.; Zhou, M.; Zhu, G.; Li, Y.; Lv, N.; Wang, R.; Li, C.; Pan, X. Compost-derived indole-3-acetic-acid-producing bacteria and their effects on enhancing the secondary fermentation of a swine manure-corn stalk composting. Chemosphere 2022, 291 Pt 1, 132750. [Google Scholar] [CrossRef]
- Trabue, S.; Kerr, B.; Scoggin, K. Swine diets impact manure characteristics and gas emissions: Part I sulfur level. Sci. Total Environ. 2019, 687, 800–807. [Google Scholar]
- Pernu, N.; Keto-Timonen, R.; Lindström, M.; Korkeala, H. High prevalence of Clostridium botulinum in vegetarian sausages. Food Microbiol. 2020, 91, 103512. [Google Scholar] [CrossRef] [PubMed]
- Notermans, S.; Dufrenne, J.; Oosterom, J. Persistence of Clostridium botulinum type B on a cattle farm after an outbreak of botulism. Appl. Environ. Microbiol. 1981, 41, 179–183. [Google Scholar]
- Parthasarathi, K.; Ranganathan, L.S.; Anandi, V.; Zeyer, J. Diversity of microflora in the gut and casts of tropical composting earthworms reared on different substrates. J. Environ. Biol. 2007, 28, 87–97. [Google Scholar] [PubMed]
- Naglik, J.R.; Gaffen, S.L.; Hube, B. Candidalysin: Discovery and function in Candida albicans infections. Curr. Opin. Microbiol. 2019, 52, 100–109. [Google Scholar] [CrossRef] [PubMed]
- Moyes, D.L.; Wilson, D.; Richardson, J.P.; Mogavero, S.; Tang, S.X.; Wernecke, J.; Höfs, S.; Gratacap, R.L.; Robbins, J.; Runglall, M.; et al. Candidalysin is a fungal peptide toxin critical for mucosal infection. Nature 2016, 532, 64–68. [Google Scholar]
- Chu, H.; Duan, Y.; Lang, S.; Jiang, L.; Wang, Y.; Llorente, C.; Liu, J.; Mogavero, S.; Bosques-Padilla, F.; Abraldes, J.G.; et al. The Candida albicans exotoxin candidalysin promotes alcohol-associated liver disease. J. Hepatol. 2020, 72, 391–400. [Google Scholar] [CrossRef]
- Ni, J.-Q.; Robarge, W.P.; Xiao, C.; Heber, A.J. Volatile organic compounds at swine facilities: A critical review. Chemosphere 2012, 89, 769–788. [Google Scholar] [PubMed]
- Williams, A. Indicators of piggery slurry odour offensiveness. Agric. Wastes 1984, 10, 15–36. [Google Scholar] [CrossRef]
- Liao, C.; Liang, H.; Singh, S. Swine manure cleanup criteria calculation for odor causing volatile organic compounds based on manure-to-ventilation air exposure pathway. J. Environ. Sci. Health Part B 1997, 32, 449–468. [Google Scholar]
- White, E.P.; Sewell, O.K.; Bassett, E.G. Identification of p-Cresol as a Toxin in Œstrogen Concentrates from Sheep Urine. Nature 1950, 166, 269. [Google Scholar] [CrossRef]
- Spoelstra, S.F. Simple phenols and indoles in anaerobically stored piggery wastes. J. Sci. Food Agric. 1977, 28, 415–423. [Google Scholar] [CrossRef]
- Dehnhard, M.; Bernal-Barragan, H.; Claus, R. Rapid and accurate high-performance liquid chromatographic method for the determination of 3-methylindole (skatole) in faeces of various species. J. Chromatogr. B Biomed. Sci. Appl. 1991, 566, 101–107. [Google Scholar] [CrossRef]
- Yang, G.; Zhang, P.; Liu, H.; Zhu, X.; Dong, W. Spatial variations in intestinal skatole production and microbial composition in broilers. Anim. Sci. J. 2019, 90, 412–422. [Google Scholar] [CrossRef]
- Sánchez-Monedero, M.; Sánchez-García, M.; Alburquerque, J.; Cayuela, M. Biochar reduces volatile organic compounds generated during chicken manure composting. Bioresour. Technol. 2019, 288, 121584. [Google Scholar] [CrossRef]
- Blunden, J.; Aneja, V.P.; Overton, J.H. Modeling hydrogen sulfide emissions across the gas–liquid interface of an anaerobic swine waste treatment storage system. Atmos. Environ. 2008, 42, 5602–5611. [Google Scholar]
- Li, Y.; Ma, J.; Yong, X.; Luo, L.; Wong, J.W.; Zhang, Y.; Wu, H.; Zhou, J. Effect of biochar combined with a biotrickling filter on deodorization, nitrogen retention, and microbial community succession during chicken manure composting. Bioresour. Technol. 2022, 343, 126137. [Google Scholar] [CrossRef]
- Weaver, K.H.; Harper, L.A.; De Visscher, A.; van Cleemput, O. The effect of biogas ebullition on ammonia emissions from animal manure–processing lagoons. J. Environ. Qual. 2022, 51, 632–643. [Google Scholar] [CrossRef]
- Havlikova, M.; Kroeze, C.; Huijbregts, M. Environmental and health impact by dairy cattle livestock and manure management in the Czech Republic. Sci. Total Environ. 2008, 396, 121–131. [Google Scholar] [CrossRef] [PubMed]
- Matsumura, Y.; Suganuma, Y.; Ichikawa, T.; Kim, W.; Nakashimada, Y.; Nishida, K. Reaction Rate of Hydrothermal Ammonia Production from Chicken Manure. ACS Omega 2021, 6, 23442–23446. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Hu, Z.; Xu, X.; Jiang, X.; Zheng, B.; Liu, X.; Pan, X.; Kardol, P. Emissions of ammonia and greenhouse gases during combined pre-composting and vermicomposting of duck manure. Waste Manag. 2014, 34, 1546–1552. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.; Luo, L.; Lv, J.; Li, G.; Wen, B.; Ma, Y.; Huang, R. Copper Speciation Evolution in Swine Manure Induced by Pyrolysis. Environ. Sci. Technol. 2020, 54, 9008–9014. [Google Scholar] [CrossRef] [PubMed]
- Gao, R.; Xiang, L.; Hu, H.; Fu, Q.; Zhu, J.; Liu, Y.; Huang, G. High-efficiency removal capacities and quantitative sorption mechanisms of Pb by oxidized rape straw biochars. Sci. Total Environ. 2020, 699, 134262. [Google Scholar] [CrossRef]
- Kumar, A.S.K.; Jiang, S.-J.; Tseng, W.-L. Facile synthesis and characterization of thiol-functionalized graphene oxide as effective adsorbent for Hg(II). J. Environ. Chem. Eng. 2016, 4, 2052–2065. [Google Scholar] [CrossRef]
- Hashmi, M.Z.; Kanwal, A.; Murtaza, R.; Siddique, S.; Su, X.; Tang, X.; Afzaal, M. Arsenic in Untreated and Treated Manure: Sources, Biotransformation, and Environmental Risk in Application on Soils: A Review. Environ. Pollut. Paddy Soils 2018, 53, 179–195. [Google Scholar]
- Wensel, C.R.; Pluznick, J.L.; Salzberg, S.L.; Sears, C.L. Next-generation sequencing: Insights to advance clinical investigations of the microbiome. J. Clin. Investig. 2022, 132, e154944. [Google Scholar]
- Ross, T.; McMeekin, T.A. Predictive microbiology. Int. J. Food Microbiol. 1994, 23, 241–264. [Google Scholar] [CrossRef]
- Oliver, D.M.; Heathwaite, A.L.; Hodgson, C.J.; Chadwick, D.R. Mitigation and Current Management Attempts to Limit Pathogen Survival and Movement Within Farmed Grassland. In Advances in Agronomy; Sparks, D.L., Ed.; Academic Press: Cambridge, MA, USA, 2007; pp. 95–152. [Google Scholar]
- Kılıç, S.; Çelebi, B.; Turan, M. Brucella melitensis and Brucella abortus genotyping via real-time PCR targeting 21 variable genome loci. J. Microbiol. Methods 2021, 180, 106125. [Google Scholar] [CrossRef]
- Marouf, A.S.; Hanifian, S.; Shayegh, J. Prevalence of Brucella spp. in raw milk and artisanal cheese tested via real-time qPCR and culture assay. Int. J. Food Microbiol. 2021, 347, 109192. [Google Scholar] [CrossRef] [PubMed]
- Che, L.H.; Qi, C.; Bao, W.G.; Ji, X.F.; Liu, J.; Du, N.; Gao, L.; Zhang, K.Y.; Li, Y.X. Monitoring the course of Brucella infection with qPCR-based detection. Int. J. Infect. Dis. 2019, 89, 66–71. [Google Scholar] [CrossRef] [Green Version]
- Salinas, M.J.G.; Campos, C.E.; Peris, M.P.P.; Kassab, N.H. Prevalence of Toxoplasma gondii in retail fresh meat products from free-range chickens in Spain. J. Veter Res. 2021, 65, 457–461. [Google Scholar]
- Mesgarpour, M.; Abad, J.M.N.; Alizadeh, R.; Wongwises, S.; Doranehgard, M.H.; Ghaderi, S.; Karimi, N. Prediction of the spread of Corona-virus carrying droplets in a bus—A computational based artificial intelligence approach. J. Hazard. Mater. 2021, 413, 125358. [Google Scholar] [CrossRef]
- Xu, Y.; Wojtczak, D. Dive into machine learning algorithms for influenza virus host prediction with hemagglutinin sequences. Biosystems 2022, 220, 104740. [Google Scholar] [CrossRef] [PubMed]
- Kargarfard, F.; Sami, A.; Mohammadi-Dehcheshmeh, M.; Ebrahimie, E. Novel approach for identification of influenza virus host range and zoonotic transmissible sequences by determination of host-related associative positions in viral genome segments. BMC Genom. 2016, 17, 925. [Google Scholar] [CrossRef] [Green Version]
- Klous, G.; Huss, A.; Heederik, D.J.J.; Coutinho, R.A. Human-livestock contacts and their relationship to transmission of zoonotic pathogens, a systematic review of literature. One Health 2016, 2, 65–76. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rowan, A. Blocking the route to infection. Nat. Rev. Drug Discov. 2005, 4, 16. [Google Scholar] [CrossRef]
- Yu, X.; Zhu, X.; Zhou, Y.; Li, Q.; Hu, Z.; Li, T.; Tao, J.; Dou, M.; Zhang, M.; Shao, Y.; et al. Discovery of N-Aryl-pyridine-4-ones as Novel Potential Agrochemical Fungicides and Bactericides. J. Agric. Food Chem. 2019, 67, 13904–13913. [Google Scholar] [CrossRef]
- Patel, K.; Batty, K.T.; Moore, B.R.; Gibbons, P.L.; Kirkpatrick, C.M. Predicting the parasite killing effect of artemisinin combination therapy in a murine malaria model. J. Antimicrob. Chemother. 2014, 69, 2155–2163. [Google Scholar] [CrossRef] [Green Version]
- Alqarni, H.; Jamleh, A.; Chamber, M.S. Chlorhexidine as a Disinfectant in the Prosthodontic Practice: A Comprehensive Review. Cureus 2022, 14, e30566. [Google Scholar] [PubMed]
- Zheng, X.; Zhang, X.; Zhou, B.; Liu, S.; Chen, W.; Chen, L.; Zhang, Y.; Liao, W.; Zeng, W.; Wu, Q.; et al. Clinical characteristics, tolerance mechanisms, and molecular epidemiology of reduced susceptibility to chlorhexidine among Pseudomonas aeruginosa isolated from a teaching hospital in China. Int. J. Antimicrob. Agents 2022, 60, 106605. [Google Scholar] [CrossRef]
- Juravel, E.; Polacheck, I.; Isaacson, B.; Dagan, A.; Korem, M. The Distinction between Dematiaceous Molds and Non-Dematiaceous Fungi in Clinical and Spiked Samples Treated with Hydrogen Peroxide Using Direct Fluorescence Microscopy. J. Fungi 2023, 9, 227. [Google Scholar] [CrossRef]
- Osunkentan, A.; Evans, D. Chronic adverse effects of long-term exposure of children to dichlorodiphenyltrichloroethane (DDT) through indoor residual spraying: A systematic review. Rural. Remote. Health 2015, 15, 2889. [Google Scholar]
- Bjørling-Poulsen, M.; Andersen, H.R.; Grandjean, P. Potential developmental neurotoxicity of pesticides used in Europe. Environ. Health 2008, 7, 50. [Google Scholar] [CrossRef] [Green Version]
- Kedia, A.; Prakash, B.; Mishra, P.K.; Singh, P.; Dubey, N.K. Botanicals as eco friendly biorational alternatives of synthetic pesticides against Callosobruchus spp. (Coleoptera: Bruchidae)—A review. J. Food Sci. Technol. 2015, 52, 1239–1257. [Google Scholar] [PubMed]
- Chatterjee, S.; Bag, S.; Biswal, D.; Paria, D.S.; Bandyopadhyay, R.; Sarkar, B.; Mandal, A.; Dangar, T.K. Neem-based products as potential eco-friendly mosquito control agents over conventional eco-toxic chemical pesticides-A review. Acta Trop. 2023, 240, 106858. [Google Scholar] [CrossRef] [PubMed]
- Park, H.-W.; Bideshi, D.K.; Federici, B.A. Properties and applied use of the mosquitocidal bacterium, Bacillus sphaericus. J. Asia-Pac. Èntomol. 2010, 13, 159–168. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shahi, N.K.; Maeng, M.; Dockko, S. Models for predicting carbonaceous disinfection by-products formation in drinking water treatment plants: A case study of South Korea. Environ. Sci. Pollut. Res. 2020, 27, 24594–24603. [Google Scholar]
- Ruiz-Castillo, P.; Rist, C.; Rabinovich, R.; Chaccour, C. Insecticide-treated livestock: A potential One Health approach to malaria control in Africa. Trends Parasitol. 2022, 38, 112–123. [Google Scholar] [CrossRef]
- Clements, J.S., II; Islam, R.; Sun, B.; Tong, F.; Gross, A.D.; Bloomquist, J.R.; Carlier, P.R. N’-mono- and N, N’-diacyl derivatives of benzyl and arylhydrazines as contact insecticides against adult Anopheles gambiae. Pestic Biochem. Physiol. 2017, 143, 33–38. [Google Scholar] [CrossRef]
- Dickson, R.P.; Erb-Downward, J.R.; Prescott, H.C.; Martinez, F.J.; Curtis, J.L.; Lama, V.N.; Huffnagle, G.B. Analysis of culture-dependent versus culture-independent techniques for identification of bacteria in clinically obtained bronchoalveolar lavage fluid. J. Clin. Microbiol. 2014, 52, 3605–3613. [Google Scholar] [CrossRef] [Green Version]
- Liu, Q.; He, M.; Zeng, Z.; Huang, X.; Fang, S.; Zhao, Y.; Ke, S.; Wu, J.; Zhou, Y.; Xiong, X.; et al. Extensive identification of serum metabolites related to microbes in different gut locations and evaluating their associations with porcine fatness. Microb. Biotechnol. 2023, 16, 1293–1311. [Google Scholar] [CrossRef]
- Epstein, H.E.; Hernandez-Agreda, A.; Starko, S.; Baum, J.K.; Thurber, R.V. Inconsistent Patterns of Microbial Diversity and Composition Between Highly Similar Sequencing Protocols: A Case Study With Reef-Building Corals. Front. Microbiol. 2021, 12, 740932. [Google Scholar]
- Peng, Z.; Zhu, X.; Wang, Z.; Yan, X.; Wang, G.; Tang, M.; Jiang, A.; Kristiansen, K. Comparative Analysis of Sample Extraction and Library Construction for Shotgun Metagenomics. Bioinform. Biol. Insights 2020, 14, 1177932220915459. [Google Scholar] [CrossRef]
- Zhai, J.; Knox, K.; Twigg, H.L., 3rd; Zhou, H.; Zhou, J.J. Exact variance component tests for longitudinal microbiome studies. Genet. Epidemiol. 2019, 43, 250–262. [Google Scholar] [CrossRef]
Pathogen | Host of Livestock Excrement | Disease Caused | References |
---|---|---|---|
Rotavirus | Sheep, goat, cattle, pig | Diarrhea, vomiting, fever, abdominal pain | [75,76,77,78] |
Echinococcus granulosus | Camel, horse, sheep, pig | Hydatidosis | [79,80] |
Pasteurella multocida | Sheep, goat, deer, pig, cattle, chicken | Fowl cholera | [81,82,83,84] |
Brucella melitensis | Goat, sheep, cattle, camel | Brucellosis | [85] |
Brucella abortus | Camel, cattle | Brucellosis | [86,87] |
Bordetella bronchiseptica | Sheep, pig, goat | Whooping cough | [88,89] |
Malassezia pachydermatis | Horses, camel, cattle, poultry, sheep, goat, rabbit | Dermosis | [90] |
Leptospira sp. | Sheep, cattle, goat, horse, | Reproductive failures and infertility | [91,92,93] |
Campylobacter sp. | Sheep, chicken | Infection, abortion | [94] |
Mycobacterium tuberculosis | Sheep, cattle | Tuberculosis | [95,96] |
Staphylococcus pseudintermedius | Sheep, goat | Dermatological disease, cow mastitis | [97,98] |
Clostridium difficile | Cattle, sheep, horse, and goat, poultry | Clostridium difficile infection | [99] |
Enterocytozoon bieneusi | Sheep, goat, cattle, camel, pig, yak, chicken, horse, rabbit | Diarrhea | [100,101,102,103,104,105,106,107,108] |
Plasmodium falciparum | Cattle, goat, pig, poultry | Malaria | [109] |
Giardia lamblia | Sheep, goat, cattle | Giardiasis | [39,40] |
Giardia duodenalis | Cattle, deer, pig, goat, horse, sheep, chicken, yak | Giardiasis | [110,111,112,113,114,115,116] |
Salmonella spp. | Sheep, cattle, chicken, horse | Diarrhea, loss of appetite, fever, depressed mentation, mortality | [117,118,119,120] |
Yersinia enterocolitica | Sheep, cattle, pig | Yersiniosis; Enteritis | [39,121,122] |
Listeria monocytogenes | Sheep, cattle, horse, chicken | Listeriosis | [123,124,125,126] |
Legionella pneumophila | Pig | Legionnaires’ disease | [127] |
Staphylococcus saprophyticus | Cattle | Urinary tract infection | [128] |
Haemophilus ducreyi | Pig | Chancroid | [129] |
Toxoplasma gondii | Sheep, goat, pig, chicken | Toxoplasmosis | [130] |
Trichinella | Cattle, sheep, horse | Trichinellosis | [131,132,133] |
Gene | Resistant Antibiotic | Related Excrement Samples | References |
---|---|---|---|
tet | Tetracycline resistance | Swine, cattle, poultry manure | [152,153] |
sul | Sulfonamide resistance | Swine manure | [154] |
erm | Erythromycin resistance | Swine wastewater | [155] |
fca | Fluoroquinolone, quinolone, florfenicol, chloramphenicol, and amphenicol (FCA) resistance | Cattle manure, swine manure | [156,157] |
bla | β-lactamase resistance | Poultry manure | [158] |
mdr | Aminoglycosides resistance | Swine manure | [159] |
van | Vancomycin resistance | Poultry manure, swine manure, cattle manure | [158,160,161] |
Chemicals | Health Risk | Related Samples | References |
---|---|---|---|
Indole | Colorectal cancer, bipolar disorder | Swine waste | [171,172] |
p-Cresol | Kidney and liver damage | Swine waste, sheep manure | [173,174] |
Skatole | Respiratory distress | Swine waste, goat, sheep and cattle manure, poultry manure | [175,176,177] |
Phenols | Skin irritation, respiratory disorder | Swine waste, poultry manure | [172,178] |
Hydrogen sulfide | Respiratory disorder | Swine manure, poultry manure | [179,180] |
Ammonia | Skin and eye irritation, respiratory disorder | Swine manure, cattle manure, poultry manure | [181,182,183,184] |
Heavy metals (Cu, Pb, Hg, Cd, As) | Liver and kidney damage | Swine manure, cattle manure | [185,186,187,188] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abdugheni, R.; Li, L.; Yang, Z.-N.; Huang, Y.; Fang, B.-Z.; Shurigin, V.; Mohamad, O.A.A.; Liu, Y.-H.; Li, W.-J. Microbial Risks Caused by Livestock Excrement: Current Research Status and Prospects. Microorganisms 2023, 11, 1897. https://doi.org/10.3390/microorganisms11081897
Abdugheni R, Li L, Yang Z-N, Huang Y, Fang B-Z, Shurigin V, Mohamad OAA, Liu Y-H, Li W-J. Microbial Risks Caused by Livestock Excrement: Current Research Status and Prospects. Microorganisms. 2023; 11(8):1897. https://doi.org/10.3390/microorganisms11081897
Chicago/Turabian StyleAbdugheni, Rashidin, Li Li, Zhen-Ni Yang, Yin Huang, Bao-Zhu Fang, Vyacheslav Shurigin, Osama Abdalla Abdelshafy Mohamad, Yong-Hong Liu, and Wen-Jun Li. 2023. "Microbial Risks Caused by Livestock Excrement: Current Research Status and Prospects" Microorganisms 11, no. 8: 1897. https://doi.org/10.3390/microorganisms11081897
APA StyleAbdugheni, R., Li, L., Yang, Z. -N., Huang, Y., Fang, B. -Z., Shurigin, V., Mohamad, O. A. A., Liu, Y. -H., & Li, W. -J. (2023). Microbial Risks Caused by Livestock Excrement: Current Research Status and Prospects. Microorganisms, 11(8), 1897. https://doi.org/10.3390/microorganisms11081897