Microbiological Analysis of Surgeons’ Hands in a Public Hospital in São Luis, Maranhão State, Brazil: A Cross-Sectional Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Type of Study and Place of Sample Collection
Eligibility Criteria, Inclusion Criteria, Non-Inclusion Criteria, and Limitations of the Study
2.2. Sample Collection with Sterile Swabs
2.3. Microbiological Identification and Antimicrobial Susceptibility Tests
2.4. Statistical Analysis
2.5. Ethical Aspects of Research
3. Results
3.1. Sample Characterization
3.2. Microbiological Identification of Microorganism Species
3.3. Antimicrobial Susceptibility Tests
3.4. Statistical Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Haque, M.; Sartelli, M.; McKimm, J.; Abu Bakar, M. Healthcare-associated infections—An overview. Infect. Drug Resist. 2018, 11, 2321–2333. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lotfinejad, N.; Peters, A.; Tartari, E.; Fankhauser-Rodriguez, C.; Pires, D.; Pittet, D. Hand hygiene in health care: 20 years of ongoing advances and perspectives. Lancet Infect. Dis. 2021, 21, e209–e221. [Google Scholar] [CrossRef] [PubMed]
- Xavier, H.M.D.; Silva, G.L.V.; Röder, D.V.D.B. Hands of Health Care Professionals as a Vehicle for the Transmission of Hospital Pathogens. Acta Sci. Paediatr. 2021, 4, 41–46. [Google Scholar] [CrossRef]
- Sign, S.; Singh, A.K. Prevalence of bacteria contaminating the hands of healthcare workers during routine patient care: A hospital-based study. J. Acad. Clin. Microbiol. 2016, 1, 60–62. [Google Scholar] [CrossRef]
- Clack, L.; Scotoni, M.; Wolfensberger, A.; Sax, H. “First-person view” of pathogen transmission and hand hygiene—Use of a new head-mounted video capture and coding tool. Antimicrob. Resist. Infect. Control 2017, 6, 108. [Google Scholar] [CrossRef] [Green Version]
- Da Silva, V.D.; Caetano, J.Á.; da Silva, L.A.; Freitas, M.M.C.; de Almeida, P.C.; Rodrigues, J.L.N. Assessment of hand hygiene of nursing and medical students. Rev. Rene 2017, 18, 257–263. [Google Scholar] [CrossRef]
- Oyapero, A.; Oyapero, O. An assessment of hand hygiene perception and practices among undergraduate nursing students in Lagos State: A pilot study. J. Educ. Health Promot. 2018, 7, 150. [Google Scholar] [CrossRef]
- Dadi, N.C.T.; Radochová, B.; Vargová, J.; Bujdáková, H. Impact of Healthcare-Associated Infections Connected to Medical Devices—Na Update. Microorganisms 2021, 9, 2332. [Google Scholar] [CrossRef]
- Avestan, Z.; Jami, M.; Mirzaei, M.; Amini, Y.; Ghazvini, K.; Safdari, H.; Gholobi, A.; Farsiani, H. Investigation of the Microbial Contamination of the Hands of Healthcare Workers in Different Wards of Sheikh Hospital in Mashhad. Int. J. Infect. 2022, 9, e130579. [Google Scholar] [CrossRef]
- Toney-Butler, T.J.; Gasner, A.; Carver, N. Hand Hygiene. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2023; [Updated 30 March 2023]. Available online: https://www.ncbi.nlm.nih.gov/books/NBK470254/ (accessed on 20 May 2023).
- Tartari, E.; Weterings, V.; Gastmeier, P.; Baño, J.R.; Widmer, A.F.; Kluytmans, J.; Voss, A. Patient engagement with surgical site infection prevention: An expert panel perspective. Antimicrob. Resist. Infect. Control 2017, 12, 45. [Google Scholar] [CrossRef] [Green Version]
- Seidelman, J.L.; Mantyh, C.R.; Anderson, D.J. Surgical Site Infection Prevention: A Review. J. Am. Med. Assoc. 2023, 329, 244–252. [Google Scholar] [CrossRef] [PubMed]
- Slawomirski, L.; Auraaen, A.; Klazinga, N. The economics of patient safety: Strengthening a value-based approach to reducing patient harm at national level. In OECD Health Working Papers; OECD Publishing: Paris, France, 2017; p. 96. [Google Scholar] [CrossRef]
- AY, F.; Gencturk, N. Disinfection and Sterilization Related Situations for Patient Safety in Operation Rooms. Int. J. Caring Sci. 2018, 11, 607. [Google Scholar]
- Blot, S.; Ruppé, E.; Harbarth, S.; Asehnoune, K.; Poulakou, G.; Luyt, C.E.; Rello, J.; Klompas, M.; Depuydt, P.; Eckmann, C.; et al. Healthcare-associated infections in adult intensive care unit patients: Changes in epidemiology, diagnosis, prevention and contributions of new technologies. Intensive Crit. Care Nurs. 2022, 70, 103227. [Google Scholar] [CrossRef] [PubMed]
- Shaw, F.L.; Chen, I.H.; Chen, C.S.; Wu, H.H.; Lai, L.S.; Chen, Y.Y.; Wang, F. Factors influencing microbial colonies in the air of operating rooms. BMC Infect. Dis. 2018, 18, 4. [Google Scholar] [CrossRef] [Green Version]
- Gutierres, L.S.; Santos, J.L.G.; Peiter, C.C.; Menegon, F.H.A.; Sebold, L.F.; Erdmann, A.L. Good practices for patient safety in the operating room: Nurses’ recommendations. Rev. Bras. Enferm. 2018, 71 (Suppl. S6), 2775–2782. [Google Scholar] [CrossRef] [PubMed]
- Osme, S.F.; Souza, J.M.; Osme, I.T.; Almeida, A.P.S.; Arantes, A.; Mendes-Rodrigues, C.; Gontijo Filho, P.P.; Ribas, R.M. Financial impact of healthcare-associated infections on intensive care units estimated for fifty Brazilian university hospitals affiliated to the unified health system. J. Hosp. Infect. 2021, 117, 102. [Google Scholar] [CrossRef]
- Gidey, K.; Gidey, M.T.; Hailu, B.Y.; Gebreamlak, Z.B.; Niriayo, Y.L. Clinical and economic burden of healthcare-associated infections: A prospective cohort study. PLoS ONE 2023, 18, e0282141. [Google Scholar] [CrossRef] [PubMed]
- Allegranzi, B.; Nejad, S.B.; Pittet, D. The Burden of Healthcare-Associated Infection. In Hand Hygiene: A Handbook for Medical Professionals; Wiley-Blackwell: Oxford, UK, 2017; pp. 1–7. [Google Scholar] [CrossRef]
- Vermeil, T.; Peters, A.; Kilpatrick, C.; Pires, D.; Allegranzi, B.; Pittet, D. Hand hygiene in hospitals: Anatomy of a revolution. J. Hosp. Infect. 2019, 101, 383–392. [Google Scholar] [CrossRef]
- Puro, V.; Coppola, N.; Frasca, A.; Gentile, I.; Luzzaro, F.; Peghetti, A.; Sganga, G. Pillars for prevention and control of healthcare-associated infections: An Italian expert opinion statement. Antimicrob. Resist. Infect. Control 2022, 11, 87. [Google Scholar] [CrossRef]
- Oliveira, R.D.; Bustamante, P.F.O.; Besen, B.A.M.P. Tackling healthcare-associated infections in Brazilian intensive care units: We need more than collaboration. Former. Rev. Bras. Ter. Intensiv. 2022, 34, 313–315. [Google Scholar] [CrossRef]
- Monegro, A.F.; Muppidi, V.; Regunath, H. Hospital Acquired Infections. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2023. Available online: https://www.ncbi.nlm.nih.gov/books/NBK441857/ (accessed on 25 May 2023).
- Bashar, F.J. Methods of Preventing Hospital Acquired Infection. Adv. Biosc. Clin. Med. (ABCmed) 2019, 7, 3. [Google Scholar] [CrossRef]
- Voidazan, S.; Albu, S.; Toth, R.; Grigorescu, B.; Rachita, A.; Moldovan, I. Healthcare Associated Infections-A New Pathology in Medical Practice? Int. J. Environ. Res. Public Health 2020, 17, 760. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sikora, A.; Zahra, F. Nosocomial Infections. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2023; [Updated 27 April 2023]. Available online: https://www.ncbi.nlm.nih.gov/books/NBK559312/ (accessed on 25 May 2023).
- Chia, P.; Sengupta, S.; Kukreja, A.; Ponnampalavanar, S.S.L.; Oon, T.N.G.; Marimuthu, K. The role of hospital environment in transmissions of multidrug-resistant gram-negative organisms. Antimicrob. Resist. Infect. Control 2020, 9, 29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suetens, C.; Latour, K.; Kärki, T.; Ricchizzi, E.; Kinross, P.; Moro, M.L.; Jans, B.; Hopkins, S.; Hansen, S.; Lyytikäinen, O.; et al. Healthcare-Associated Infections Prevalence Study Group. Prevalence of healthcare-associated infections, estimated incidence and composite antimicrobial resistance index in acute care hospitals and long-term care facilities: Results from two European point prevalence surveys, 2016 to 2017. EuroSurveill 2018, 46, 1800516. [Google Scholar] [CrossRef] [Green Version]
- Belizario, J.A.; Lopes, L.G.; Pires, R.H. Fungi in the indoor air of critical hospital areas: A review. Aerobiologia 2021, 37, 379–394. [Google Scholar] [CrossRef]
- Prigitano, A.; Perrone, P.M.; Esposto, M.C.; Carnevali, D.; De Nard, F.; Grimoldi, L.; Principi, N.; Cogliati, M.; Castaldi, S.; Romanò, L. ICU environmental surfaces are a reservoir of fungi: Species distribution in northern Italy. J. Hosp. Infect. 2022, 123, 74–79. [Google Scholar] [CrossRef]
- Benelli, J.L.; Basso, R.P.; Grafulha, T.W.; Poester, V.R.; Munhoz, L.S.; Martins, K.B.; Zogbi, H.E.; Von Groll, A.; Severo, C.B.; Stevens, D.A.; et al. Fungal Bloodstream Co-infection by Trichosporon asahii in a COVID-19 Critical Patient: Case Report and Literature Review. Mycopathologia 2022, 187, 397–404. [Google Scholar] [CrossRef]
- Negm, E.M.; Mohamed, M.S.; Rabie, R.A.; Fouad, W.S.; Beniamen, A.; Mosallem, A.; Tawfik, A.E.; Salama, H.M. Fungal infection profile in critically ill COVID-19 patients: A prospective study at a large teaching hospital in a middle-income country. BMC Infect. Dis. 2023, 23, 246. [Google Scholar] [CrossRef]
- Sood, G.; Perl, T.M. Outbreaks in Health Care Settings. Infect. Dis. Clin. N. Am. 2016, 30, 661–687. [Google Scholar] [CrossRef]
- Novosad, S.A.; Fike, L.; Dudeck, M.A.; Allen-Bridson, K.; Edwards, J.R.; Edens, C.; Sinkowitz-Cochran, R.; Powell, K.; Kuhar, D. Pathogens causing central-line-associated bloodstream infections in acute-care hospitals-United States, 2011–2017. Infect. Control Hosp. Epidemiol. 2020, 41, 313–319. [Google Scholar] [CrossRef]
- Gall, E.; Long, A.; Hall, K.K. Infections Due to Other Multidrug-Resistant Organisms. In Making Healthcare Safer III: A Critical Analysis of Existing and Emerging Patient Safety Practices [Internet]; Hall, K.K., Shoemaker-Hunt, S., Hoffman, L., Richard, S., Gall, E., Schoyer, E., Costar, D., Gale, B., Schiff, G., Miller, K., Eds.; Agency for Healthcare Research and Quality (US): Rockville, MD, USA, 2020. Available online: https://www.ncbi.nlm.nih.gov/books/NBK555533/ (accessed on 26 May 2023).
- Szabó, S.; Feier, B.; Capatina, D.; Tertis, M.; Cristea, C.; Popa, A. An Overview of Healthcare Associated Infections and Their Detection Methods Caused by Pathogen Bacteria in Romania and Europe. J. Clin. Med. 2022, 11, 3204. [Google Scholar] [CrossRef] [PubMed]
- Ataee, R.A.; Ataee, M.H.; Tavana, A.M.; Salesi, M. Bacteriological Aspects of Hand Washing: A Key for Health Promotion and Infections Control. Int. J. Prev. Med. 2017, 10, 8–16. [Google Scholar] [CrossRef] [PubMed]
- Berg, G.; Rybakova, D.; Fischer, D.; Cernava, T.; Verges, M.C.C.; Chen, X.; Cocolin, L.; Eversole, K.; Corral, G.H.; Kazou, M.; et al. Microbiome definition re-visited: Old concepts and new challenges. Microbiome 2020, 8, 103. [Google Scholar] [CrossRef]
- World Health Organization (WHO). Hand Hygiene Technical Reference Manual: To Be Used by Health-Care Workers, Trainers and Observers of Hand Hygiene Practices; WHO: Geneva, Switzerland, 2009; pp. 1–31.
- Mody, L.; Washer, L.L.; Kaye, K.S.; Gibson, K.; Saint, S.; Reyes, K.; Cassone, M.; Mantey, J.; Cao, J.; Altamimi, S.; et al. Multidrug-resistant Organisms in Hospitals: What Is on Patient Hands and in Their Rooms? Clin. Infect. Dis. 2019, 69, 1837–1844. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suleyman, G.; Alangaden, G.; Bardossy, A.C. The Role of Environmental Contamination in the Transmission of Nosocomial Pathogens and Healthcare-Associated Infections. Curr. Infect. Dis. Rep. 2018, 20, 12. [Google Scholar] [CrossRef] [PubMed]
- Pegu, K.D.; Perrie, H.; Scribante, J.; Fourtounas, M. Microbial contamination of the hands of healthcare providers in the operating theatre of a central hospital. S. Afr. J. Infect. Dis. 2021, 36, 221. [Google Scholar] [CrossRef]
- Mouajou, V.; Adams, K.; DeLisle, G.; Quach, C. Hand hygiene compliance in the prevention of hospital-acquired infections: A systematic review. J. Hosp. Infect. 2022, 119, 33–48. [Google Scholar] [CrossRef]
- Lima, M.R.P.; Filho, A.O.F.; Bem, J.S.P.; Simões, M.S.S.; Santos, E.F.; Arreguy, I.M.S.; Sobrinho, C.R.W.; Souza, F.B. Surgical hand preparation without rinsing: Influence of antiseptic agent on bacteriological contamination. J. Dent. Health Oral Disord. Ther. 2019, 10, 98–101. [Google Scholar] [CrossRef]
- Widmer, A.F.; Rotter, M.; Voss, A.; Nthumba, P.; Allegranzi, B.; Boyce, J.; Pittet, D. Surgical hand preparation: State-of-the-art. J. Hosp. Infect. 2010, 74, 112. [Google Scholar] [CrossRef]
- Brazilian Committee for Antimicrobial Sensitivity Tests—BrCAST/European Committee on Antimicrobial Susceptibility Testing (EUCAST/versão BrCAST) (2022). Tables of Cut-Off Points for Interpretation of CIMs and Diameters of Halos. BrCAST. Available online: https://brcast.org.br/wp-content/uploads/2022/07/Tabela-pontos-de-corte-clinicos-BrCAST-17-10-2019-final-1.pdf (accessed on 28 May 2023).
- IBM Corp. IBM SPSS Statistics for Windows, Version 22.0; Released 2013; IBM Corp: Armonk, NY, USA, 2013.
- Liu, H.L.; Liu, Y.L.; Sun, F.Y.; Li, Z.C.; Tan, H.Y.; Xu, Y.C. Hand Hygiene among Anesthesiologists and Microorganisms Contamination in Anesthesia Environments: A Single-Center Observational Study. Biomed. Environ. Sci. 2022, 35, 992–1000. [Google Scholar] [CrossRef]
- McKay, K.J.; Shaban, R.Z. Video based monitoring systems for hand hygiene compliance auditing: What do patients think? PLoS ONE 2023, 18, e0281895. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. State of the World’s Hand Hygiene: A Global Call to Action to Make Hand Hygiene a Priority in Policy and Practice; UNICEF: New York, NY, USA, 2021; pp. 1–87.
- Ojanperä, H.; Ohtonen, P.; Kanste, O.; Syrjälä, H. Impact of direct hand hygiene observations and feedback on hand hygiene compliance among nurses and doctors in medical and surgical wards: An eight-year observational study. J. Hosp. Infect. 2022, 127, 83–90. [Google Scholar] [CrossRef] [PubMed]
- Magill, S.S.; O’Leary, E.; Janelle, S.J.; Thompson, D.L.; Dumyati, G.; Nadle, J.; Wilson, L.E.; Kainer, M.A.; Lynfield, R.; Greissman, S.; et al. Emerging Infections Program Hospital Prevalence Survey Team. Changes in Prevalence of Health Care-Associated Infections in U.S. Hospitals. N. Engl. J. Med. 2018, 379, 1732–1744. [Google Scholar] [CrossRef] [PubMed]
- Boucher, H.W.; Corey, G.R. Epidemiology of methicillin-resistant Staphylococcus aureus. Clin. Infect. Dis. 2008, 1 (Suppl. S5), S344–S349. [Google Scholar] [CrossRef] [Green Version]
- Baban, S.T.; Saeed, P.A.H.; Jalal, D.M. Microbial contamination of operating theatres and intensive care units at a surgical specialty hospital in Erbil City. Med. J. Babylon 2019, 16, 150–155. [Google Scholar] [CrossRef]
- Glasset, B.; Herbin, S.; Granier, S.A.; Cavalié, L.; Lafeuille, E.; Guérin, C.; Ruimy, R.; Casagrande-Magne, F.; Levast, M.; Chautemps, N.; et al. Bacillus cereus, a serious cause of nosocomial infections: Epidemiologic and genetic survey. PLoS ONE 2018, 13, e0194346. [Google Scholar] [CrossRef]
- Xaplanteri, P.; Serpanos, D.S.; Dorva, E.; Beqo-Rokaj, T.; Papadogeorgaki, E.; Lekkou, A. Bacillus simplex as the Most Probable Culprit of Penetrating Trauma Infection: A Case Report. Pathogens 2022, 211, 1203. [Google Scholar] [CrossRef]
- Faria, G.; Menezes, R.; Alves, P.; Marques, L.; Silva, N.; Bessa, M.; Silva, F.; Röder, D.; Pedroso, R.; Penatti, M. Impact of alcohol gel on hand bacteria in healthcare professionals. Rev. Epidemiol. Controle Infecç. 2021, 11, 16493. [Google Scholar] [CrossRef]
- Szemraj, M.; Lisiecki, P.; Glajzner, P.; Szewczyk, E.M. Vancomycin heteroresistance among methicillin-resistant clinical isolates S. haemolyticus, S. hominis, S. simulans, and S. warneri. Braz. J. Microbiol. 2023, 1, 159–167. [Google Scholar] [CrossRef]
- Bal, Z.S.; Sem, S.; Karapinar, D.Y.; Aydemir, S.; Vardar, F. The first reported catheter-related Brevibacterium casei bloodstream infection in a child with acute leucemia and review of the literature. Braz. J. Infect. Dis. 2015, 19, 213–215. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.M.; Chi, H.; Chiu, N.C.; Huang, F.Y. Kocuria kristinae: A true pathogen in pediatric patients. J. Microbiol. Immunol. Infect. 2015, 48, 80–84. [Google Scholar] [CrossRef] [Green Version]
- Taher, N.M. Kocuria Species: Important Emerging Pathogens in Pediatric Patients. J. Pure Appl. Microbiol. 2022, 4, 2874–2879. [Google Scholar] [CrossRef]
- Iyer, P.G.; Ashkenazy, N.; Weiss, S.J.; Miller, D.; Flynn, H.W., Jr. Endophthalmitis Caused by Kocuria Kristinae. Case Rep. Ophthalmol. 2022, 13, 408–413. [Google Scholar] [CrossRef] [PubMed]
- Tewari, R.; Dudeja, M.; Das, A.K.; Nandy, S. Kocuria kristinae in catheter associated urinary tract infection: A case report. J. Clin. Diagn. Res. 2013, 7, 1692–1693. [Google Scholar] [CrossRef] [PubMed]
- Bernshteyn, M.; Kumar, P.A.; Joshi, S. Kocuria kristinae pneumonia and bacteremia. Bayl. Univ. Med. Cent. Proc. 2020, 33, 608–609. [Google Scholar] [CrossRef]
- Kimura, M.; Kawai, E.; Yaoita, H.; Ichinoi, N.; Sakamoto, O.; Kure, S. Central venous catheter-related bloodstream infection with Kocuria kristinae in a patient with propionic acidemia. Case Rep. Infect. Dis. 2017, 2017, 1254175. [Google Scholar] [CrossRef]
- Robles-Marhuenda, A.; Romero-Gomez, M.P.; Garcia-Rodrıguez, J.; Arnalich-Fernandez, F. Native valve endocarditis caused by Kocuria kristinae. Enferm. Infecc. Microbiol. Clin. 2016, 34, 464–465. [Google Scholar] [CrossRef]
- Gunaseelan, P.; Suresh, G.; Raghavan, V.; Varadarajan, S. Native valve endocarditis caused by Kocuria rosea complicated by peripheral mycotic aneurysm in an elderly host. J. Postgrad. Med. 2017, 63, 135–137. [Google Scholar] [CrossRef]
- Aleksic, D.; Miletic-Drakulic, S.; Boskovic-Matic, T.; Simovic, S.; Toncev, G. Unusual case of stroke related to Kocuria Kristinae endocarditis treated with surgical procedure. Hippokratia 2016, 20, 231–234. [Google Scholar]
- González-Arenas, E.; Castro-Soto-Reyes, L.M.; Sánchez-Camacho, V.; Yalaupari-Mejia, J.P. Septic osteoarthritis due to Kocuria kristinae. A case report. Rev. Mex. Pediatr. 2017, 84, 21–24. [Google Scholar]
- Napolitani, M.; Troiano, G.; Bedogni, C.; Messina, G.; Nante, N. Kocuria kristinae: An emerging pathogen in medical practice. J. Med. Microbiol. 2019, 68, 1596–1603. [Google Scholar] [CrossRef]
- Liu, B.; Tong, S. An investigation of Stenotrophomonas maltophilia-positive culture caused by fiberoptic bronchoscope contamination. BMC Infect. Dis. 2019, 19, 1072. [Google Scholar] [CrossRef]
- Brooke, J.S. New strategies against Stenotrophomonas maltophilia: A serious worldwide intrinsically drug-resistant opportunistic pathogen. Expert Rev. Anti-Infect. Ther. 2014, 12, 1–4. [Google Scholar] [CrossRef]
- Said, M.S.; Tirthani, E.; Lesho, E. Stenotrophomonas maltophilia. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2023; [Updated 1 February 2023]. Available online: https://www.ncbi.nlm.nih.gov/books/NBK572123/ (accessed on 2 June 2023).
- Wieland, K.; Chhatwal, P.; Vonberg, R.P. Nosocomial outbreaks caused by Acinetobacter baumannii and Pseudomonas aeruginosa: Results of a systematic review. Am. J. Infect. Cont. 2018, 6, 643–648. [Google Scholar] [CrossRef] [PubMed]
- Temperoni, C.; Caiazzo, L.; Barchiesi, F. High Prevalence of Antibiotic Resistance among Opportunistic Pathogens Isolated from Patients with COVID-19 under Mechanical Ventilation: Results of a Single-Center Study. Antibiotics 2021, 10, 1080. [Google Scholar] [CrossRef]
- Xia, J.; Wang, Z.; Li, T.; Lu, F.; Sheng, D.; Huang, W. Immunosuppressed Patients with Clinically Diagnosed Invasive Fungal Infections: The Fungal Species Distribution, Antifungal Sensitivity and Associated Risk Factors in a Tertiary Hospital of Anhui Province. Infect. Drug Resist. 2022, 15, 321–333. [Google Scholar] [CrossRef] [PubMed]
- Wenzel, R.P. Surgical site infections and the microbiome: An updated perspective. Infect. Control Hosp. Epidemiol. 2019, 40, 590–596. [Google Scholar] [CrossRef]
- Roshan, R.; Feroz, A.S.; Rafique, Z.; Virani, N. Rigorous Hand Hygiene Practices Among Health Care Workers Reduce Hospital-Associated Infections During the COVID-19 Pandemic. J. Prim. Care Community Health 2020, 11, 2150132720943331. [Google Scholar] [CrossRef] [PubMed]
- Ragusa, R.; Marranzano, M.; Lombardo, A.; Quattrocchi, R.; Bellia, M.A.; Lupo, L. Has the COVID-19 Virus Changed Adherence to Hand Washing among Healthcare Workers? Behav. Sci. 2021, 11, 53. [Google Scholar] [CrossRef] [PubMed]
- Lakoh, S.; Firima, E.; Williams, C.E.E.; Conteh, S.K.; Jalloh, M.B.; Sheku, M.G.; Adekanmbi, O.; Sevalie, S.; Kamara, S.A.; Kamara, M.A.S.; et al. An Intra-COVID-19 Assessment of Hand Hygiene Facility, Policy and Staff Compliance in Two Hospitals in Sierra Leone: Is There a Difference between regional and Capital City Hospitals? Trop. Med. Infect. Dis. 2021, 6, 204. [Google Scholar] [CrossRef] [PubMed]
- Dotto, P.P.; Zucuni, C.P.; Antes, G.B.; Fernandes, M.; Favarin, A.G.; Christ, R.; Santos, B.Z.; Barboza, V.D.S. Eficácia de dois métodos de degermação das mãos. Rev. Cir. Traumatol. Buco-Maxilo-Facial 2015, 15, 07–14. [Google Scholar]
- Cunha, E.R.; Matos, G.O.A.; Silva, A.M.; Araújo, E.A.C.; Ferreira, K.A.S.L.; Graziano, K.U. Eficácia de três métodos de degermação das mãos utilizando gluconato de clorexidina degermante (GCH 2%). Rev. Esc. Enferm. USP 2011, 45, 1440–1445. [Google Scholar] [CrossRef] [Green Version]
- Jarral, O.A.; McCormack, D.J.; Ibrahim, S.; Shipolini, A.R. Should surgeons scrub with chlorhexidine or iodine prior to surgery? Interact. Cardiovasc. Thorac. Surg. 2011, 12, 1017–1021. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Menezes, R.M.; Cardoso, V.; Hoehr, C.F.; Bulle, D.; Burgos, M.S.; Benitez, L.B.; Renner, J.D.P. Avaliação Microbiológica da Antissepsia Pré-Operatória das Mãos de Profissionais de Enfermagem de um Centro Cirúrgico. Rev. Epidem. Control Infec. 2017, 1, 178–191. [Google Scholar]
- Pereira Junior, A.C.; Silva, A.P.M.; Nascimento, J.M.; Stuart, M.R. Methods and effectiveness of surgical antisepsy of the hands in the preoperative. Res. Soc. Dev. 2021, 10, e15710917836. [Google Scholar] [CrossRef]
- Weber, W.P.; Reck, S.; Neff, U.; Saccilotto, R.; Dangel, M.; Rotter, M.L.; Frei, R.; Oertli, D.; Marti, W.R.; Widmer, A.F. Surgical hand antisepsis with alcohol-based hand rub: Comparison of effectiveness after 1.5 and 3 minutes of application. Infect. Control Hosp. Epidemiol. 2009, 30, 420–426. [Google Scholar] [CrossRef] [Green Version]
- Movahedi, M.; Ghafari, S.; Vahabi, E.; Haghighat, S. Impact of Povidone-iodine Versus Chlorhexidine for Periurethral Cleaning Before Catheterization on Pyuria and Bacteriuria Among Emergency Department Patients. Shiraz. E-Med. J. 2022, 23, e113673. [Google Scholar] [CrossRef]
- Srinivas, A.; Kaman, L.; Raj, P.; Gautam, V.; Dahiya, D.; Singh, G.; Singh, R.; Medhi, B. Comparison of the efficacy of chlorhexidine gluconate versus povidone iodine as preoperative skin preparation for the prevention of surgical site infections in clean-contaminated upper abdominal surgeries. Surg. Today 2015, 45, 1378–1384. [Google Scholar] [CrossRef]
- Kara, A.; Özyürek, P. The Effect of Periuretral Care and Follow-Up on Bacteriuria in Patients with Urinary Catheter: A Comparison of Three Solutions. J. Clin. Exp. Investig. 2017, 8, 62–69. [Google Scholar] [CrossRef] [Green Version]
Gram-Positive | n. | % | Gram-Negative | n. | % | Fungus | n. | % |
---|---|---|---|---|---|---|---|---|
Aerococcus viridans | 1 | 0.45 | Acinetobacter baumanii | 5 | 9.11 | Aspegillus versicolor | 2 | 18.20 |
Bacillus simplex | 1 | 0.45 | Acinetobacter ursingii | 2 | 3.63 | Candida haemulonii | 1 | 9.10 |
Brevibacterium casei | 2 | 0.90 | Acinetobacter variabilis | 2 | 3.63 | Candida parapsilosis | 4 | 36.30 |
Brevibacterium celere | 7 | 3.21 | Aspergillus fumigatus | 1 | 1.82 | Pichia kudriavzevii (C. krusei) | 1 | 9.10 |
B. ravenspurgense | 1 | 0.45 | Citrobacter sedlakii | 1 | 1.82 | Rhodothorula mucilaginosa | 1 | 9.10 |
Corynebacterium casei | 1 | 0.45 | Enterobacter cloacae | 2 | 3.63 | Trichosporon asahii | 1 | 9.10 |
C. minutissimum | 1 | 0.45 | Enterococcus faecalis | 1 | 1.82 | Trichosporum japonicum | 1 | 9.10 |
C. simulans | 1 | 0.45 | Klebsiella pneumoniae | 1 | 1.82 | |||
Dermacoccus nishinomiyaensis | 2 | 0.90 | Methylobacterium radiotolerans | 1 | 1.82 | |||
Kocuria kristinae | 1 | 0.45 | Moraxela osloensis | 2 | 3.63 | |||
Kocuria marina | 2 | 0.90 | Moraxella spp | 1 | 1.82 | |||
Micrococcus luteus | 44 | 20.26 | Pantoea dispersa | 2 | 3.63 | |||
Oceanobacillus onocorhynchi | 1 | 0.45 | Pantoea septica | 2 | 3.63 | |||
Penicillium spp | 1 | 0.45 | Pseudomonas aeruginosa | 1 | 1.82 | |||
Rhodococcus equi | 1 | 0.45 | Pseudomonas extremorientalis | 1 | 1.82 | |||
Bacillus cereus | 7 | 3.21 | Pseudomonas gessardi | 1 | 1.82 | |||
Bacillus clausii | 1 | 0.45 | Pseudomonas stutzeri | 2 | 3.63 | |||
Bacillus megaterium | 1 | 0.45 | Serratia marcescens | 2 | 3.63 | |||
Bacillus pumilus | 1 | 0.45 | Burkholderia lata | 1 | 1.82 | |||
B. amyloliquefaciens | 1 | 0.45 | Mixta calida (Pantoea callida) | 2 | 3.63 | |||
B. thermoamylovorans | 1 | 0.45 | Neisseria subflava | 1 | 1.82 | |||
Lactobacillus paracasei | 1 | 0.45 | Rhizobium radiobacter | 1 | 1.82 | |||
Staphylococcus aureus | 6 | 2.76 | Roseomonas mucosa | 5 | 9.11 | |||
S. arlettae | 1 | 0.45 | Stenotrophomonas maltophilia | 15 | 27.27 | |||
S. capitis | 12 | 5.52 | ||||||
S.caprae | 1 | 0.45 | ||||||
S. cohnii | 10 | 4.60 | ||||||
S. epidemidis | 40 | 18.40 | ||||||
S. haemolyticus | 19 | 8.75 | ||||||
S.hominis | 10 | 4.60 | ||||||
S. saprophyticus | 10 | 4.60 | ||||||
S. sciuri | 1 | 0.45 | ||||||
S. warneri | 23 | 10.59 | ||||||
S. xylosus | 2 | 0.90 | ||||||
Streptococcus parasanguinis | 1 | 0.45 | ||||||
Streptomyces nogalater | 2 | 0.90 | ||||||
Total | 217 | 100.0 | 55 | 100.0 | 11 | 100.0 |
Species | Type | N. | % | Mixed Contamination | N. | % |
---|---|---|---|---|---|---|
Acinetobacter baumanii | gram-neg. | 1 | 2.0 | S. warneri, M. luteus, K. kirstinae | 1 | 2.0 |
Pantoea septica | gram-neg. | 1 | 2.0 | S. warneri, A. baumanii, M. luteus | 1 | 2.0 |
Pseudomonas aeruginosa | gram-neg. | 1 | 2.0 | T. asahii. B. lata, M. luteus | 1 | 2.0 |
Pseudomonas gessardi | gram-neg. | 1 | 2.0 | S. cohnii, M. luteus | 1 | 2.0 |
Serratia marcescens | gram-neg. | 1 | 2.0 | S. xylosus, S. conhnii | 1 | 2.0 |
Burkholderia lata * | gram-neg. | 1 | 2.0 | A. versicolor, C. parapsolosis | 1 | 2.0 |
Stenotrophomonas maltophilia | gram-neg. | 2 | 4.0 | S. capitis, M. luteus | 1 | 4.0 |
subtotal | 8 | 16.3 | S. warneri, S. saprophyticus | 1 | 2.0 | |
subtotal | 8 | 16.3 | ||||
Bacillus cereus | gram-pos. | 2 | 4.0 | |||
Bacillus simplex | gram-pos. | 1 | 2.0 | |||
Brevibacterium ravenspurgense | gram-pos. | 1 | 2.0 | |||
Dermacoccus nishinomyaensis | gram-pos. | 1 | 2.0 | |||
Kocuria kristinae * | gram-pos. | 1 | 2.0 | |||
Micrococcus luteus * | gram-pos. | 6 | 12.2 | |||
Staphylococcus warneri * | gram-pos. | 7 | 14.2 | |||
Staphylococcus aureus | gram-pos. | 1 | 2.0 | |||
Staphylococcus capitis * | gram-pos. | 6 | 12.2 | |||
Staphylococcus caprae | gram-pos. | 1 | 2.0 | |||
Staphylococcus cohnii * | gram-pos. | 3 | 8.2 | |||
Staphylococcus epidermidis | gram-pos. | 2 | 4.0 | |||
Staphylococcus haemolyticus | gram-pos. | 1 | 2.0 | |||
Staphylococcus hominis | gram-pos. | 2 | 4.0 | |||
Staphylococcus saprophyticus * | gram-pos. | 1 | 2.0 | |||
Staphylococcus xylosus * | gram-pos. | 1 | 2.0 | |||
subtotal | 37 | 75.5 | ||||
Aspegillus versicolor * | fungus | 1 | 2.0 | |||
Candida parapsilosis * | fungus | 2 | 4.0 | |||
Trichosporon asahii * | fungus | 1 | 2.0 | |||
subtotal | 4 | 8.2 | ||||
Total | 49 | 100 | 8 | 100 |
Non-Glucose Fermenting Bacilli | Glucose-Fermenting Bacilli | ||||||
---|---|---|---|---|---|---|---|
Microorganisms | S. maltophilia n = 2 | A. baumannii n = 1 | P. aeruginosa n = 1 | P. gessardi n = 1 | Burkholderia lata n = 1 | Pantoea septica n = 1 | Serratia marcescens n = 1 |
Antibiotics | |||||||
amikacin | - | Sus. | Sus. | Sus. | Na | Sus. | Sus. |
ampicillin | - | - | - | - | - | - | Res. |
aztreonam | - | - | - | Res. | Na | - | - |
cefepime | - | - | Int. | - | Na | Sus. | Sus. |
ceftazidime | - | - | Int. | Int. | Na | - | Sus. |
ceftazidime-avibactam | - | - | - | Sus. | Na | - | - |
ceftriaxone | - | - | - | - | Na | Sus. | Sus. |
ciprofloxacin | - | Sus. | Int. | Int. | Na | Sus. | Sus. |
gentamicin | - | Sus. | - | - | Na | Sus. | Sus. |
imipenem | - | Sus. | Res. | Int. | Na | Sus. | Sus. |
meropenem | - | Sus. | Res. | Sus. | Na | Sus. | - |
piperacillin-tazobactam | - | - | Int. | Int. | Na | - | Sus. |
Levofloxacin | Sus. | Int. | Int. | Int. | Na | Sus. | - |
Sulfamethoxazole + trimethoprim | Int. | Int. | - | - | Na | Sus. | - |
Variables | Number | Percentage (%) | |
---|---|---|---|
Age group | <30 | 27 | 20.6 |
30–39 | 43 | 32.8 | |
40–49 | 30 | 22.9 | |
50–59 | 20 | 15.3 | |
60–69 | 8 | 6.1 | |
70 ou + | 3 | 2.3 | |
Time since graduation (years) | 1–5 | 49 | 37.4 |
6–10 | 25 | 19.1 | |
11–15 | 13 | 9.9 | |
16–20 | 9 | 6.9 | |
21–25 | 6 | 4.6 | |
26–30 | 15 | 11.4 | |
>30 | 14 | 10.7 | |
Specialties | General surgery | 42 | 32.1 |
Orthopedics | 27 | 20.6 | |
Urology | 11 | 8.4 | |
Vascular surgery | 9 | 6.9 | |
Digestive system | 8 | 6.1 | |
Cardiac surgery | 7 | 5.3 | |
Coloproctology | 6 | 4.6 | |
Neurosurgery | 6 | 4.6 | |
Head neck | 4 | 3.0 | |
Maxillary mouth | 3 | 2.3 | |
Plastic surgery | 3 | 2.3 | |
Otorhinolaryngology | 3 | 2.3 | |
Thoracic Specialties surgery | 2 | 1.5 | |
Titration | Resident | 39 | 29.8 |
Specialist | 73 | 55.7 | |
Master | 12 | 9.2 | |
Doctor | 7 | 5.3 |
Variables | n | % | |
---|---|---|---|
Brushing time (minutes) | 2 | 25 | 19.1 |
3 to 5 | 100 | 76.3 | |
>5 | 6 | 4.6 | |
Sequence | Correct | 73 | 55.7 |
Incorrect | 58 | 44.3 | |
Product | Water plus povidone | 3 | 2.3 |
Chlorhexidine | 104 | 79.4 | |
Povidone iodine | 24 | 18.3 | |
Risk of infection in surgery | Contaminated | 8 | 6.1 |
Infected | 7 | 5.3 | |
Clean | 91 | 69.5 | |
Potentially contaminated | 25 | 19.1 | |
Knows the six international patient safety goals | In part | 83 | 63.3 |
No | 30 | 23.0 | |
Yes | 18 | 13.7 | |
What is the goal * | Ignore | 45 | 34.1 |
1-Correctly identify the patient | 70 | 53.0 | |
2-Improve communication between health professionals | 6 | 4.5 | |
3-Improve safety in the prescription, use and administration of medications | 9 | 6.8 | |
4-Ensure surgery in the correct intervention site, procedure, and patient | 88 | 66.7 | |
5-Sanitize your hands to avoid infections | 26 | 19.7 | |
6-Reduce the risk of falls and pressure ulcers | 11 | 8.3 | |
Responds to safe surgery protocol | No | 31 | 23.7 |
Yes | 100 | 76.3 | |
Surgical site infection (SSI) | Ignore | 15 | 11.4 |
No | 91 | 69.5 | |
Yes | 25 | 19.1 |
Type of Surgery | n | % | Type of Surgery | n | % |
---|---|---|---|---|---|
laparoscopic cholecystectomy | 15 | 11.4 | thyroidectomy | 2 | 1.5 |
tibial osteosynthesis | 7 | 5.3 | wrist fracture | 2 | 1.5 |
inguinal hernioplasty | 6 | 5.3 | valve replacement | 2 | 1.5 |
appendectomy | 6 | 3.8 | abdominoplasty | 1 | 0.8 |
prostatectomy | 5 | hand amputation | 1 | 0.8 | |
discectomy | 4 | 3.0 | brain aneurysm | 1 | 0.8 |
carotid endarterectomy | 4 | 3.0 | maxillary antrostomy | 1 | 0.8 |
laparotomy | 4 | 3.0 | spine arthrodesis | 1 | 0.8 |
myocardial revascularization | 4 | 3.0 | hip arthroplasty | 1 | 0.8 |
thigh amputation | 3 | 2.3 | knee arthroscopy | 1 | 0.8 |
gastroplasty | 3 | 2.3 | thyroglossal cyst | 1 | 0.8 |
hemorrhoidectomy | 3 | 2.3 | colectomy | 1 | 0.8 |
femur osteosynthesis | 3 | 2.3 | pancreaticoduodenectomy | 1 | 0.8 |
intestinal transit reconstruction | 3 | 2.3 | chest tumor excision | 1 | 0.8 |
bone tumor resection | 3 | 2.3 | fasciotomy | 1 | 0.8 |
tracheostomy | 3 | 2.3 | arteriovenous fistula | 1 | 0.8 |
choledochotomy | 2 | 1.5 | cerebrospinal fluid fistula | 1 | 0.8 |
hand debridement | 2 | 1.5 | mandibular fracture | 1 | 0.8 |
leg debridement | 2 | 1.5 | hepatectomy | 1 | 0.8 |
excision of saliva calculus | 2 | 1.5 | incisional hernia | 1 | 0.8 |
brain tumor excision | 2 | 1.5 | lymphadenectomy | 1 | 0.8 |
open fracture leg | 2 | 1.5 | mammaplasty | 1 | 0.8 |
gastrectomy | 2 | 1.5 | mastectomy | 1 | 0.8 |
hysterectomy | 2 | 1.5 | nephrectomy | 1 | 0.8 |
shoulder arthroscopy | 2 | 1.5 | radius osteosynthesis | 1 | 0.8 |
laparoscopic nephrectomy | 2 | 1.5 | transurethral resection of the prostate | 1 | 0.8 |
wrist osteosynthesis | 2 | 1.5 | thoracoscopy | 1 | 0.8 |
sinusotomy | 2 | 1.5 | urethroplasty | 1 | 0.8 |
Variables | Nº of Colonies after Antisepsis | |||||
---|---|---|---|---|---|---|
N | Means | SD | Test | p | ||
Sex | Feminine | 23 | 5.5 | 15.0 | −0.42 | 0.677 |
Masculine | 109 | 5.4 | 18.7 | |||
Titration | Specialization | 112 | 4.5 | 16.4 | 6.67 a | 0.010 |
Master | 12 | 17.3 | 31.4 | |||
Doctor | 7 | 0.7 | 1.9 | |||
Brushing time (minutes) | 2 | 25 | 17.6 | 31.1 | −5.67 | 0.000 |
>2 | 106 | 2.6 | 11.9 | |||
knowledge of the six international goals for patient safety | No | 113 | 5.4 | 18.5 | −0.37 | 0.715 |
Yes | 18 | 5.6 | 16.3 | |||
Aseptic product | Chlorhexidine | 104 | 2.4 | 10.3 | −2.77 | 0.006 |
Others | 27 | 17.2 | 32.3 | |||
Variables | Nº of species after antisepsis | |||||
N | Means | SD | Test | p | ||
Sex | Feminine | 23 | 0.3 | 0.6 | −0.61 | 0.541 |
Masculine | 109 | 0.4 | 0.8 | |||
Titration | Specialization | 112 | 0.4 | 0.8 | 6.72 a | 0.010 |
Master | 12 | 1.0 | 1.1 | |||
Doctor | 7 | 0.1 | 0.4 | |||
Brushing time (minutes) | 2 | 25 | 1.2 | 1.2 | −5.56 | 0.000 |
>2 | 106 | 0.2 | 0.6 | |||
knowledge of the six international goals for patient safety | No | 113 | 0.4 | 0.8 | −0.36 | 0.720 |
Yes | 18 | 0.4 | 1.0 | |||
Aseptic product | Chlorhexidine | 104 | 0.3 | 0.7 | −2.26 | 0.024 |
Others | 27 | 0.7 | 1.2 |
Variables | Contamination of Surgeons’ Hands after Antisepsis | |||||||
---|---|---|---|---|---|---|---|---|
No | Yes | |||||||
n | % | n | % | Total | Chi-2 | p | ||
Sex | Feminine | 18 | 78.3 | 5 | 21.7 | 23 | 0.43 | 0.512 |
Masculine | 78 | 71.6 | 31 | 28.4 | 109 | |||
Titration | Specialization | 84 | 75.0 | 28 | 25.0 | 112 | 6.69 | 0.035 |
Master | 5 | 41.7 | 7 | 58.3 | 12 | |||
Doctor | 6 | 85.7 | 1 | 14.3 | 7 | |||
Aseptic product | Chlorhexidine | 80 | 76.9 | 24 | 23.1 | 104 | 4.91 | 0.027 |
Others | 15 | 55.6 | 12 | 44.4 | 27 | |||
Knowledge of the six international goals for patient safety | No | 81 | 71.7 | 32 | 28.3 | 113 | 0.29 | 0.591 |
Yes | 14 | 77.8 | 4 | 22.2 | 18 | |||
Hand-brushing time (minutes) | 2 | 7 | 28.0 | 18 | 72.0 | 25 | 30.73 | 0.001 |
>2 | 88 | 83.0 | 18 | 17.0 | 106 |
Variable Independent | Univariate | Multivariate | ||||
---|---|---|---|---|---|---|
p | OR | CI 95% | p | OR | CI 95% | |
Sex (Feminine) | 0.514 | 0.70 | 0.24–2.05 | |||
Titration (Specialization) | 0.129 | 0.46 | 0.17–1.25 | 0.502 | 0.56 | 0.10–3.06 |
Hand-brushing time (2 min) | 0.001 | 12.57 | 4.58–34.50 | 0.001 | 12.15 | 4.31–34.19 |
Knows the six safety measures (No) | 0.592 | 1.38 | 0.42–4.52 | |||
Antisepsis product (Chlorhexidine) | 0.030 | 0.38 | 0.15–0.91 | 0.170 | 0.49 | 0.17–1.36 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Serra Neto, A.; Marques, S.G.; Bomfim, M.R.Q.; Monteiro, S.G.; de Souza, R.C.; Nunes, R.A. Microbiological Analysis of Surgeons’ Hands in a Public Hospital in São Luis, Maranhão State, Brazil: A Cross-Sectional Study. Microorganisms 2023, 11, 1895. https://doi.org/10.3390/microorganisms11081895
Serra Neto A, Marques SG, Bomfim MRQ, Monteiro SG, de Souza RC, Nunes RA. Microbiological Analysis of Surgeons’ Hands in a Public Hospital in São Luis, Maranhão State, Brazil: A Cross-Sectional Study. Microorganisms. 2023; 11(8):1895. https://doi.org/10.3390/microorganisms11081895
Chicago/Turabian StyleSerra Neto, Artur, Sirlei G. Marques, Maria Rosa Q. Bomfim, Silvio G. Monteiro, Rosangela C. de Souza, and Rodolfo A. Nunes. 2023. "Microbiological Analysis of Surgeons’ Hands in a Public Hospital in São Luis, Maranhão State, Brazil: A Cross-Sectional Study" Microorganisms 11, no. 8: 1895. https://doi.org/10.3390/microorganisms11081895
APA StyleSerra Neto, A., Marques, S. G., Bomfim, M. R. Q., Monteiro, S. G., de Souza, R. C., & Nunes, R. A. (2023). Microbiological Analysis of Surgeons’ Hands in a Public Hospital in São Luis, Maranhão State, Brazil: A Cross-Sectional Study. Microorganisms, 11(8), 1895. https://doi.org/10.3390/microorganisms11081895