Response Surfaces Method and Artificial Intelligence Approaches for Modeling the Effects of Environmental Factors on Chlorophyll a in Isochrysis galbana
Abstract
:1. Introduction
2. Materials and Methods
2.1. Culture Condition
2.2. Determination of Chl a Content
2.3. Single Factor Experiment
2.4. Response Surface Methodology Model
2.5. ANN Regression Model
2.6. RBFNN Regression Model
2.7. SVM Regression Model
2.8. Performance Analysis of Models
3. Results
3.1. Single-Factor Experiment
3.1.1. Effect of Salinity
3.1.2. Effect of pH
3.1.3. Effect of Nitrogen Concentration
3.2. Response Surface Analysis
3.3. Statistical Analysis Using ANN
3.4. Statistical Analysis Using SVM
3.5. Statistical Analysis Using RBFNN
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Di Lena, G.; Casini, I.; Lucarini, M.; Lombardi-Boccia, G. Carotenoid profiling of five microalgae species from large-scale production. Food Res. Int. 2019, 120, 810–818. [Google Scholar] [CrossRef] [PubMed]
- Garofalo, C.; Norici, A.; Mollo, L.; Osimani, A.; Aquilanti, L. Fermentation of Microalgal Biomass for Innovative Food Production. Microorganisms 2022, 10, 2069. [Google Scholar] [CrossRef] [PubMed]
- Cao, J.Y.; Kong, Z.Y.; Ye, M.W.; Zhang, Y.F.; Xu, J.L.; Zhou, C.X.; Liao, K.; Yan, X.J. Metabolomic and transcriptomic analyses reveal the effects of ultraviolet radiation deprivation on Isochrysis galbana at high temperature. Algal Res. 2019, 38, 101424. [Google Scholar] [CrossRef]
- Su, J.; Ye, M.; Lou, Y.; Yang, Z.; Sun, T.; Zhang, R.; Xu, J.; Zhou, C.; Yan, X. Low-molecular-mass organic acid and lipid responses of Isochrysis galbana Parke to high temperature stress during the entire growth stage. Algal Res. 2017, 26, 93–103. [Google Scholar] [CrossRef]
- Zhao, Y.; Wang, H.P.; Han, B.; Yu, X. Coupling of abiotic stresses and phytohormones for the production of lipids and high-value by-products by microalgae: A review. Bioresour. Technol. 2019, 274, 549–556. [Google Scholar] [CrossRef]
- Ananthi, V.; Brindhadevi, K.; Pugazhendhi, A.; Arun, A. Impact of abiotic factors on biodiesel production by microalgae. Fuel 2021, 284, 118962. [Google Scholar] [CrossRef]
- Encarnação, T.; Burrows, H.D.; Pais, A.C.; Campos, M.G.; Kremer, A. Effect of N and P on the uptake of magnesium and iron and on the production of carotenoids and Chlorophyll by the microalgae Nannochloropsis sp. J. Agric. Sci. Technol. A 2012, 2, 824–832. [Google Scholar]
- Bartley, M.L.; Boeing, W.J.; Corcoran, A.A.; Holguin, F.O.; Schaub, T. Effects of salinity on growth and lipid accumulation of biofuel microalga Nannochloropsis salina and invading organisms. Biomass. Bioenergy 2013, 54, 83–88. [Google Scholar] [CrossRef]
- Begum, H.; Yusoff, F.M.; Banerjee, S.; Khatoon, H.; Din, M.M. Availability and utilization of pigments from microalgae. CRC Crit. Rev. Food Sci. Nutr. 2016, 56, 2209–2222. [Google Scholar] [CrossRef]
- Ahmad, M.T.; Shariff, M.; Yusoff, F.M.; Goh, Y.M.; Banerjee, S. Applications of microalga Chlorella vulgarisin aquaculture. Rev. Aquac. 2018, 12, 328–346. [Google Scholar] [CrossRef]
- Zarrinmehr, M.J.; Farhadian, O.; Heyrati, F.P.; Keramat, J.; Koutra, E.; Kornaros, M.; Daneshvar, E. Effect of nitrogen concentration on the growth rate and biochemical composition of the microalga, Isochrysis galbana. Egypt. J. Aquat. Res. 2020, 46, 153–158. [Google Scholar] [CrossRef]
- Wang, M.; Shi, L.D.; Lin, D.X.; Qiu, D.S.; Chen, J.P.; Tao, X.M.; Tian, G.M. Characteristics and performances of microalgal-bacterial consortia in a mixture of raw piggery digestate and anoxic aerated effluent. Bioresour. Technol. 2020, 309, 123363. [Google Scholar] [CrossRef] [PubMed]
- da Silva, F.V.; Sant’Anna, C. Impact of culture conditions on the chlorophyll content of microalgae for biotechnological applications. World. J. Microb. Biot. 2017, 33, 20. [Google Scholar] [CrossRef] [PubMed]
- Jaafari, J.; Yaghmaeian, K. Optimization of heavy metal biosorption onto freshwater algae (Chlorella coloniales) using response surface methodology (RSM). Chemosphere 2019, 217, 447–455. [Google Scholar] [CrossRef]
- Alketife, A.M.; Judd, S.; Znad, H. Synergistic effects and optimization of nitrogen and phosphorus concentrations on the growth and nutrient uptake of a freshwater Chlorella vulgaris. Environ. Technol. 2017, 38, 94–102. [Google Scholar] [CrossRef]
- Amin, M.; Chetpattananondh, P.; Khan, M.N.; Mushtaq, F.; Sami, S.K. Extraction and quantification of chlorophyll from microalgae Chlorella sp. IOP Conf. Ser. Mater. Sci. Eng. 2018, 414, 012025. [Google Scholar] [CrossRef]
- Mehra, A.; Jutur, P.P. Application of response surface methodology (RSM) for optimizing biomass production in Nannochloropsis oculata UTEX 2164. J. Appl. Phycol. 2022, 34, 1893–1907. [Google Scholar] [CrossRef]
- Hossain, S.M.Z.; Sultana, N.; Razzak, S.A.; Hossain, M.M. Modeling and multi-objective optimization of microalgae biomass production and CO2 biofixation using hybrid intelligence approaches. Renew. Sustain. Energy Rev. 2022, 157, 112016. [Google Scholar] [CrossRef]
- Mutwil, M. Computational approaches to unravel the pathways and evolution of specialized metabolism. Curr. Opin. Plant Biol. 2020, 55, 38–46. [Google Scholar] [CrossRef] [PubMed]
- Teng, S.Y.; Yew, G.Y.; Sukacova, K.; Show, P.L.; Masa, V.; Chang, J.S. Microalgae with artificial intelligence: A digitalized perspective on genetics, systems and products. Biotechnol. Adv. 2020, 44, 107631. [Google Scholar] [CrossRef]
- Alarifi, I.M.; Nguyen, H.M.; Bakhtiyari, A.N.; Asadi, A. Feasibility of ANFIS-PSO and ANFIS-GA models in predicting thermophysical properties of Al2O3-MWCNT/Oil hybrid nanofluid. Materials 2019, 12, 3628. [Google Scholar] [CrossRef] [Green Version]
- García-Nieto, P.J.; García-Gonzalo, E.; Sánchez Lasheras, F.; Alonso Fernández, J.R.; Díaz Muñiz, C. A hybrid DE optimized wavelet kernel SVR-based technique for algal atypical proliferation forecast in La Barca reservoir: A case study. J. Comput. Appl. Math. 2020, 366, 112417. [Google Scholar] [CrossRef]
- Sonmez, M.E.; Eczacıoglu, N.; Gumuş, N.E.; Aslan, M.F.; Sabanci, K.; Aşikkutlu, B. Convolutional neural network—Support vector machine based approach for classification of Cyanobacteria and Chlorophyta microalgae groups. Algal Res. 2022, 61, 102568. [Google Scholar] [CrossRef]
- Eze, E.; Kirby, S.; Attridge, J.; Ajmal, T. Time Series Chlorophyll-a Concentration Data Analysis: A Novel Forecasting Model for Aquaculture Industry. In Proceedings of the 7th International Conference on Time Series and Forecasting, Gran Canaria, Spain, 19–21 July 2021. [Google Scholar]
- Tunali, M.; Uzoefuna, E.N.; Tunali, M.M.; Yenigun, O. Effect of microplastics and microplastic-metal combinations on growth and chlorophyll a concentration of Chlorella vulgaris. Sci. Total Environ. 2020, 743, 140149. [Google Scholar] [CrossRef]
- Srivastava, G.; Paul, A.K.; Goud, V.V. Optimization of non-catalytic transesterification of microalgae oil to biodiesel under supercritical methanol condition. Energy Convers. Manag. 2018, 156, 269–278. [Google Scholar] [CrossRef]
- Chang, C.C.; Lin, C.J. LIBSVM: A library for support vector machines. ACM Trans. Intell. Syst. Technol. 2007, 2, 1–27. [Google Scholar] [CrossRef]
- Haris, N.; Manan, H.; Jusoh, M.; Khatoon, H.; Katayama, T.; Kasan, N.A. Effect of different salinity on the growth performance and proximate composition of isolated indigenous microalgae species. Aquac. Rep. 2022, 22, 100925. [Google Scholar] [CrossRef]
- Alkhamis, Y.; Qin, J.G. Cultivation of Isochrysis galbanain phototrophic, heterotrophic, and mixotrophic conditions. Biomed. Res. Int. 2013, 2013, 983465. [Google Scholar] [CrossRef] [Green Version]
- Sukenik, A.; Wahnon, R. Biochemical quality of marine unicellular algae with special emphasis on lipid composition of Isochrysis galbana. Aquaculture 1991, 97, 61–72. [Google Scholar] [CrossRef]
- Jeyakumar, B.; Shanmugam, K. Lowering the culture medium temperature improves the omega-3 fatty acid production in marine microalga Isochrysis sp. CASA CC 101. Prep. Biochem. Biotechnol. 2020, 51, 511–518. [Google Scholar]
- Marchetti, J.; Bougaran, G.; Dean, L.L.; Mégrier, C.; Lukomska, E.; Kaas, R.; Olivo, E.; Baron, R.; Robert, R.; Cadoret, J.P. Optimizing conditions for the continuous culture of Isochrysis affinis galbana relevant to commercial hatcheries. Aquaculture 2012, 326, 106–115. [Google Scholar] [CrossRef] [Green Version]
- Mu, X.H.; Chen, Y.L. The physiological response of photosynthesis to nitrogen deficiency. Plant Physiol. Bioch. 2021, 158, 76–82. [Google Scholar] [CrossRef] [PubMed]
- Jerez, C.G.; Malapascua, J.R.; Sergejevova, M.; Figueroa, F.L. Effect of nutrient starvation under high irradiance on lipid and starch accumulation in Chlorella fusca (Chlorophyta). Mar. Biotechnol. 2016, 18, 24–36. [Google Scholar] [CrossRef]
- Muhammad, G.; Potchamyou Ngatcha, A.D.; Lv, Y.; Xiong, W.; El-Badry, Y.A.; Asmatulu, E.; Xu, J.; Alam, M.A. Enhanced biodiesel production from wet microalgae biomass optimized via response surface methodology and artificial neural network. Renew. Energy 2022, 184, 753–764. [Google Scholar] [CrossRef]
- Mohamed, M.S.; Tan, J.S.; Mohamad, R.; Mokhtar, M.N.; Ariff, A.B. Comparative analyses of response surface methodology and artificial neural network on medium optimization for Tetraselmis sp. FTC209 grown under mixotrophic condition. Sci. World J. 2013, 2013, 948940. [Google Scholar] [CrossRef] [Green Version]
- Gu, S.M.; Sun, X.H.; Wu, Y.H.; Cui, Z. An approach to forecast red tide using. In Proceedings of the 8th International Conference on Natural Computation, Chongqing, China, 29–31 May 2012; Volume 978, p. 2133. [Google Scholar]
- Bhattacharjee, R.; Gupta, A.; Das, N.; Agnihotri, A.K.; Ohri, A.; Gaur, S. Analysis of algal bloom intensification in mid-Ganga river, India, using satellite data and neural network techniques. Environ. Monit. Assess. 2022, 194, 547. [Google Scholar] [CrossRef]
- Sultana, N.; Hossain, S.M.Z.; Abusaad, M.; Alanbar, N.; Senan, Y.; Razzak, S.A. Prediction of biodiesel production from microalgal oil using Bayesian optimization algorithm-based machine learning approaches. Fuel 2022, 309, 122184. [Google Scholar] [CrossRef]
Hyperplane Parameters | Parameters | Hyperplane Parameters | Parameters |
---|---|---|---|
C | 4 | Kernel function | ‘rbf’ |
Degree | 3 | Gamma | 0.8 |
Epsilon | 0.01 |
Source of Variance | Sum of Squares | Degree of Freedom | Mean Square | F Value | p Value | Salience |
---|---|---|---|---|---|---|
Model | 222,500 | 9 | 24,721.72 | 6.53 | 0.0109 | Significant |
A | 329.10 | 1 | 329.10 | 0.087 | 0.7767 | / |
B | 4261.28 | 1 | 4261.28 | 1.13 | 0.3240 | / |
C | 2480.90 | 1 | 2480.90 | 0.66 | 0.4449 | / |
AB | 1339.49 | 1 | 1339.49 | 0.35 | 0.5707 | / |
AC | 3529.40 | 1 | 3529.40 | 0.93 | 0.3665 | / |
BC | 70.46 | 1 | 70.46 | 0.019 | 0.8953 | / |
A2 | 43,800.30 | 1 | 43,800.30 | 11.57 | 0.0114 | / |
B2 | 111,500 | 1 | 111,500 | 30.49 | 0.0009 | / |
C2 | 31,304.67 | 1 | 31,304.67 | 8.27 | 0.0238 | / |
Residual | 26,507.03 | 7 | 3786.72 | / | / | / |
Misfit term | 5947.84 | 3 | 1982.61 | 0.39 | 0.7700 | Inconspicuous |
Error term | 20,599.18 | 4 | 5139.80 | / | / | / |
Summation | 249,000 | 16 | / | / | / | / |
Parameters | RSM | ANN | SVM | RBFNN |
---|---|---|---|---|
R2 | 0.8935 | 0.9113 | 0.9127 | 0.9185 |
MSE | 0.0095 | 0.0087 | 0.0086 | 0.0083 |
RMSE | 0.0392 | 0.0359 | 0.0356 | 0.0344 |
MAE Cycle number | 0.0312 NaN | 0.0229 159 | 0.0208 32 | 0.0169 1 |
Numbers | A | B | C | Chl a Content (mg/L) | ||||
---|---|---|---|---|---|---|---|---|
Real Value | RSM | ANN | SVM | RBFNN | ||||
1 | 7.0 | 30 | 105.0 | 0.33 | 0.34 | 0.32 | 0.37 | 0.33 |
2 | 7.0 | 30 | 45.0 | 0.32 | 0.31 | 0.30 | 0.22 | 0.32 |
3 | 7.0 | 40 | 75.0 | 0.26 | 0.29 | 0.26 | 0.50 | 0.26 |
4 | 9.0 | 40 | 75.0 | 0.22 | 0.24 | 0.22 | 0.26 | 0.22 |
5 | 8.0 | 30 | 75.0 | 0.59 | 0.51 | 0.51 | 0.22 | 0.51 |
6 | 8.0 | 40 | 105.0 | 0.30 | 0.27 | 0.30 | 0.23 | 0.30 |
7 | 8.0 | 30 | 75.0 | 0.43 | 0.51 | 0.51 | 0.31 | 0.51 |
8 | 8.0 | 30 | 75.0 | 0.45 | 0.51 | 0.51 | 0.50 | 0.51 |
9 | 8.0 | 40 | 45.0 | 0.31 | 0.30 | 0.31 | 0.20 | 0.31 |
10 | 8.0 | 20 | 105.0 | 0.20 | 0.22 | 0.19 | 0.32 | 0.20 |
11 | 9.0 | 20 | 75.0 | 0.26 | 0.23 | 0.26 | 0.33 | 0.26 |
12 | 7.0 | 20 | 75.0 | 0.23 | 0.21 | 0.23 | 0.50 | 0.23 |
13 | 9.0 | 30 | 45.0 | 0.37 | 0.36 | 0.34 | 0.30 | 0.37 |
14 | 8.0 | 20 | 45.0 | 0.22 | 0.26 | 0.24 | 0.24 | 0.22 |
15 | 8.0 | 30 | 75.0 | 0.57 | 0.51 | 0.51 | 0.50 | 0.51 |
16 | 8.0 | 30 | 75.0 | 0.50 | 0.51 | 0.51 | 0.50 | 0.51 |
17 | 9.0 | 30 | 105.0 | 0.25 | 0.26 | 0.24 | 0.27 | 0.25 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, L.; Liu, J.; Shen, X.; Li, S.; Li, W.; Xiao, X. Response Surfaces Method and Artificial Intelligence Approaches for Modeling the Effects of Environmental Factors on Chlorophyll a in Isochrysis galbana. Microorganisms 2023, 11, 1875. https://doi.org/10.3390/microorganisms11081875
Zhang L, Liu J, Shen X, Li S, Li W, Xiao X. Response Surfaces Method and Artificial Intelligence Approaches for Modeling the Effects of Environmental Factors on Chlorophyll a in Isochrysis galbana. Microorganisms. 2023; 11(8):1875. https://doi.org/10.3390/microorganisms11081875
Chicago/Turabian StyleZhang, Linlin, Jie Liu, Xin Shen, Shuangwei Li, Wenfang Li, and Xinfeng Xiao. 2023. "Response Surfaces Method and Artificial Intelligence Approaches for Modeling the Effects of Environmental Factors on Chlorophyll a in Isochrysis galbana" Microorganisms 11, no. 8: 1875. https://doi.org/10.3390/microorganisms11081875
APA StyleZhang, L., Liu, J., Shen, X., Li, S., Li, W., & Xiao, X. (2023). Response Surfaces Method and Artificial Intelligence Approaches for Modeling the Effects of Environmental Factors on Chlorophyll a in Isochrysis galbana. Microorganisms, 11(8), 1875. https://doi.org/10.3390/microorganisms11081875