Updates on the Virulence Factors Produced by Multidrug-Resistant Enterobacterales and Strategies to Control Their Infections
Abstract
:1. Introduction
1.1. Virulence Factors Produced by E. coli and Other Enterobacterales Members
1.1.1. Adhesins
1.1.2. Fimbriae
1.1.3. Curli and Amyloid Fibers
1.2. Secretion System
1.3. Toxins
1.4. Lipopolysaccharides and Capsules
1.5. Iron Acquisition
1.6. Antimicrobial Resistance
1.7. Plasmids
1.8. Flagella
1.9. Biofilm
2. Strategies to Combat Bacterial Infections
2.1. Conventional or Traditional Approaches
2.1.1. Antibacterial Agents
- Beta-lactamases—Beta-lactams target penicillin-binding proteins (PBPs) primarily and make them unavailable for new peptidoglycan synthesis. This peptidoglycan synthesis disruption causes bacterial cell lysis.
- Cephalosporins—hydrolyze the ester and amide bond of beta-lactam rings.
- Fidaxomicin (macrocyclic antibiotics)—It inhibits RNA polymerase and prevents transcription.
- Glycopeptides—target the D-alanyl D-alanine peptide side chain of the peptidoglycan precursor subunit. Vancomycin inhibits cell wall synthesis by blocking the D-alanyl subunit binding with the PBP.
- Quinolones—inhibit the bacterial DNA gyrase enzyme.
- Aminoglycosides—bind with the 16S rRNA 30S subunit and cause misreading and premature termination of mRNA translation.
- Pleuromutilins—retapamulin, a pleuromutilin derivative, binds to domain V of 23S rRNA and inhibits protein synthesis in bacteria.
- Macrolides—inhibit protein synthesis by targeting peptidyl transferase, leading to premature peptide chain detachment.
2.1.2. Antibiofilm Agents
2.1.3. Inhibition of Quorum Sensing
2.1.4. Disruption of Bacterial Amyloids
2.1.5. Dissolution of eDNA
2.1.6. DNA Topoisomerase Inhibitors
2.2. Alternative Approaches to Combating Bacterial Infections
2.2.1. Photodynamic Therapy (PDT)
2.2.2. Antioxidants to Control Biofilm
2.2.3. Smart Materials against Bacteria
2.2.4. Enzymatic Degradation of Biofilms
2.2.5. CRISPR-Cas in Infection Control
3. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Terlizzi, M.E.; Gribaudo, G.; Maffei, M.E. UroPathogenic Escherichia coli (UPEC) Infections: Virulence Factors, Bladder Responses, Antibiotic, and Non-Antibiotic Antimicrobial Strategies. Front. Microbiol. 2017, 8, 1566. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Theriault, N.; Tillotson, G.; Sandrock, C.E. Global Travel and Gram-Negative Bacterial Resistance; Implications on Clinical Management. Expert Rev. Anti-Infect. Ther. 2021, 19, 181–196. [Google Scholar] [CrossRef] [PubMed]
- Rock, C.; Donnenberg, M.S. Human Pathogenic Enterobacteriaceae, 3rd ed.; Elsevier: Amsterdam, The Netherlands, 2014; ISBN 9780128012383. [Google Scholar]
- Jenkins, C.; Rentenaar, R.J.; Landraud, L.; Brisse, S. 180—Enterobacteriaceae, 4th ed.; Cohen, J., Powderly, W.G., Opal, S.M., Eds.; Elsevier: Amsterdam, The Netherlands, 2017; pp. 1565–1578.e2. ISBN 978-0-7020-6285-8. [Google Scholar]
- Azimi, T.; Azimi, L.; Fallah, F.; Pourmand, M.R.; Ostadtaghizadeh, A.; Abai, M.R.; Rahimi Foroushani, A. Detection and Characterization of Enterobacteriaceae Family Members Carried by Commensal Rattus Norvegicus from Tehran, Iran. Arch. Microbiol. 2021, 203, 1321–1334. [Google Scholar] [CrossRef] [PubMed]
- Octavia, S.; Lan, R. The Family Enterobacteriaceae BT—The Prokaryotes: Gammaproteobacteria; Rosenberg, E., DeLong, E.F., Lory, S., Stackebrandt, E., Thompson, F., Eds.; Springer: Berlin/Heidelberg, Germany, 2014; pp. 225–286. ISBN 978-3-642-38922-1. [Google Scholar]
- Janda, J.M.; Abbott, S.L. The Changing Face of the Family Enterobacteriaceae (Order: “Enterobacterales”): New Members, Taxonomic Issues, Geographic Expansion, and New Diseases and Disease Syndromes. Clin. Microbiol. Rev. 2021, 3434, e00174-20. [Google Scholar] [CrossRef]
- Paterson, D.L. Resistance in Gram-Negative Bacteria: Enterobacteriaceae. Am. J. Infect. Control 2006, 34, 20–28. [Google Scholar] [CrossRef]
- Oliveira, J.; Reygaert, W.C. Gram Negative Bacteria; StatPearls Publishing: Treasure Island, FL, USA, 2020. [Google Scholar]
- Smith, H.Z.; Kendall, B. Carbapenem Resistant Enterobacteriacea; StatPearls Publishing: Treasure Island, FL, USA, 2020. [Google Scholar]
- Desvaux, M.; Dalmasso, G.; Beyrouthy, R.; Barnich, N.; Delmas, J.; Bonnet, R. Pathogenicity Factors of Genomic Islands in Intestinal and Extraintestinal Escherichia coli. Front. Microbiol. 2020, 11, 2065. [Google Scholar] [CrossRef]
- Schreiber, H.L.; Conover, M.S.; Chou, W.C.; Hibbing, M.E.; Manson, A.L.; Dodson, K.W.; Hannan, T.J.; Roberts, P.L.; Stapleton, A.E.; Hooton, T.M.; et al. Bacterial Virulence Phenotypes of Escherichia coli and Host Susceptibility Determine Risk for Urinary Tract Infections. Sci. Transl. Med. 2017, 9, eaaf1283. [Google Scholar] [CrossRef] [Green Version]
- Grozdanov, L.; Raasch, C.; Schulze, J.; Sonnenborn, U.; Gottschalk, G.; Hacker, J.; Dobrindt, U. Analysis of the Genome Structure of the Nonpathogenic Probiotic Escherichia coli Strain Nissle 1917. J. Bacteriol. 2004, 186, 5432–5441. [Google Scholar] [CrossRef] [Green Version]
- Möndel, M.; Schroeder, B.O.; Zimmermann, K.; Huber, H.; Nuding, S.; Beisner, J.; Fellermann, K.; Stange, E.F.; Wehkamp, J. Probiotic E. coli Treatment Mediates Antimicrobial Human β-Defensin Synthesis and Fecal Excretion in Humans. Mucosal Immunol. 2009, 2, 166–172. [Google Scholar] [CrossRef] [Green Version]
- Fábrega, M.J.; Rodríguez-Nogales, A.; Garrido-Mesa, J.; Algieri, F.; Badía, J.; Giménez, R.; Gálvez, J.; Baldomà, L. Intestinal Anti-Inflammatory Effects of Outer Membrane Vesicles from Escherichia coli Nissle 1917 in DSS-Experimental Colitis in Mice. Front. Microbiol. 2017, 8, 1274. [Google Scholar] [CrossRef] [Green Version]
- Lan, Y.-J.; Tan, S.-I.; Cheng, S.-Y.; Ting, W.-W.; Xue, C.; Lin, T.-H.; Cai, M.-Z.; Chen, P.-T.; Ng, I.-S. Development of Escherichia coli Nissle 1917 Derivative by CRISPR/Cas9 and Application for Gamma-Aminobutyric Acid (GABA) Production in Antibiotic-Free System. Biochem. Eng. J. 2021, 168, 107952. [Google Scholar] [CrossRef]
- Köhler, C.D.; Dobrindt, U. What Defines Extraintestinal Pathogenic Escherichia coli? Int. J. Med. Microbiol. 2011, 301, 642–647. [Google Scholar] [CrossRef] [PubMed]
- Brons, J.K.; Vink, S.N.; de Vos, M.G.J.; Reuter, S.; Dobrindt, U.; van Elsas, J.D. Fast Identification of Escherichia coli in Urinary Tract Infections Using a Virulence Gene Based PCR Approach in a Novel Thermal Cycler. J. Microbiol. Methods 2020, 169, 105799. [Google Scholar] [CrossRef]
- Forsyth, V.S.; Himpsl, S.D.; Smith, S.N.; Sarkissian, C.A.; Mike, L.A.; Stocki, J.A.; Sintsova, A.; Alteri, C.J.; Mobley, H.L.T. Optimization of an Experimental Vaccine to Prevent Escherichia coli Urinary Tract Infection. mBio 2020, 11, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Müller, C.M.; Åberg, A.; Straseviçiene, J.; Emody, L.; Uhlin, B.E.; Balsalobre, C. Type 1 Fimbriae, a Colonization Factor of Uropathogenic Escherichia coli, Are Controlled by the Metabolic Sensor CRP-CAMP. PLoS Pathog. 2009, 5, e1000303. [Google Scholar] [CrossRef] [Green Version]
- Sarowska, J.; Futoma-Koloch, B.; Jama-Kmiecik, A.; Frej-Madrzak, M.; Ksiazczyk, M.; Bugla-Ploskonska, G.; Choroszy-Krol, I. Virulence Factors, Prevalence and Potential Transmission of Extraintestinal Pathogenic Escherichia coli Isolated from Different Sources: Recent Reports. Gut Pathog. 2019, 11, 10. [Google Scholar] [CrossRef] [Green Version]
- Schroll, C.; Barken, K.B.; Krogfelt, K.A.; Struve, C. Role of Type 1 and Type 3 Fimbriae in Klebsiella Pneumoniae Biofilm Formation. BMC Microbiol. 2010, 10, 179. [Google Scholar] [CrossRef] [Green Version]
- Ong, C.Y.; Beatson, S.A.; Totsika, M.; Forestier, C.; McEwan, A.G.; Schembri, M.A. Molecular Analysis of Type 3 Fimbrial Genes from Escherichia coli, Klebsiella and Citrobacter Species. BMC Microbiol. 2010, 10, 183. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lasaro, M.A.; Salinger, N.; Zhang, J.; Wang, Y.; Zhong, Z.; Goulian, M.; Zhu, J. F1C Fimbriae Play an Important Role in Biofilm Formation and Intestinal Colonization by the Escherichia coli Commensal Strain Nissle 1917. Appl. Environ. Microbiol. 2009, 75, 246–251. [Google Scholar] [CrossRef] [Green Version]
- Spurbeck, R.R.; Stapleton, A.E.; Johnson, J.R.; Walk, S.T.; Hooton, T.M.; Mobley, H.L.T. Fimbrial Profiles Predict Virulence of Uropathogenic Escherichia coli Strains: Contribution of Ygi and Yad Fimbriae. Infect. Immun. 2011, 79, 4753–4763. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Johnson, J.R. Virulence Factors in Escherichia coli Urinary Tract Infection. Clin. Microbiol. Rev. 1991, 4, 80–128. [Google Scholar] [CrossRef]
- Weening, E.H.; Barker, J.D.; Laarakker, M.C.; Humphries, A.D.; Tsolis, R.M.; Bäumler, A.J. The Salmonella Enterica Serotype Typhimurium Lpf, Bcf, Stb, Stc, Std, and Sth Fimbrial Operons Are Required for Intestinal Persistence in Mice. Infect. Immun. 2005, 73, 3358–3366. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zalewska, B.; Piątek, R.; Bury, K.; Samet, A.; Nowicki, B.; Nowicki, S.; Kur, J. A Surface-Exposed DraD Protein of Uropathogenic Escherichia coli Bearing Dr Fimbriae May Be Expressed and Secreted Independently from DraC Usher and DraE Adhesin. Microbiology 2005, 151, 2477–2486. [Google Scholar] [CrossRef] [PubMed]
- Alvarez-Fraga, L.; Phan, M.-D.; Goh, K.G.K.; Nhu, N.T.K.; Hancock, S.J.; Allsopp, L.P.; Peters, K.M.; Forde, B.M.; Roberts, L.W.; Sullivan, M.J.; et al. Differential Afa/Dr Fimbriae Expression in the Multidrug-Resistant Escherichia coli ST131 Clone. mBio 2022, 13, e0351921. [Google Scholar] [CrossRef] [PubMed]
- Barnhart, M.M.; Chapman, M.R. Curli Biogenesis and Function. Annu. Rev. Microbiol. 2006, 60, 131–147. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kostakioti, M.; Stathopoulos, C. Functional Analysis of the Tsh Autotransporter from an Avian Pathogenic Escherichia coli Strain. Infect. Immun. 2004, 72, 5548–5554. [Google Scholar] [CrossRef] [Green Version]
- Dautin, N. Serine Protease Autotransporters of Enterobacteriaceae (SPATEs): Biogenesis and Function. Toxins 2010, 2, 1179–1206. [Google Scholar] [CrossRef] [Green Version]
- Thomas, S.; Holland, I.B.; Schmitt, L. The Type 1 Secretion Pathway—The Hemolysin System and Beyond. Biochim. Biophys. Acta 2014, 1843, 1629–1641. [Google Scholar] [CrossRef] [Green Version]
- Coburn, B.; Sekirov, I.; Finlay, B.B. Type III Secretion Systems and Disease. Clin. Microbiol. Rev. 2007, 20, 535–549. [Google Scholar] [CrossRef] [Green Version]
- Meuskens, I.; Saragliadis, A.; Leo, J.C.; Linke, D. Type V Secretion Systems: An Overview of Passenger Domain Functions. Front. Microbiol. 2019, 10, 1163. [Google Scholar] [CrossRef] [Green Version]
- Gallique, M.; Bouteiller, M.; Merieau, A. The Type VI Secretion System: A Dynamic System for Bacterial Communication? Front. Microbiol. 2017, 8, 1454. [Google Scholar] [CrossRef] [PubMed]
- Navarro-Garcia, F.; Ruiz-Perez, F.; Cataldi, Á.; Larzábal, M. Type VI Secretion System in Pathogenic Escherichia coli: Structure, Role in Virulence, and Acquisition. Front. Microbiol. 2019, 10, 1965. [Google Scholar] [CrossRef] [Green Version]
- Raetz, C.R.H.; Whitfield, C. Lipopolysaccharide Endotoxins. Annu. Rev. Biochem. 2002, 71, 635–700. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burgos, Y.; Beutin, L. Common Origin of Plasmid Encoded Alpha-Hemolysin Genes in Escherichia coli. BMC Microbiol. 2010, 10, 193. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kawanishi, M.; Shimohara, C.; Oda, Y.; Hisatomi, Y.; Tsunematsu, Y.; Sato, M.; Hirayama, Y.; Miyoshi, N.; Iwashita, Y.; Yoshikawa, Y.; et al. Genotyping of a Gene Cluster for Production of Colibactin and in Vitro Genotoxicity Analysis of Escherichia coli Strains Obtained from the Japan Collection of Microorganisms. Genes Environ. 2020, 42, 12. [Google Scholar] [CrossRef] [Green Version]
- Mader, A.; von Bronk, B.; Ewald, B.; Kesel, S.; Schnetz, K.; Frey, E.; Opitz, M. Amount of Colicin Release in Escherichia coli Is Regulated by Lysis Gene Expression of the Colicin E2 Operon. PLoS ONE 2015, 10, e0119124. [Google Scholar] [CrossRef] [Green Version]
- Hinenoya, A.; Shima, K.; Asakura, M.; Nishimura, K.; Tsukamoto, T.; Ooka, T.; Hayashi, T.; Ramamurthy, T.; Faruque, S.M.; Yamasaki, S. Molecular Characterization of Cytolethal Distending Toxin Gene-Positive Escherichia coli from Healthy Cattle and Swine in Nara, Japan. BMC Microbiol. 2014, 14, 97. [Google Scholar] [CrossRef] [Green Version]
- Fabbri, A.; Travaglione, S.; Fiorentini, C. Escherichia coli Cytotoxic Necrotizing Factor 1 (CNF1): Toxin Biology, in Vivo Applications and Therapeutic Potential. Toxins 2010, 2, 283–296. [Google Scholar] [CrossRef] [Green Version]
- Murase, K.; Martin, P.; Porcheron, G.; Houle, S.; Helloin, E.; Pénary, M.; Nougayrède, J.-P.; Dozois, C.M.; Hayashi, T.; Oswald, E. HlyF Produced by Extraintestinal Pathogenic Escherichia coli Is a Virulence Factor That Regulates Outer Membrane Vesicle Biogenesis. J. Infect. Dis. 2016, 213, 856–865. [Google Scholar] [CrossRef] [Green Version]
- Singh, J.K.; Adams, F.G.; Brown, M.H. Diversity and Function of Capsular Polysaccharide in Acinetobacter baumannii. Front. Microbiol. 2019, 9, 3301. [Google Scholar] [CrossRef]
- Chen, Y.; Dai, J.; Morris, J.G.; Johnson, J.A. Genetic Analysis of the Capsule Polysaccharide (K Antigen) and Exopolysaccharide Genes in Pandemic Vibrio Parahaemolyticus O3:K6. BMC Microbiol. 2010, 10, 274. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, S.; Xi, D.; Jing, F.; Kong, D.; Wu, J.; Feng, L.; Cao, B.; Wang, L. Genetic Diversity of K-Antigen Gene Clusters of Escherichia coli and Their Molecular Typing Using a Suspension Array. Can. J. Microbiol. 2018, 64, 231–241. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- DebRoy, C.; Fratamico, P.M.; Yan, X.; Baranzoni, G.; Liu, Y.; Needleman, D.S.; Tebbs, R.; O’Connell, C.D.; Allred, A.; Swimley, M.; et al. Comparison of O-Antigen Gene Clusters of All O-Serogroups of Escherichia coli and Proposal for Adopting a New Nomenclature for O-Typing. PLoS ONE 2016, 11, e0147434. [Google Scholar] [CrossRef] [Green Version]
- Massip, C.; Oswald, E. Siderophore-Microcins in Escherichia coli: Determinants of Digestive Colonization, the First Step Toward Virulence. Front. Cell. Infect. Microbiol. 2020, 10, 381. [Google Scholar] [CrossRef] [PubMed]
- Ejaz, H.; Younas, S.; Abosalif, K.O.A.; Junaid, K.; Alzahrani, B.; Alsrhani, A.; Abdalla, A.E.; Ullah, M.I.; Qamar, M.U.; Hamam, S.S.M. Molecular Analysis of BlaSHV, BlaTEM, and BlaCTX-M in Extended-Spectrum β-Lactamase Producing Enterobacteriaceae Recovered from Fecal Specimens of Animals. PLoS ONE 2021, 16, e0245126. [Google Scholar] [CrossRef]
- Singh, N.S.; Singhal, N.; Virdi, J.S. Genetic Environment of BlaTEM-1, BlaCTX-M-15, BlaCMY-42 and Characterization of Integrons of Escherichia coli Isolated From an Indian Urban Aquatic Environment. Front. Microbiol. 2018, 9, 382. [Google Scholar] [CrossRef] [Green Version]
- Liang, C.; Xing, B.; Yang, X.; Fu, Y.; Feng, Y.; Zhang, Y. Molecular Epidemiology of Aminoglycosides Resistance on Klebsiella Pneumonia in a Hospital in China. Int. J. Clin. Exp. Med. 2015, 8, 1381–1385. [Google Scholar]
- Salah, F.D.; Soubeiga, S.T.; Ouattara, A.K.; Sadji, A.Y.; Metuor-Dabire, A.; Obiri-Yeboah, D.; Banla-Kere, A.; Karou, S.; Simpore, J. Distribution of Quinolone Resistance Gene (Qnr) in ESBL-Producing Escherichia coli and Klebsiella Spp. in Lomé, Togo. Antimicrob. Resist. Infect. Control 2019, 8, 104. [Google Scholar] [CrossRef] [Green Version]
- Lim, J.Y.; La, H.J.; Sheng, H.; Forney, L.J.; Hovde, C.J. Influence of Plasmid PO157 on Escherichia coli O157:H7 Sakai Biofilm Formation. Appl. Environ. Microbiol. 2010, 76, 963–966. [Google Scholar] [CrossRef] [Green Version]
- Tobe, T.; Hayashi, T.; Han, C.-G.; Schoolnik, G.K.; Ohtsubo, E.; Sasakawa, C. Complete DNA Sequence and Structural Analysis of the Enteropathogenic Escherichia coli Adherence Factor Plasmid. Infect. Immun. 1999, 67, 5455–5462. [Google Scholar] [CrossRef]
- Ietswaart, R.; Szardenings, F.; Gerdes, K.; Howard, M. Competing ParA Structures Space Bacterial Plasmids Equally over the Nucleoid. PLoS Comput. Biol. 2014, 10, e1004009. [Google Scholar] [CrossRef]
- Zagaglia, C.; Casalino, M.; Colonna, B.; Conti, C.; Calconi, A.; Nicoletti, M. Virulence Plasmids of Enteroinvasive Escherichia coli and Shigella Flexneri Integrate into a Specific Site on the Host Chromosome: Integration Greatly Reduces Expression of Plasmid-Carried Virulence Genes. Infect. Immun. 1991, 59, 792–799. [Google Scholar] [CrossRef] [Green Version]
- Lan, R.; Stevenson, G.; Reeves, P.R. Comparison of Two Major Forms of the Shigella Virulence Plasmid PINV: Positive Selection Is a Major Force Driving the Divergence. Infect. Immun. 2003, 71, 6298–6306. [Google Scholar] [CrossRef] [Green Version]
- Froehlich, B.; Parkhill, J.; Sanders, M.; Quail, M.A.; Scott, J.R. The PCoo Plasmid of Enterotoxigenic Escherichia coli Is a Mosaic Cointegrate. J. Bacteriol. 2005, 187, 6509–6516. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jønsson, R.; Struve, C.; Boll, E.J.; Boisen, N.; Joensen, K.G.; Sørensen, C.A.; Jensen, B.H.; Scheutz, F.; Jenssen, H.; Krogfelt, K.A. A Novel PAA Virulence Plasmid Encoding Toxins and Two Distinct Variants of the Fimbriae of Enteroaggregative Escherichia coli. Front. Microbiol. 2017, 8, 263. [Google Scholar] [CrossRef] [Green Version]
- Rohde, J.R.; Luan, X.S.; Rohde, H.; Fox, J.M.; Minnich, S.A. The Yersinia Enterocolitica PYV Virulence Plasmid Contains Multiple Intrinsic DNA Bends Which Melt at 37 Degrees C. J. Bacteriol. 1999, 181, 4198–4204. [Google Scholar] [CrossRef] [Green Version]
- Gauger, E.J.; Leatham, M.P.; Mercado-Lubo, R.; Laux, D.C.; Conway, T.; Cohen, P.S. Role of Motility and the FlhDC Operon in Escherichia coli MG1655 Colonization of the Mouse Intestine. Infect. Immun. 2007, 75, 3315–3324. [Google Scholar] [CrossRef] [Green Version]
- Albanna, A.; Sim, M.; Hoskisson, P.A.; Gillespie, C.; Rao, C.V.; Aldridge, P.D. Driving the Expression of the Salmonella Enterica Sv Typhimurium Flagellum Using FlhDC from Escherichia coli Results in Key Regulatory and Cellular Differences. Sci. Rep. 2018, 8, 16705. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Di Domenico, E.G.; Farulla, I.; Prignano, G.; Gallo, M.T.; Vespaziani, M.; Cavallo, I.; Sperduti, I.; Pontone, M.; Bordignon, V.; Cilli, L.; et al. Biofilm Is a Major Virulence Determinant in Bacterial Colonization of Chronic Skin Ulcers Independently from the Multidrug Resistant Phenotype. Int. J. Mol. Sci. 2017, 18, 1077. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sharifi, A.; Nayeri Fasaei, B. Selected Plant Essential Oils Inhibit Biofilm Formation and LuxS- and Pfs-Mediated Quorum Sensing by Escherichia coli O157:H7. Lett. Appl. Microbiol. 2022, 74, 916–923. [Google Scholar] [CrossRef] [PubMed]
- Le Bouguénec, C. Adhesins and Invasins of Pathogenic Escherichia coli. Int. J. Med. Microbiol. 2005, 295, 471–478. [Google Scholar] [CrossRef] [PubMed]
- McWilliams, B.D.; Torres, A.G. Enterohemorrhagic Escherichia coli Adhesins. Microbiol. Spectr. 2014, 2. [Google Scholar] [CrossRef] [PubMed]
- Donnenberg, M.S. Enterobacteriaceae. In Mandell, Douglas, and Bennett’s Principles and Practice of Infectious Diseases; Elsevier: Alpharetta, GA, USA, 2014; Volume 2, pp. 2503–2517. [Google Scholar] [CrossRef]
- Kaper, J.B.; Nataro, J.P.; Mobley, H.L.T. Pathogenic Escherichia coli. Nat. Rev. Microbiol. 2004, 2, 123–140. [Google Scholar] [CrossRef]
- Antão, E.-M.; Wieler, L.H.; Ewers, C. Adhesive Threads of Extraintestinal Pathogenic Escherichia coli. Gut Pathog. 2009, 1, 22. [Google Scholar] [CrossRef] [Green Version]
- Evans, M.L.; Chapman, M.R. Curli Biogenesis: Order out of Disorder. Biochim. Biophys. Acta Mol. Cell Res. 2014, 1843, 1551–1558. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Klein, R.D.; Shu, Q.; Cusumano, Z.T.; Nagamatsu, K.; Gualberto, N.C.; Lynch, A.J.L.; Wu, C.; Wang, W.; Jain, N.; Pinkner, J.S.; et al. Structure-Function Analysis of the Curli Accessory Protein CsgE Defines Surfaces Essential for Coordinating Amyloid Fiber Formation. mBio 2018, 9, 1–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Green, E.R.; Mecsas, J. Bacterial Secretion Systems: An Overview. Microbiol. Spectr. 2016, 4, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Slater, S.L.; Sågfors, A.M.; Pollard, D.J.; Ruano-Gallego, D.; Frankel, G. The Type III Secretion System of Pathogenic Escherichia coli. Curr. Top. Microbiol. Immunol. 2018, 416, 51–72. [Google Scholar] [CrossRef]
- Cecil, J.D.; Sirisaengtaksin, N.; O’Brien-Simpson, N.M.; Krachler, A.M. Outer Membrane Vesicle-Host Cell Interactions. Microbiol. Spectr. 2019, 7, 201–214. [Google Scholar] [CrossRef] [Green Version]
- Huang, W.; Meng, L.; Chen, Y.; Dong, Z.; Peng, Q. Bacterial Outer Membrane Vesicles as Potential Biological Nanomaterials for Antibacterial Therapy. Acta Biomater. 2022, 140, 102–115. [Google Scholar] [CrossRef]
- Jan, A.T. Outer Membrane Vesicles (OMVs) of Gram-Negative Bacteria: A Perspective Update. Front. Microbiol. 2017, 8, 1053. [Google Scholar] [CrossRef] [PubMed]
- Schwechheimer, C.; Kuehn, M.J. Outer-Membrane Vesicles from Gram-Negative Bacteria: Biogenesis and Functions. Nat. Rev. Microbiol. 2015, 13, 605–619. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Croxen, M.A.; Finlay, B.B. Molecular Mechanisms of Escherichia coli Pathogenicity. Nat. Rev. Microbiol. 2010, 8, 26–38. [Google Scholar] [CrossRef]
- Maldonado, R.F.; Sá-Correia, I.; Valvano, M.A. Lipopolysaccharide Modification in Gram-Negative Bacteria during Chronic Infection. FEMS Microbiol. Rev. 2016, 40, 480–493. [Google Scholar] [CrossRef] [Green Version]
- Gao, Q.; Wang, X.; Xu, H.; Xu, Y.; Ling, J.; Zhang, D.; Gao, S.; Liu, X. Roles of Iron Acquisition Systems in Virulence of Extraintestinal Pathogenic Escherichia coli: Salmochelin and Aerobactin Contribute More to Virulence than Heme in a Chicken Infection Model. BMC Microbiol. 2012, 12, 143. [Google Scholar] [CrossRef] [Green Version]
- Eltai, N.O.; Al Thani, A.A.; Al Hadidi, S.H.; Al Ansari, K.; Yassine, H.M. Antibiotic Resistance and Virulence Patterns of Pathogenic Escherichia coli Strains Associated with Acute Gastroenteritis among Children in Qatar. BMC Microbiol. 2020, 20, 54. [Google Scholar] [CrossRef]
- da Silva, G.J.; Mendonça, N. Association between Antimicrobial Resistance and Virulence in Escherichia coli. Virulence 2012, 3, 18–28. [Google Scholar] [CrossRef] [Green Version]
- Logan, L.K.; Weinstein, R.A. The Epidemiology of Carbapenem-Resistant Enterobacteriaceae: The Impact and Evolution of a Global Menace. J. Infect. Dis. 2017, 215, S28–S36. [Google Scholar] [CrossRef] [Green Version]
- Poirel, L.; Jayol, A.; Nordmanna, P. Polymyxins: Antibacterial Activity, Susceptibility Testing, and Resistance Mechanisms Encoded by Plasmids or Chromosomes. Clin. Microbiol. Rev. 2017, 30, 557–596. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Esposito, E.P.; Cervoni, M.; Bernardo, M.; Crivaro, V.; Cuccurullo, S.; Imperi, F.; Zarrilli, R. Molecular Epidemiology and Virulence Profiles of Colistin-Resistant Klebsiella Pneumoniae Blood Isolates from the Hospital Agency “Ospedale Dei Colli,” Naples, Italy. Front. Microbiol. 2018, 9, 1463. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Čurová, K.; Slebodníková, R.; Kmeťová, M.; Hrabovský, V.; Maruniak, M.; Liptáková, E.; Siegfried, L. Virulence, Phylogenetic Background and Antimicrobial Resistance in Escherichia coli Associated with Extraintestinal Infections. J. Infect. Public. Health 2020, 13, 1537–1543. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, N.; Khalid, S.; Ali, S.M.; Khan, A.U. Occurrence of BlaNDM Variants Among Enterobacteriaceae From a Neonatal Intensive Care Unit in a Northern India Hospital. Front. Microbiol. 2018, 9, 407. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Joshua, M.; Raymond, M. Virulence Factors and Antibiotic Resistance Patterns of Uropathogenic Escherichia coli. Afr. J. Microbiol. Res. 2014, 8, 3678–3686. [Google Scholar] [CrossRef] [Green Version]
- Johnson, T.J.; Nolan, L.K. Pathogenomics of the Virulence Plasmids of Escherichia coli. Microbiol. Mol. Biol. Rev. 2009, 73, 750–774. [Google Scholar] [CrossRef] [Green Version]
- Pilla, G.; Tang, C.M. Going around in Circles: Virulence Plasmids in Enteric Pathogens. Nat. Rev. Microbiol. 2018, 16, 484–495. [Google Scholar] [CrossRef]
- Laganenka, L.; López, M.E.; Colin, R.; Sourjik, V. Flagellum-Mediated Mechanosensing and Rflp Control Motility State of Pathogenic Escherichia coli. mBio 2020, 11, e02269-19. [Google Scholar] [CrossRef] [Green Version]
- Haiko, J.; Westerlund-Wikström, B. The Role of the Bacterial Flagellum in Adhesion and Virulence. Biology 2013, 2, 1242–1267. [Google Scholar] [CrossRef] [Green Version]
- Roy, R.; Tiwari, M.; Donelli, G.; Tiwari, V. Strategies for Combating Bacterial Bio Fi Lms: A Focus on Anti-Bio Fi Lm Agents and Their Mechanisms of Action. Virulence 2018, 9, 522–554. [Google Scholar] [CrossRef] [Green Version]
- Ramos-Vivas, J.; Chapartegui-González, I.; Fernández-Martínez, M.; González-Rico, C.; Fortún, J.; Escudero, R.; Marco, F.; Linares, L.; Montejo, M.; Aranzamendi, M.; et al. Biofilm Formation by Multidrug Resistant Enterobacteriaceae Strains Isolated from Solid Organ Transplant Recipients. Sci. Rep. 2019, 9, 8928. [Google Scholar] [CrossRef] [Green Version]
- Wood, T.K. Insights on Escherichia coli Biofilm Formation and Inhibition from Whole-Transcriptome Profiling. Environ. Microbiol. 2009, 11, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Nielsen, D.W.; Klimavicz, J.S.; Cavender, T.; Wannemuehler, Y.; Barbieri, N.L.; Nolan, L.K.; Logue, C.M. The Impact of Media, Phylogenetic Classification, and E. coli Pathotypes on Biofilm Formation in Extraintestinal and Commensal E. coli from Humans and Animals. Front. Microbiol. 2018, 9, 902. [Google Scholar] [CrossRef] [PubMed]
- Reisner, A.; Krogfelt, K.A.; Klein, B.M.; Zechner, E.L.; Molin, S. In Vitro Biofilm Formation of Commensal and Pathogenic Escherichia coli Strains: Impact of Environmental and Genetic Factors. J. Bacteriol. 2006, 188, 3572–3581. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duah Boakye, Y.; Osafo, N.; Amaning Danquah, C.; Adu, F.; Agyare, C. Antimicrobial Agents: Antibacterial Agents, Anti-Biofilm Agents, Antibacterial Natural Compounds, and Antibacterial Chemicals. Antimicrob. Antibiot. Resist. Antibiofilm Strateg. Act. Methods 2019, 13, 75. [Google Scholar] [CrossRef] [Green Version]
- Kapoor, G.; Saigal, S.; Elongavan, A. Action and Resistance Mechanisms of Antibiotics: A Guide for Clinicians. J. Anaesthesiol. Clin. Pharmacol. 2017, 33, 300–305. [Google Scholar] [CrossRef]
- Zhanel, G.G.; Walkty, A.J.; Karlowsky, J.A. Fidaxomicin: A Novel Agent for the Treatment of Clostridium Difficile Infection. Can. J. Infect. Dis. Med. Microbiol. 2015, 26, 305–312. [Google Scholar] [CrossRef] [Green Version]
- Paukner, S.; Riedl, R. Pleuromutilins: Potent Drugs for Resistant Bugs-Mode of Action and Resistance. Cold Spring Harb. Perspect. Med. 2017, 7, a027110. [Google Scholar] [CrossRef] [Green Version]
- Rabin, N.; Zheng, Y.; Opoku-Temeng, C.; Du, Y.; Bonsu, E.; Sintim, H.O. Agents That Inhibit Bacterial Biofilm Formation. Future Med. Chem. 2015, 7, 647–671. [Google Scholar] [CrossRef]
- Wu, H.; Moser, C.; Wang, H.; Høiby, N.; Song, Z. Strategies for Combating Bacterial Biofilm Infections. Int. J. Oral Sci. 2015, 7, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Kalia, V.C. Quorum Sensing Inhibitors: An Overview. Biotechnol. Adv. 2013, 31, 224–245. [Google Scholar] [CrossRef]
- Zhong, S.; He, S. Quorum Sensing Inhibition or Quenching in Acinetobacter Baumannii: The Novel Therapeutic Strategies for New Drug Development. Front. Microbiol. 2021, 12, 558003. [Google Scholar] [CrossRef]
- Ong, K.S.; Mawang, C.I.; Daniel-Jambun, D.; Lim, Y.Y.; Lee, S.M. Current Anti-Biofilm Strategies and Potential of Antioxidants in Biofilm Control. Expert. Rev. Anti Infect. Ther. 2018, 16, 855–864. [Google Scholar] [CrossRef]
- Batoni, G.; Maisetta, G.; Esin, S. Antimicrobial Peptides and Their Interaction with Biofilms of Medically Relevant Bacteria. Biochim. Biophys. Acta Biomembr. 2016, 1858, 1044–1060. [Google Scholar] [CrossRef]
- Hiasa, H. DNA Topoisomerases as Targets for Antibacterial Agents BT—DNA Topoisomerases: Methods and Protocols; Drolet, M., Ed.; Springer: New York, NY, USA, 2018; pp. 47–62. ISBN 978-1-4939-7459-7. [Google Scholar]
- Hu, X.; Huang, Y.Y.; Wang, Y.; Wang, X.; Hamblin, M.R. Antimicrobial Photodynamic Therapy to Control Clinically Relevant Biofilm Infections. Front. Microbiol. 2018, 9, 1299. [Google Scholar] [CrossRef] [Green Version]
- Mustafa, M.; Almnea, R.; Ajmal, M.; Alamri, H.M.; Abdulwahed, A.; Divakar, D.D. Efficacy of Root Canal Treatment in C-Shaped Canals with Adjunctive Photodynamic Therapy Using Micro-CT. Photodiagnosis Photodyn. Ther. 2021, 34, 102257. [Google Scholar] [CrossRef]
- Ozma, M.A.; Khodadadi, E.; Pakdel, F.; Kamounah, F.S.; Yousefi, M.; Yousefi, B.; Asgharzadeh, M.; Ganbarov, K.; Kafil, H.S. Baicalin, a Natural Antimicrobial and Anti-Biofilm Agent. J. Herb. Med. 2021, 27, 100432. [Google Scholar] [CrossRef]
- Li, X.; Wu, B.; Chen, H.; Nan, K.; Jin, Y.; Sun, L.; Wang, B. Recent Developments in Smart Antibacterial Surfaces to Inhibit Biofilm Formation and Bacterial Infections. J. Mater. Chem. B 2018, 6, 4274–4292. [Google Scholar] [CrossRef]
- Ferrag, C.; Li, S.; Jeon, K.; Andoy, N.M.; Sullan, R.M.A.; Mikhaylichenko, S.; Kerman, K. Polyacrylamide Hydrogels Doped with Different Shapes of Silver Nanoparticles: Antibacterial and Mechanical Properties. Colloids Surf. B Biointerfaces 2021, 197, 111397. [Google Scholar] [CrossRef]
- Sharma, D.; Misba, L.; Khan, A.U. Antibiotics versus Biofilm: An Emerging Battleground in Microbial Communities. Antimicrob. Resist. Infect. Control 2019, 8, 76. [Google Scholar] [CrossRef] [Green Version]
- Saggu, S.K.; Jha, G.; Mishra, P.C. Enzymatic Degradation of Biofilm by Metalloprotease from Microbacterium Sp. Sks10. Front. Bioeng. Biotechnol. 2019, 7, 192. [Google Scholar] [CrossRef] [Green Version]
- Doerflinger, M.; Forsyth, W.; Ebert, G.; Pellegrini, M.; Herold, M.J. CRISPR/Cas9—The Ultimate Weapon to Battle Infectious Diseases? Cell Microbiol. 2017, 19, e12693. [Google Scholar] [CrossRef] [Green Version]
- Li, P.; Wang, L.; Yang, J.; Di, L.; Li, J. Applications of the CRISPR-Cas System for Infectious Disease Diagnostics. Expert Rev. Mol. Diagn. 2021, 21, 723–732. [Google Scholar] [CrossRef]
- Tao, S.; Chen, H.; Li, N.; Liang, W. The Application of the CRISPR-Cas System in Antibiotic Resistance. Infect. Drug Resist. 2022, 15, 4155–4168. [Google Scholar] [CrossRef]
- Strich, J.R.; Chertow, D.S. CRISPR-Cas Biology and Its Application to Infectious Diseases. J. Clin. Microbiol. 2018, 57, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Rath, D.; Amlinger, L.; Rath, A.; Lundgren, M. The CRISPR-Cas Immune System: Biology, Mechanisms and Applications. Biochimie 2015, 117, 119–128. [Google Scholar] [CrossRef]
Virulence Factor Category | Virulence Factor | Role(s) in Virulence | Genes | Organisms | Refrences |
---|---|---|---|---|---|
Adhesin | Type 1 Fimbriae | Adhesion, colonisation, invasion | fim gene family fim A-I | E. coli | [20,21] |
Type 3 Fimbriae | Adhesion, colonisation | mrkABCDF operon | E. coli, Klebsiella pneumoniae | [22,23] | |
F1C Fimbriae | Adhesion, colonisation | focA, focC, focD, focf, focG, focH, focI | E. coli | [24] | |
S Fimbriae | Adhesion, colonisation | sfaA-H, sfaS, sfaX, sfaY | E. coli | [25] | |
P Fimbriae | Adhesion, colonisation | papA-K | E. coli, P. mirabilis | [26] | |
Auf Fimbriae | Adhesion, colonisation | aufA-G | E. coli | [25] | |
F9 Fimbriae | Adhesion, colonisation | c1931-c1936 | E. coli | [25] | |
Stf fimbriae | Adhesion, colonisation | stf | Salmonella spp. | [27] | |
Saf fimbriae | Adhesion, colonisation | saf | Salmonella spp. | [27] | |
Dr | Adhesion, colonisation | draA-draE, draP | E. coli | [28] | |
Afa | Adhesion, colonisation | afaI-afaIV, nfaI, drII | E. coli | [29] | |
Curli amyloid fibers | Components of the biofilm extracellular matrix, surface colonisation | csgBA and csgDEFG operons | E. coli, Salmonella spp. | [30] | |
Autotransporter protein | Temperature-sensitive hemagglutinin | Autotransporter protein | tsh | E. coli | [31] |
SPATE (serine protease autotransporters of Enterobactericeae) | Diverse function s (adhesin, protease, esterase, lipase, etc.) | sat, pic | E. coli, Shigella, Salmonella | [32] | |
Secretion system | T1SS | Toxin secretion | T1SS operon | E. coli | [33] |
T3SS | Injects effector proteins into the host cells | T3SS genes | E. coli EPEC, E. coli EHEC, Salmonella spp., Shigella | [34] | |
T5SS | Autotransporters | T5SS genes | E. coli | [35] | |
T6SS | Secretion of antibacterial proteins and many others | sci-1 and sci-2 clusters | E. coli | [36,37] | |
Toxins | Lipid A | Endotoxin | Salmonella spp., E. coli | [38] | |
Alpha-hemolysin (HlyA) | Cytotoxic agent | hlyCABD operon | E. coli, Staphylococcus aureus | [39] | |
Colibactin (Clb) | Genotoxic molecule | clb gene cluster | E. coli | [40] | |
Colicin | Antimicrobial proteins | Colicin operons | E. coli, Enterobacter cloacae | [41] | |
Cytolethal distending toxin (CDT-I to CDT-V) | Cytotoxic agent, block eukaryotic cell cycle | cdt operon | E. coli, Shigella dysenteriae, Salmonella enterica, Campylobacter spp., Aggregatibacter actinomycetemcomitans, Escherichia albertii, Haemophilus ducreyi, Helicobacter spp., Providencia alcalifaciens, | [42] | |
Cytotoxic necrotizing factor 1 (CNF-1) | Inflammation and tissue damage | cnf1 | E. coli UPEC | [43] | |
Hemolysin (HlyF) | Induces autophagy in eukaryotic cells | hlyF | E. coli | [44] | |
Lipopolysaccharide and capsule | Capsular polysaccharides (K antigen) | Adherence, resistance to host immune system | K-antigen cluster | E. coli, Acinetobacter baumannii, Burkholderia pseudomallei, Vibrio spp. | [45,46,47] |
O-antigen | Adherence and help to overcome host defense mechanisms | O-antigen cluster | E. coli, Salmonella enterica | [48] | |
Iron acquisition | Siderophores (Enterobactin, Bacillibactin) | Iron acquisition | Siderophore biosynthesis genes | E. coli, K. pneumoniae | [49] |
Antimicrobial resistance | Beta-lactamase | Resistance to beta-lactam antibiotics | blaTEM, blaCTX–M, ampC | E. coli, Klebsiella spp. | [50,51] |
Aminoglycoside resistance | Resistance to aminoglycoside antibiotics | Genes encoding aminoglycoside-modifying enzymes (AGMEs) | E. coli, Klebsiella spp. | [52] | |
Fluoroquinolones | Resistance to fluoroquinolone antibiotics | qnr genes | E. coli, Klebsiella spp., and other Entorobacterales members | [53] | |
Plasmids | pO157 | Helps with the adherence of bacterial cells to epithelial cells of the intestine | ehxA, etpC to etpO, espp., katP, toxB, ecf, stcE etc. | EHEC O157:H7 | [54] |
pB171 | Contribute to adherence to epithelial cells of the intestine | parABC locus, etc. | EPEC | [55,56] | |
pINV | Essential for invasiveness | ipa–mxi–spa locus etc. | E. coli EIEC, Shigella spp. | [57,58] | |
pCoo | Toxins and colonisation factors | cooB, A, C, D, etc. | ETEC | [59] | |
pAA | Toxins and fimbriae | Pet, pic, senB, orf3, orf4, aar, capU, virK, shf, etc. | EAEC | [60] | |
pYV | Encodes a type III secretion system required for plasmid-borne anti-host factors delivery called Yops | ysc, lcr, yop, etc. | Yersinia enterocolitica and Yersinia pseudotuberculosis | [61] | |
Flagella | Flagella | Early biofilm formation, adherence, and invasion | flhDC operon | E. coli, S. enterica, Salmonella and other Entorobacterales members | [62,63] |
Biofilm | Biofilm | Increases the survival of the bacterial population and enhances the pathogenic ability of the microorganism | fimAICDFGH operon quorum sensing genes, e.g., lusS and pfs, etc. | E. coli, S. enterica, Salmonella, and other Entorobacterales members | [64,65] |
Intrinsic | Acquired | Adaptive |
---|---|---|
Innate ability to resist antimicrobial agent through its inherent structural or functional characteristics. Independent of environmental stimuli
| Acquired through the acquisition of resistance genes through horizontal gene transfer and chromosomal gene mutations.
| Inducible resistance occurring due to the presence of antimicrobial agents and (or) other environmental stresses.
|
Conventional Approaches | Alternative Approaches |
---|---|
|
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Azam, M.W.; Zarrilli, R.; Khan, A.U. Updates on the Virulence Factors Produced by Multidrug-Resistant Enterobacterales and Strategies to Control Their Infections. Microorganisms 2023, 11, 1901. https://doi.org/10.3390/microorganisms11081901
Azam MW, Zarrilli R, Khan AU. Updates on the Virulence Factors Produced by Multidrug-Resistant Enterobacterales and Strategies to Control Their Infections. Microorganisms. 2023; 11(8):1901. https://doi.org/10.3390/microorganisms11081901
Chicago/Turabian StyleAzam, Mohd W., Raffaele Zarrilli, and Asad U. Khan. 2023. "Updates on the Virulence Factors Produced by Multidrug-Resistant Enterobacterales and Strategies to Control Their Infections" Microorganisms 11, no. 8: 1901. https://doi.org/10.3390/microorganisms11081901
APA StyleAzam, M. W., Zarrilli, R., & Khan, A. U. (2023). Updates on the Virulence Factors Produced by Multidrug-Resistant Enterobacterales and Strategies to Control Their Infections. Microorganisms, 11(8), 1901. https://doi.org/10.3390/microorganisms11081901