Detection of Cyclomodulin CNF-1 Toxin-Producing Strains of Escherichia coli in Pig Kidneys at a Slaughterhouse
Abstract
:1. Introduction
2. Materials and Methods
2.1. Pig Kidney Samples
2.2. Kidney Histology
2.3. Kidney DNA Purification
2.4. Detection of Bacterial Genes by PCR
2.5. Kidney Protein Purification
2.6. Western Immunobloting Assay
2.7. Ethical Approval Statement
3. Results
3.1. Macroscopic Characteristics of Pig Kidneys
3.2. Inflammatory Cell Infiltration in Pig Kidney Tissues
3.3. Detection of the 16S Subunit of the Bacterial Ribosome and E. coli Strain Identification
3.4. CNF-1 Toxin Detection
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Havelaar, A.H.; Kirk, M.D.; Torgerson, P.R.; Gibb, H.J.; Hald, T.; Lake, R.J.; Praet, N.; Bellinger, D.C.; de Silva, N.R.; Gargouri, N.; et al. World Health Organization Global Estimates and Regional Comparisons of the Burden of Foodborne Disease in 2010. PLoS Med. 2015, 12, e1001923. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- WHO. Foodborne Diseases. Available online: https://www.who.int/health-topics/foodborne-diseases#tab=tab_2 (accessed on 7 April 2023).
- Abebe, E.; Gugsa, G.; Ahmed, M. Review on Major Food-Borne Zoonotic Bacterial Pathogens. J. Trop. Med. 2020, 2020, 4674235. [Google Scholar] [CrossRef] [PubMed]
- Yousefi, H.; Su, H.M.; Imani, S.M.; Alkhaldi, K.; Filipe, M.C.D.; Didar, T.F. Intelligent Food Packaging: A Review of Smart Sensing Technologies for Monitoring Food Quality. ACS Sens. 2019, 4, 808–821. [Google Scholar] [CrossRef]
- Brewer, M.S. Irradiation effects on meat flavor: A review. Meat Sci. 2009, 81, 1–14. [Google Scholar] [CrossRef]
- Rahman, S.M.E.; Wang, J.; Oh, D.-H. Synergistic effect of low concentration electrolyzed water and calcium lactate to ensure microbial safety, shelf life and sensory quality of fresh pork. Food Control 2013, 30, 176–183. [Google Scholar] [CrossRef]
- Coll Cárdenas, F.; Andrés, S.; Giannuzzi, L.; Zaritzky, N.E. Antimicrobial action and effects on beef quality attributes of a gaseous ozone treatment at refrigeration temperatures. Food Control 2011, 2, 6. [Google Scholar] [CrossRef]
- Foster, J.W. Escherichia coli acid resistance: Tales of an amateur acidophile. Nat. Rev. Microbiol. 2004, 2, 898–907. [Google Scholar] [CrossRef]
- Vincent, C.; Boerlin, P.; Daignault, D.; Dozois, C.M.; Dutil, L.; Galanakis, C.; Reid-Smith, R.J.; Tellier, P.P.; Tellis, P.A.; Ziebell, K.; et al. Food reservoir for Escherichia coli causing urinary tract infections. Emerg. Infect. Dis. 2010, 16, 88–95. [Google Scholar] [CrossRef] [PubMed]
- Boireau, C.; Morignat, É.; Cazeau, G.; Jarrige, N.; Jouy, É.; Haenni, M.; Madec, J.Y.; Leblond, A.; Gay, É. Antimicrobial resistance trends in Escherichia coli isolated from diseased food-producing animals in France: A 14-year period time-series study. Zoonoses Public Health 2018, 65, e86–e94. [Google Scholar] [CrossRef]
- Ramchandani, M.; Manges, A.R.; DebRoy, C.; Smith, S.P.; Johnson, J.R.; Riley, L.W. Possible animal origin of human-associated, multidrug-resistant, uropathogenic Escherichia coli. Clin. Infect. Dis. 2005, 40, 251–257. [Google Scholar] [CrossRef]
- Schroeder, C.M.; White, D.G.; Ge, B.; Zhang, Y.; McDermott, P.F.; Ayers, S.; Zhao, S.; Meng, J. Isolation of antimicrobial-resistant Escherichia coli from retail meats purchased in Greater Washington, DC, USA. Int. J. Food Microbiol. 2003, 85, 197–202. [Google Scholar] [CrossRef] [PubMed]
- Tseng, M.; Fratamico, P.M.; Manning, S.D.; Funk, J.A. Shiga toxin-producing Escherichia coli in swine: The public health perspective. Anim. Health Res. Rev. 2014, 15, 63–75. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khan, S.B.; Zou, G.; Xiao, R.; Cheng, Y.; Rehman, Z.U.; Ali, S.; Memon, A.M.; Fahad, S.; Ahmad, I.; Zhou, R. Prevalence, quantification and isolation of pathogenic shiga toxin Escherichia coli O157:H7 along the production and supply chain of pork around Hubei Province of China. Microb. Pathog. 2018, 115, 93–99. [Google Scholar] [CrossRef] [PubMed]
- Terlizzi, M.E.; Gribaudo, G.; Maffei, M.E. UroPathogenic Escherichia coli (UPEC) Infections: Virulence Factors, Bladder Responses, Antibiotic, and Non-antibiotic Antimicrobial Strategies. Front. Microbiol. 2017, 8, 1566. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Manges, A.R.; Smith, S.P.; Lau, B.J.; Nuval, C.J.; Eisenberg, J.N.; Dietrich, P.S.; Riley, L.W. Retail meat consumption and the acquisition of antimicrobial resistant Escherichia coli causing urinary tract infections: A case-control study. Foodborne Pathog. Dis. 2007, 4, 419–431. [Google Scholar] [CrossRef] [Green Version]
- Jakobsen, L.; Hammerum, A.M.; Frimodt-Møller, N. Virulence of Escherichia coli B2 isolates from meat and animals in a murine model of ascending urinary tract infection (UTI): Evidence that UTI is a zoonosis. J. Clin. Microbiol. 2010, 48, 2978–2980. [Google Scholar] [CrossRef] [Green Version]
- Garza-Ramos, U.; Tamayo-Legorreta, E.; Arellano-Quintanilla, D.M.; Rodriguez-Medina, N.; Silva-Sanchez, J.; Catalan-Najera, J.; Rocha-Martínez, M.K.; Bravo-Díaz, M.A.; Alpuche-Aranda, C. Draft Genome Sequence of a Multidrug- and Colistin-Resistant mcr-1-Producing Escherichia coli Isolate from a Swine Farm in Mexico. Genome Announc. 2018, 6, 1–2. [Google Scholar] [CrossRef] [Green Version]
- Shah, C.; Baral, R.; Bartaula, B.; Shrestha, L.B. Virulence factors of uropathogenic Escherichia coli (UPEC) and correlation with antimicrobial resistance. BMC Microbiol. 2019, 19, 204. [Google Scholar] [CrossRef] [Green Version]
- da Costa, M.M.; Drescher, G.; Maboni, F.; Weber, S.; de Avila Botton, S.; Vainstein, M.H.; Schrank, I.S.; de Vargas, A.C. Virulence factors and antimicrobial resistance of Escherichia coli isolated from urinary tract of swine in southern of Brazil. Braz. J. Microbiol. 2008, 39, 741–743. [Google Scholar] [CrossRef]
- Davis, J.M.; Rasmussen, S.B.; O’Brien, A.D. Cytotoxic necrotizing factor type 1 production by uropathogenic Escherichia coli modulates polymorphonuclear leukocyte function. Infect. Immun. 2005, 73, 5301–5310. [Google Scholar] [CrossRef] [Green Version]
- Davis, J.M.; Carvalho, H.M.; Rasmussen, S.B.; O’Brien, A.D. Cytotoxic necrotizing factor type 1 delivered by outer membrane vesicles of uropathogenic Escherichia coli attenuates polymorphonuclear leukocyte antimicrobial activity and chemotaxis. Infect. Immun. 2006, 74, 4401–4408. [Google Scholar] [CrossRef] [Green Version]
- Wang, M.H.; Kim, K.S. Cytotoxic necrotizing factor 1 contributes to Escherichia coli meningitis. Toxins 2013, 5, 2270–2280. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fabbri, A.; Travaglione, S.; Rosadi, F.; Ballan, G.; Maroccia, Z.; Giambenedetti, M.; Guidotti, M.; Ødum, N.; Krejsgaard, T.; Fiorentini, C. The Escherichia coli protein toxin cytotoxic necrotizing factor 1 induces epithelial mesenchymal transition. Cell Microbiol. 2020, 22, e13138. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Zhang, Z.; Wei, H.; Wang, J.; Lv, J.; Zhang, K.; Keller, E.T.; Yao, Z.; Wang, Q. Cytotoxic necrotizing factor 1 promotes prostate cancer progression through activating the Cdc42-PAK1 axis. J. Pathol. 2017, 243, 208–219. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yamamoto, S.; Terai, A.; Yuri, K.; Kurazono, H.; Takeda, Y.; Yoshida, O. Detection of urovirulence factors in Escherichia coli by multiplex polymerase chain reaction. FEMS Immunol. Med. Microbiol. 1995, 12, 85–90. [Google Scholar] [CrossRef] [PubMed]
- De Rycke, J.; González, E.A.; Blanco, J.; Oswald, E.; Blanco, M.; Boivin, R. Evidence for two types of cytotoxic necrotizing factor in human and animal clinical isolates of Escherichia coli. J. Clin. Microbiol. 1990, 28, 694–699. [Google Scholar] [CrossRef]
- Ed-Dra, A.; Filali, F.R.; Karraouan, B.; El Allaoui, A.; Aboulkacem, A.; Bouchrif, B. Prevalence, molecular and antimicrobial resistance of Salmonella isolated from sausages in Meknes, Morocco. Microb. Pathog. 2017, 105, 340–345. [Google Scholar] [CrossRef]
- Tew, L.S.; She, L.Y.; Chew, C.H. Isolation, Antimicrobial Susceptibility Profile and Detection of Sul 1, bla TEM, and bla SHV in Amoxicillin-Clavulanate-Resistant Bacteria Isolated From Retail Sausages in Kampar, Malaysia. Jundishapur J. Microbiol. 2016, 9, e37897. [Google Scholar] [CrossRef] [Green Version]
- Tóth, I.; Oswald, E.; Mainil, J.; Awad-Masalmeh, M.; Nagy, B. Porcine postweaning diarrhea isolates of Escherichia coli with uropathogenic characters. Adv. Exp. Med. Biol. 2000, 485, 331–333. [Google Scholar] [CrossRef]
- Bergmann, C.; Guay-Woodford, L.M.; Harris, P.C.; Horie, S.; Peters, D.J.M.; Torres, V.E. Polycystic kidney disease. Nat. Rev. Dis. Primers 2018, 4, 50. [Google Scholar] [CrossRef]
- Eskild-Jensen, A.; Jacobsen, L.; Christensen, H.; Frøkiaer, J.; Jørgensen, H.S.; Djurhuus, J.C.; Jørgensen, T.M. Renal function outcome in unilateral hydronephrosis in newborn pigs. II. Function and volume of contralateral kidneys. J. Urol. 2001, 165, 205–209. [Google Scholar] [CrossRef] [PubMed]
- Isling, L.K.; Aalbaek, B.; Schrøder, M.; Leifsson, P.S. Pyelonephritis in slaughter pigs and sows: Morphological characterization and aspects of pathogenesis and aetiology. Acta Vet. Scand. 2010, 52, 48. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Isling, L.K.; Aalbæk, B.; Birck, M.M.; Heegaard, P.M.; Leifsson, P.S. Host response to porcine strains of Escherichia coli in a novel pyelonephritis model. J. Comp. Pathol. 2011, 144, 257–268. [Google Scholar] [CrossRef] [PubMed]
- Leverstein-van Hall, M.A.; Dierikx, C.M.; Cohen Stuart, J.; Voets, G.M.; van den Munckhof, M.P.; van Essen-Zandbergen, A.; Platteel, T.; Fluit, A.C.; van de Sande-Bruinsma, N.; Scharinga, J.; et al. Dutch patients, retail chicken meat and poultry share the same ESBL genes, plasmids and strains. Clin. Microbiol. Infect. 2011, 17, 873–880. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rincón-Gamboa, S.M.; Poutou-Piñales, R.A.; Carrascal-Camacho, A.K. Antimicrobial Resistance of Non-Typhoid. Foods 2021, 10, 1731. [Google Scholar] [CrossRef]
- Rega, M.; Carmosino, I.; Bonilauri, P.; Frascolla, V.; Vismarra, A.; Bacci, C. Prevalence of ESβL, AmpC and Colistin-Resistant. Microorganisms 2021, 9, 214. [Google Scholar] [CrossRef]
- Rega, M.; Andriani, L.; Cavallo, S.; Bonilauri, P.; Bonardi, S.; Conter, M.; Carmosino, I.; Bacci, C. Antimicrobial Resistant. Foods 2022, 11, 3662. [Google Scholar] [CrossRef]
- Jaja, I.F.; Oguttu, J.; Jaja, C.I.; Green, E. Prevalence and distribution of antimicrobial resistance determinants of Escherichia coli isolates obtained from meat in South Africa. PLoS ONE 2020, 15, e0216914. [Google Scholar] [CrossRef]
- Diamond, J.R. Macrophages and progressive renal disease in experimental hydronephrosis. Am. J. Kidney Dis. 1995, 26, 133–140. [Google Scholar] [CrossRef]
- Guler, S.; Simen, S.; Hurton, S.; Molinari, M. Diagnosis and treatment modalities of symptomatic polycystic kidney disease. In Polycystic Kidney Disease, 1st ed.; Codon Publications: Brisbane, Australia, 2015; pp. 75–94. [Google Scholar]
- Carr, J.; Walton, J.R. Bacterial flora of the urinary tract of pigs associated with cystitis and pyelonephritis. Vet. Rec. 1993, 132, 575–577. [Google Scholar] [CrossRef]
- Almanjd, P.; Bilkei, G. Evaluation of pyelonephritis in culled indoor and outdoor high parity sows. Dtsch. Tierarztl. Wochenschr. 2008, 115, 34–37. [Google Scholar] [PubMed]
- Sacher-Pirklbauer, A.; Klein-Jöbstl, D.; Sofka, D.; Blanc-Potard, A.B.; Hilbert, F. Phylogenetic Groups and Antimicrobial Resistance Genes in Escherichia coli from Different Meat Species. Antibiotics 2021, 10, 1543. [Google Scholar] [CrossRef] [PubMed]
- Puligundla, P.; Lim, S. Biocontrol Approaches against Escherichia coli O157:H7 in Foods. Foods 2022, 11, 756. [Google Scholar] [CrossRef] [PubMed]
- Rippere-Lampe, K.E.; O’Brien, A.D.; Conran, R.; Lockman, H.A. Mutation of the gene encoding cytotoxic necrotizing factor type 1 (cnf(1)) attenuates the virulence of uropathogenic Escherichia coli. Infect. Immun. 2001, 69, 3954–3964. [Google Scholar] [CrossRef] [Green Version]
- Mulvey, M.A. Adhesion and entry of uropathogenic Escherichia coli. Cell Microbiol. 2002, 4, 257–271. [Google Scholar] [CrossRef]
- Bien, J.; Sokolova, O.; Bozko, P. Role of Uropathogenic Escherichia coli Virulence Factors in Development of Urinary Tract Infection and Kidney Damage. Int. J. Nephrol. 2012, 2012, 681473. [Google Scholar] [CrossRef] [Green Version]
- Martinez, J.J.; Mulvey, M.A.; Schilling, J.D.; Pinkner, J.S.; Hultgren, S.J. Type 1 pilus-mediated bacterial invasion of bladder epithelial cells. EMBO J. 2000, 19, 2803–2812. [Google Scholar] [CrossRef]
- Jakobsen, L.; Garneau, P.; Kurbasic, A.; Bruant, G.; Stegger, M.; Harel, J.; Jensen, K.S.; Brousseau, R.; Hammerum, A.M.; Frimodt-Møller, N. Microarray-based detection of extended virulence and antimicrobial resistance gene profiles in phylogroup B2 Escherichia coli of human, meat and animal origin. J. Med. Microbiol. 2011, 60, 1502–1511. [Google Scholar] [CrossRef]
- Justice, S.S.; Hunstad, D.A. UPEC hemolysin: More than just for making holes. Cell Host Microbe 2012, 11, 4–5. [Google Scholar] [CrossRef] [Green Version]
- Jonas, D.; Schultheis, B.; Klas, C.; Krammer, P.H.; Bhakdi, S. Cytocidal effects of Escherichia coli hemolysin on human T lymphocytes. Infect. Immun. 1993, 61, 1715–1721. [Google Scholar] [CrossRef]
- Russo, T.A.; Davidson, B.A.; Genagon, S.A.; Warholic, N.M.; Macdonald, U.; Pawlicki, P.D.; Beanan, J.M.; Olson, R.; Holm, B.A.; Knight, P.R. E. coli virulence factor hemolysin induces neutrophil apoptosis and necrosis/lysis in vitro and necrosis/lysis and lung injury in a rat pneumonia model. Am. J. Physiol. Lung Cell Mol. Physiol. 2005, 289, L207–L216. [Google Scholar] [CrossRef] [PubMed]
- Chung, J.W.; Hong, S.J.; Kim, K.J.; Goti, D.; Stins, M.F.; Shin, S.; Dawson, V.L.; Dawson, T.M.; Kim, K.S. 37-kDa laminin receptor precursor modulates cytotoxic necrotizing factor 1-mediated RhoA activation and bacterial uptake. J. Biol. Chem. 2003, 278, 16857–16862. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gall-Mas, L.; Fabbri, A.; Namini, M.R.J.; Givskov, M.; Fiorentini, C.; Krejsgaard, T. The Bacterial Toxin CNF1 Induces Activation and Maturation of Human Monocyte-Derived Dendritic Cells. Int. J. Mol. Sci. 2018, 19, 1408. [Google Scholar] [CrossRef] [Green Version]
- Haraoka, M.; Hang, L.; Frendéus, B.; Godaly, G.; Burdick, M.; Strieter, R.; Svanborg, C. Neutrophil recruitment and resistance to urinary tract infection. J. Infect. Dis. 1999, 180, 1220–1229. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Li, Q.; Wang, C.; Wang, J.; Lv, J.; Wang, L.; Zhang, Z.S.; Yao, Z.; Wang, Q. Cytotoxic Necrotizing Factor 1 Downregulates CD36 Transcription in Macrophages to Induce Inflammation During Acute Urinary Tract Infections. Front. Immunol. 2018, 9, 1987. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.K.; Chen, H.; Shu, M.; Zhong, C.; Bi, Y.; Yang, H.H.; Wu, G.P. Isolation, characterization and application of an alkaline resistant virulent bacteriophage JN01 against Escherichia coli O157:H7 in milk and beef. LWT Food Sci. Technol. 2021, 144, 111266. [Google Scholar] [CrossRef]
- Wang, R.; Zhou, Y.; Kalchayanand, N.; Harhay, D.M.; Wheeler, T.L. Effectiveness and Functional Mechanism of a Multicomponent Sanitizer against Biofilms Formed by Escherichia coli O157:H7 and Five Salmonella Serotypes Prevalent in the Meat Industry. J. Food Prot. 2020, 83, 568–575. [Google Scholar] [CrossRef]
- He, Q.; Guo, M.; Jin, T.Z.; Arabi, S.A.; Liu, D. Ultrasound improves the decontamination effect of thyme essential oil nanoemulsions against Escherichia coli O157: H7 on cherry tomatoes. Int. J. Food Microbiol. 2021, 337, 108936. [Google Scholar] [CrossRef]
- Towery, P.; Guffey, J.S.; Motts, S.; Brown, K.; Harrell, G.; Hobson, T.; Patton, C. Sensory Evaluation of Cucumbers Treated with Blue Light. J. Allied Health 2018, 47, e17–e21. [Google Scholar]
- Durak, M.Z.; Churey, J.J.; Gates, M.; Sacks, G.L.; Worobo, R.W. Decontamination of green onions and baby spinach by vaporized ethyl pyruvate. J. Food Prot. 2012, 75, 1012–1022. [Google Scholar] [CrossRef]
- Savin, M.; Bierbaum, G.; Kreyenschmidt, J.; Schmithausen, R.M.; Sib, E.; Schmoger, S.; Käsbohrer, A.; Hammerl, J.A. Clinically Relevant Escherichia coli Isolates from Process Waters and Wastewater of Poultry and Pig Slaughterhouses in Germany. Microorganisms 2021, 9, 698. [Google Scholar] [CrossRef] [PubMed]
- Tóth, I.; Oswald, E.; Mainil, J.G.; Awad-Masalmeh, M.; Nagy, B. Characterization of intestinal cnf1+ Escherichia coli from weaned pigs. Int. J. Med. Microbiol. 2000, 290, 539–542. [Google Scholar] [CrossRef]
- Kadhum, H.J.; Ball, H.J.; Oswald, E.; Rowe, M.T. Characteristics of cytotoxic necrotizing factor and cytolethal distending toxin producing Escherichia coli strains isolated from meat samples in Northern Ireland. Food Microbiol. 2006, 23, 491–497. [Google Scholar] [CrossRef]
- Wray, C.; Piercy, D.W.; Carroll, P.J.; Cooley, W.A. Experimental infection of neonatal pigs with CNF toxin-producing strains of Escherichia coli. Res. Vet. Sci. 1993, 54, 290–298. [Google Scholar] [CrossRef] [PubMed]
- Gümüş, D.; Kalaycı Yüksek, F.; Sefer, Ö.; Yörük, E.; Uz, G.; Anğ Küçüker, M. The roles of hormones in the modulation of growth and virulence genes’ expressions in UPEC strains. Microb. Pathog. 2019, 132, 319–324. [Google Scholar] [CrossRef] [PubMed]
- Samtiya, M.; Matthews, K.R.; Dhewa, T.; Puniya, A.K. Antimicrobial Resistance in the Food Chain: Trends, Mechanisms, Pathways, and Possible Regulation Strategies. Foods 2022, 11, 2966. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Herrera-Vázquez, A.; Arellano-Aranda, R.; Hernández-Cueto, D.; Rodríguez-Miranda, E.; López-Briones, S.; Hernández-Luna, M.A. Detection of Cyclomodulin CNF-1 Toxin-Producing Strains of Escherichia coli in Pig Kidneys at a Slaughterhouse. Microorganisms 2023, 11, 2065. https://doi.org/10.3390/microorganisms11082065
Herrera-Vázquez A, Arellano-Aranda R, Hernández-Cueto D, Rodríguez-Miranda E, López-Briones S, Hernández-Luna MA. Detection of Cyclomodulin CNF-1 Toxin-Producing Strains of Escherichia coli in Pig Kidneys at a Slaughterhouse. Microorganisms. 2023; 11(8):2065. https://doi.org/10.3390/microorganisms11082065
Chicago/Turabian StyleHerrera-Vázquez, Arturo, Rebeca Arellano-Aranda, Daniel Hernández-Cueto, Esmeralda Rodríguez-Miranda, Sergio López-Briones, and Marco Antonio Hernández-Luna. 2023. "Detection of Cyclomodulin CNF-1 Toxin-Producing Strains of Escherichia coli in Pig Kidneys at a Slaughterhouse" Microorganisms 11, no. 8: 2065. https://doi.org/10.3390/microorganisms11082065
APA StyleHerrera-Vázquez, A., Arellano-Aranda, R., Hernández-Cueto, D., Rodríguez-Miranda, E., López-Briones, S., & Hernández-Luna, M. A. (2023). Detection of Cyclomodulin CNF-1 Toxin-Producing Strains of Escherichia coli in Pig Kidneys at a Slaughterhouse. Microorganisms, 11(8), 2065. https://doi.org/10.3390/microorganisms11082065