Lethality Validation for Human Pathogenic Salmonella enterica on Chicken Feathers and Blood during Simulated Commercial Low-Temperature Dry Rendering
Abstract
:1. Introduction
2. Materials and Methods
2.1. Microorganism Preparation
2.2. Salmonella Parent and Rif+ Isolates Growth Comparison
2.3. In Vitro Thermal Death Time Comparison for S. Senftenberg Parent and Rif+ Isolates
2.4. Chicken Blood and Feathers Inoculation with Salmonella and Preparation for Thermal Lethality Testing
2.5. Sample Thermal Lethality Processing for Feathers and Blood Samples
2.6. Salmonella Senftenberg Rif+ Microbiological Enumeration
2.7. Predictive Model Development
2.8. Statistical Analysis of Data
3. Results and Discussion
3.1. In Vitro Growth of Salmonella Senftenberg 77W Parent and Rif+ Organisms
3.2. D60°C Value Comparison of Salmonella Senftenberg Parent and Rif+ Isolates
3.3. Modeled Predicted Lethality of Salmonella on Chicken Feathers as a Function of Heating Temperature and Time
3.4. Predicting Lethality to Salmonella in Chicken Blood
3.5. Secondary Modeling Validation of Salmonella Lethality during Simulated Commercial Rendering
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wilkinson, A.D.; Meeker, D.L. How agricultural rendering supports sustainability and assists livestock’s ability to contribute more than just food. Anim. Front. 2021, 11, 24–34. [Google Scholar] [CrossRef] [PubMed]
- Vidyarthi, S.; Vaddella, V.; Cao, N.; Kuppa, S.; Pandey, P. Pathogens in animal carcasses and the efficacy of rendering for pathogen inactivation in rendered products: A review. Future Foods 2021, 3, 100010. [Google Scholar] [CrossRef]
- Kinley, B.; Rieck, J.; Dawson, P.; Jiang, X. Analysis of Salmonella and enterococci isolated from rendered animal products. Can. J. Microbiol. 2010, 56, 65–73. [Google Scholar] [CrossRef] [PubMed]
- Jones-Ibarra, A.M.; Acuff, G.R.; Alvarado, C.Z.; Taylor, T.M. Validation of thermal lethality against Salmonella enterica in poultry offal during rendering. J. Food Prot. 2017, 80, 1422–1428. [Google Scholar] [CrossRef]
- Meeker, D.L.; Hamilton, C.R. An overview of the rendering industry. In Essential Rendering: All about the Animal By-Products Industry; Meeker, D.L., Ed.; National Renderers Association: Alexandria, VA, USA, 2006; pp. 1–16. [Google Scholar]
- Iowa State University Extension. Cattle By-Products. Available online: https://www.extension.iastate.edu/sites/www.extension.iastate.edu/files/allamakee/Lesson1Activity4Dairy_By_Products.pdf (accessed on 24 May 2023).
- FDA. Draft Guidance for Industry: Hazard Analysis and Risk-Based Preventive Controls for Human Food. Available online: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/draft-guidance-industry-hazard-analysis-and-risk-based-preventive-controls-human-food (accessed on 18 May 2023).
- FDA. Hazard Analysis and Risk-Based Preventive Controls for Food for Animals: Guidance for Industry. Available online: https://www.fda.gov/media/110477/download (accessed on 18 May 2023).
- Pandey, P.; Cao, W.; Wang, Y.; Vaddella, V. Predicting Salmonella Typhimurium reductions in ground poultry carcasses. Poult. Sci. 2016, 95, 2640–2646. [Google Scholar] [CrossRef]
- Wong de la Rosa, C.; Daniels, K.A.; Moreira, R.G.; Kerth, C.R.; Taylor, T.M. Validating thermal lethality to Salmonella enterica in chicken blood by simulated commercial rendering. Microorganisms 2020, 8, 2009. [Google Scholar] [CrossRef]
- Ramirez-Hernandez, A.; Inestroza, B.; Parks, A.; Brashears, M.M.; Sanchez-Plata, M.X.; Echeverry, A. Thermal inactivation of Salmonella in high-fat rendering meat products. J. Food Prot. 2018, 81, 54–58. [Google Scholar] [CrossRef]
- Franco, D.A. A survey of Salmonella serovars and most probable numbers in rendered-animal-protein meals: Inferences for animal and human health. J. Environ. Health 2005, 67, 18–22. [Google Scholar]
- Calix-Lara, T.F.; Rajendran, M.; Talcott, S.T.; Smith, S.B.; Miller, R.K.; Castillo, A.; Sturino, J.M.; Taylor, T.M. Inhibition of Escherichia coli O157:H7 and Salmonella enterica on spinach and identification of antimicrobial substances produced by a commercial Lactic Acid Bacteria food safety intervention. Food Microbiol. 2014, 38, 192–200. [Google Scholar] [CrossRef]
- Cuervo, M.P.; Lucia, L.M.; Castillo, A. Efficacy of traditional almond decontamination treatments and electron beam irradiation against heat-resistant Salmonella strains. J. Food Prot. 2016, 79, 369–375. [Google Scholar] [CrossRef]
- Baranyi, J.; Roberts, T.A. A dynamic approach to predicting bacterial growth in food. Int. J. Food Microbiol. 1994, 23, 277–294. [Google Scholar] [CrossRef]
- Geeraerd, A.H.; Valdramidis, V.P.; van Impe, J.F. GInaFiT, a freeware tool to assess non-log-linear microbial survivor curves. Int. J. Food Microbiol. 2005, 102, 95–105. [Google Scholar] [CrossRef] [PubMed]
- Geeraerd, A.H.; Herremans, C.H.; van Impe, J.F. Structural model requirements to describe microbial inactivation during a mild heat treatment. Int. J. Food Microbiol. 2000, 59, 185–209. [Google Scholar] [CrossRef] [PubMed]
- Baranyi, J.; Jones, A.; Walker, C.; Kaloti, A.; Robinson, T.P.; Mackey, B.M. A combined model for growth and subsequent thermal inactivation of Brochothrix thermosphacta. Appl. Environ. Microbiol. 1996, 62, 1029–1035. [Google Scholar] [CrossRef]
- Buchanan, R.L.; Golden, M.H.; Whiting, R.C. Differentiation of the effects of pH and lactic or acetic acid concentration on the kinetics of Listeria monocytogenes inactivation. J. Food Prot. 1993, 56, 474–478. [Google Scholar] [CrossRef]
- Stumbo, C.R. Thermobacteriology in Food Processing, 2nd ed.; Academic Press: New York, NY, USA, 1973. [Google Scholar]
- Whiting, R.C. Modeling bacterial survival in unfavorable environments. J. Ind. Microbiol. 1993, 12, 240–246. [Google Scholar] [CrossRef]
- Valdramidis, V.P.; Bernaerts, K.; van Impe, J.F.; Geeraerd, A.H. An alternative approach to non-log-linear thermal microbial inactivation: Modelling the number of log cycles reduction with respect to temperature. Food Technol. Biotechnol. 2005, 43, 321–327. [Google Scholar]
- Peleg, M. Microbial survivor curves—The reality of flat “shoulders” and absolute thermal death times. Food Res. Int. 2000, 33, 531–538. [Google Scholar] [CrossRef]
- USDA-FSIS. FSIS Cooking Guideline for Meat and Poultry Products (Revised Appendix A) (Guideline ID: FSIS-GD-2021-0014). Available online: https://www.fsis.usda.gov/guidelines/2021-0014 (accessed on 1 February 2022).
- Jackson, T.C.; Hardin, M.D.; Acuff, G.R. Heat resistance of Escherichia coli O157:H7 in a nutrient medium and in ground beef patties as influenced by storage and holding temperatures. J. Food Prot. 1996, 59, 230–237. [Google Scholar] [CrossRef] [PubMed]
- Doyle, M.P.; Mazzotta, A.S. Review of studies on the thermal resistance of salmonellae. J. Food Prot. 2000, 63, 779–795. [Google Scholar] [CrossRef]
- Ratkowsky, D.A.; Olley, J.; McMeekin, T.A.; Ball, A. Relationship between temperature and growth rate of bacterial cultures. J. Bacteriol. 1982, 149, 1–5. [Google Scholar] [CrossRef] [PubMed]
Model Parameter 1 | Salmonella Parent | Salmonella Rif+ | p < 0.05 |
---|---|---|---|
N0 (log10 CFU/mL) | 2.37 ± 0.26 2 | 2.50 ± 0.08 | 0.453 |
Lag (h) | 1.53 ± 0.23 A | 2.99 ± 0.67 B | 0.024 |
μ (1/h) | 0.98 ± 0.03 | 0.94 ± 0.07 | 0.422 |
Nfin (log10 CFU/mL) | 9.44 ± 0.10 | 9.63 ± 0.09 | 0.069 |
R2 | 0.997 | 0.986 | 0.231 |
Std. Error | 0.153 | 0.357 | 0.148 |
Model Parameter 1 | 60 °C | 70 °C | 80 °C | p < 0.05 |
---|---|---|---|---|
N0 (log10 CFU/g) | 8.03 + 0.10 2 | 7.95 + 0.12 | 7.59 + 0.14 | 0.492 |
SL (min) | 6.07 + 0.64 A | 2.68 + 0.16 B | 2.23 + 0.11 B | 0.009 |
kmax (1/min) | 1.05 + 0.07 A | 3.63 + 0.20 B | 8.37 + 0.67 C | <0.01 |
Nres (log10 CFU/g) | 0.96 + 0.26 | 0.93 + 0.14 | -- 3 | 0.906 |
R2 | 0.992 | 0.998 | 0.988 | |
Std. Error | 0.067 | 0.030 | 0.098 |
Model Parameter 1 | 60 °C | 70 °C | 80 °C | p < 0.05 |
---|---|---|---|---|
N0 (log CFU/mL) | 8.24 ± 0.24 2 | 8.01 ± 0.12 | 7.99 ± 0.47 | 0.636 |
SL (min) | 2.84 ± 0.97 A | 1.81 ± 0.11 AB | 0.90 ± 0.23 B | 0.002 |
kmax (1/min) | 1.06 ± 0.10 A | 5.06 ± 0.20 B | 8.63 ± 1.10 C | <0.01 |
Nres (log CFU/mL) | 1.47 ± 0.24 | -- 3 | ||
R2 | 0.991 | 0.998 | 0.971 | |
Std. Error | 0.109 | 0.284 | 0.437 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mvuyekure, A.L.S.; Moreira, R.G.; Taylor, T.M. Lethality Validation for Human Pathogenic Salmonella enterica on Chicken Feathers and Blood during Simulated Commercial Low-Temperature Dry Rendering. Microorganisms 2023, 11, 2071. https://doi.org/10.3390/microorganisms11082071
Mvuyekure ALS, Moreira RG, Taylor TM. Lethality Validation for Human Pathogenic Salmonella enterica on Chicken Feathers and Blood during Simulated Commercial Low-Temperature Dry Rendering. Microorganisms. 2023; 11(8):2071. https://doi.org/10.3390/microorganisms11082071
Chicago/Turabian StyleMvuyekure, Aime L. Shimwa, Rosana G. Moreira, and Thomas Matthew Taylor. 2023. "Lethality Validation for Human Pathogenic Salmonella enterica on Chicken Feathers and Blood during Simulated Commercial Low-Temperature Dry Rendering" Microorganisms 11, no. 8: 2071. https://doi.org/10.3390/microorganisms11082071
APA StyleMvuyekure, A. L. S., Moreira, R. G., & Taylor, T. M. (2023). Lethality Validation for Human Pathogenic Salmonella enterica on Chicken Feathers and Blood during Simulated Commercial Low-Temperature Dry Rendering. Microorganisms, 11(8), 2071. https://doi.org/10.3390/microorganisms11082071