Early Fluvoxamine Reduces the Risk for Clinical Deterioration in Symptomatic Outpatients with COVID-19: A Real-World, Retrospective, before–after Analysis
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chalmers, J.D.; Chotirmall, S.H. Rewiring the Immune Response in COVID-19. Am. J. Respir. Crit. Care Med. 2020, 202, 784–786. [Google Scholar] [CrossRef]
- Russell, C.D.; Lone, N.I.; Baillie, J.K. Comorbidities, multimorbidity and COVID-19. Nat. Med. 2023, 29, 334–343. [Google Scholar] [CrossRef] [PubMed]
- National Institutes of Health. COVID-19 TREATMENT GUIDELINES. Available online: https://www.covid19treatmentguidelines.nih.gov/ (accessed on 15 April 2023).
- Usher, A.D. The global COVID-19 treatment divide. Lancet 2022, 399, 779–782. [Google Scholar] [CrossRef]
- Maxwell, D.; Sanders, K.C.; Sabot, O.; Hachem, A.; Llanos-Cuentas, A.; Olotu, A.; Gosling, R.; Cutrell, J.B.; Hsiang, M.S. COVID-19 Therapeutics for Low- and Middle-Income Countries: A Review of Candidate Agents with Potential for Near-Term Use and Impact. Am. J. Trop. Med. Hyg. 2021, 105, 584–595. [Google Scholar] [CrossRef] [PubMed]
- Lancet Commission on COVID-19 Vaccines and Therapeutics Task Force Members. Urgent needs of low-income and middle-income countries for COVID-19 vaccines and therapeutics. Lancet 2021, 397, 562–564. [Google Scholar] [CrossRef] [PubMed]
- Chakraborty, C.; Sharma, A.R.; Bhattacharya, M.; Agoramoorthy, G.; Lee, S.S. The Drug Repurposing for COVID-19 Clinical Trials Provide Very Effective Therapeutic Combinations: Lessons Learned From Major Clinical Studies. Front. Pharmacol. 2021, 12, 704205. [Google Scholar] [CrossRef]
- Oskotsky, T.; Maric, I.; Tang, A.; Oskotsky, B.; Wong, R.J.; Aghaeepour, N.; Sirota, M.; Stevenson, D.K. Mortality Risk among Patients with COVID-19 Prescribed Selective Serotonin Reuptake Inhibitor Antidepressants. JAMA Netw. Open 2021, 4, e2133090. [Google Scholar] [CrossRef] [PubMed]
- Zimniak, M.; Kirschner, L.; Hilpert, H.; Geiger, N.; Danov, O.; Oberwinkler, H.; Steinke, M.; Sewald, K.; Seibel, J.; Bodem, J. The serotonin reuptake inhibitor Fluoxetine inhibits SARS-CoV-2 in human lung tissue. Sci. Rep. 2021, 11, 5890. [Google Scholar] [CrossRef]
- Rosen, D.A.; Seki, S.M.; Fernández-Castañeda, A.; Beiter, R.M.; Eccles, J.D.; Woodfolk, J.A.; Gaultier, A. Modulation of the sigma-1 receptor-IRE1 pathway is beneficial in preclinical models of inflammation and sepsis. Sci. Transl. Med. 2019, 11, eaau5266. [Google Scholar] [CrossRef]
- Rafiee, L.; Hajhashemi, V.; Javanmard, S.H. Fluvoxamine inhibits some inflammatory genes expression in LPS/stimulated human endothelial cells, U937 macrophages, and carrageenan-induced paw edema in rat. Iran. J. Basic. Med. Sci. 2016, 19, 977–984. [Google Scholar]
- Hashimoto, Y.; Suzuki, T.; Hashimoto, K. Mechanisms of action of fluvoxamine for COVID-19: A historical review. Mol. Psychiatry 2022, 27, 1898–1907. [Google Scholar] [CrossRef]
- Pericat, D.; Leon-Icaza, S.A.; Sanchez Rico, M.; Muhle, C.; Zoicas, I.; Schumacher, F.; Planes, R.; Mazars, R.; Gros, G.; Carpinteiro, A.; et al. Antiviral and Anti-Inflammatory Activities of Fluoxetine in a SARS-CoV-2 Infection Mouse Model. Int. J. Mol. Sci. 2022, 23, 13623. [Google Scholar] [CrossRef]
- Adnot, S.; Houssaini, A.; Abid, S.; Marcos, E.; Amsellem, V. Serotonin transporter and serotonin receptors. Handb. Exp. Pharmacol. 2013, 218, 365–380. [Google Scholar] [CrossRef]
- Kirenga, B.J.; Mugenyi, L.; Sanchez-Rico, M.; Kyobe, H.; Muttamba, W.; Mugume, R.; Mwesigwa, E.; Kalimo, E.; Nyombi, V.; Segawa, I.; et al. Association of fluvoxamine with mortality and symptom resolution among inpatients with COVID-19 in Uganda: A prospective interventional open-label cohort study. Mol. Psychiatry 2023. epub ahead of print. [Google Scholar] [CrossRef]
- Carpinteiro, A.; Edwards, M.J.; Hoffmann, M.; Kochs, G.; Gripp, B.; Weigang, S.; Adams, C.; Carpinteiro, E.; Gulbins, A.; Keitsch, S.; et al. Pharmacological Inhibition of Acid Sphingomyelinase Prevents Uptake of SARS-CoV-2 by Epithelial Cells. Cell Rep. Med. 2020, 1, 100142. [Google Scholar] [CrossRef] [PubMed]
- Lenze, E.J.; Mattar, C.; Zorumski, C.F.; Stevens, A.; Schweiger, J.; Nicol, G.E.; Miller, J.P.; Yang, L.; Yingling, M.; Avidan, M.S.; et al. Fluvoxamine vs Placebo and Clinical Deterioration in Outpatients with Symptomatic COVID-19: A Randomized Clinical Trial. JAMA 2020, 324, 2292–2300. [Google Scholar] [CrossRef]
- Reis, G.; Dos Santos Moreira-Silva, E.A.; Silva, D.C.M.; Thabane, L.; Milagres, A.C.; Ferreira, T.S.; Dos Santos, C.V.Q.; de Souza Campos, V.H.; Nogueira, A.M.R.; de Almeida, A.; et al. Effect of early treatment with fluvoxamine on risk of emergency care and hospitalisation among patients with COVID-19: The TOGETHER randomised, platform clinical trial. Lancet Glob. Health 2022, 10, e42–e51. [Google Scholar] [CrossRef]
- Finley, A. Is Fluvoxamine the Covid Drug We’ve Been Waiting for? Available online: https://www.wsj.com/articles/is-fluvoxamine-the-covid-miracle-drug-we-have-been-waiting-for-oral-pill-cheap-hospitalization-11640726605 (accessed on 14 January 2022).
- Fergal, P.M.; Gilmar, R.; Kristian, T.; Jamie, I.F.; Christina, M.G.; David, R.B.; Edward, J.M.; TOGETHER Investigators. Early Treatment with Fluvoxamine among Patients with COVID-19: A Cost-Consequence Model. medRxiv 2021. [Google Scholar] [CrossRef]
- National Public Health Organization. Guidelines for Healthcare Professionals and Areas of Healthcare Services. Therapeutic Algorithm for Adult Non-Hospitalized Patients with COVID-19. Available online: https://eody.gov.gr/neos-koronaios-covid-19/ (accessed on 1 August 2022).
- Yu, L.M.; Bafadhel, M.; Dorward, J.; Hayward, G.; Saville, B.R.; Gbinigie, O.; Van Hecke, O.; Ogburn, E.; Evans, P.H.; Thomas, N.P.B.; et al. Inhaled budesonide for COVID-19 in people at high risk of complications in the community in the UK (PRINCIPLE): A randomised, controlled, open-label, adaptive platform trial. Lancet 2021, 398, 843–855. [Google Scholar] [CrossRef]
- Ramakrishnan, S.; Nicolau, D.V., Jr.; Langford, B.; Mahdi, M.; Jeffers, H.; Mwasuku, C.; Krassowska, K.; Fox, R.; Binnian, I.; Glover, V.; et al. Inhaled budesonide in the treatment of early COVID-19 (STOIC): A phase 2, open-label, randomised controlled trial. Lancet Respir. Med. 2021, 9, 763–772. [Google Scholar] [CrossRef] [PubMed]
- Ebell, M.H. Inhaled Budesonide Reduces the Risk of Emergency Department Evaluation or Hospitalization in Early COVID-19. Am. Fam. Physician 2021, 104, 207–208. [Google Scholar]
- Zhou, F.; Yu, T.; Du, R.; Fan, G.; Liu, Y.; Liu, Z.; Xiang, J.; Wang, Y.; Song, B.; Gu, X.; et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: A retrospective cohort study. Lancet 2020, 395, 1054–1062. [Google Scholar] [CrossRef]
- Guan, W.-j.; Ni, Z.-y.; Hu, Y.; Liang, W.-h.; Ou, C.-q.; He, J.-x.; Liu, L.; Shan, H.; Lei, C.-l.; Hui, D.S.C.; et al. Clinical Characteristics of Coronavirus Disease 2019 in China. N. Engl. J. Med. 2020, 382, 1708–1720. [Google Scholar] [CrossRef]
- Huang, C.; Wang, Y.; Li, X.; Ren, L.; Zhao, J.; Hu, Y.; Zhang, L.; Fan, G.; Xu, J.; Gu, X.; et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020, 395, 497–506. [Google Scholar] [CrossRef] [Green Version]
- Wang, D.; Hu, B.; Hu, C.; Zhu, F.; Liu, X.; Zhang, J.; Wang, B.; Xiang, H.; Cheng, Z.; Xiong, Y.; et al. Clinical Characteristics of 138 Hospitalized Patients with 2019 Novel Coronavirus-Infected Pneumonia in Wuhan, China. JAMA 2020, 323, 1061–1069. [Google Scholar] [CrossRef]
- Coveney, J. FIRTHLOGIT: Stata Module to Calculate Bias Reduction in Logistic Regression. Available online: https://EconPapers.repec.org/RePEc:boc:bocode:s456948 (accessed on 15 April 2023).
- Reis, G.; Mills, E. Fluvoxamine for the treatment of COVID-19—Author’s reply. Lancet Glob. Health 2022, 10, e333. [Google Scholar] [CrossRef] [PubMed]
- Reis, G.; Dos Santos Moreira Silva, E.A.; Medeiros Silva, D.C.; Thabane, L.; de Souza Campos, V.H.; Ferreira, T.S.; Quirino Dos Santos, C.V.; Ribeiro Nogueira, A.M.; Figueiredo Guimaraes Almeida, A.P.; Cançado Monteiro Savassi, L.; et al. Oral Fluvoxamine with Inhaled Budesonide for Treatment of Early-Onset COVID-19: A Randomized Platform Trial. Ann. Intern. Med. 2023, 176, 667–675. [Google Scholar] [CrossRef]
- Hoertel, N. Do the Selective Serotonin Reuptake Inhibitor Antidepressants Fluoxetine and Fluvoxamine Reduce Mortality among Patients with COVID-19? JAMA Netw. Open 2021, 4, e2136510. [Google Scholar] [CrossRef]
- Fico, G.; Isayeva, U.; De Prisco, M.; Oliva, V.; Sole, B.; Montejo, L.; Grande, I.; Arbelo, N.; Gomez-Ramiro, M.; Pintor, L.; et al. Psychotropic drug repurposing for COVID-19: A Systematic Review and Meta-Analysis. Eur. Neuropsychopharmacol. 2023, 66, 30–44. [Google Scholar] [CrossRef]
- Boretti, A. Effectiveness of fluvoxamine at preventing COVID-19 infection from turning severe. Eur. Neuropsychopharmacol. 2023, 67, 83–85. [Google Scholar] [CrossRef] [PubMed]
- Lee, T.C.; Vigod, S.; Bortolussi-Courval, E.; Hanula, R.; Boulware, D.R.; Lenze, E.J.; Reiersen, A.M.; McDonald, E.G. Fluvoxamine for Outpatient Management of COVID-19 to Prevent Hospitalization: A Systematic Review and Meta-analysis. JAMA Netw. Open 2022, 5, e226269. [Google Scholar] [CrossRef] [PubMed]
- Marcec, R.; Dodig, V.M.; Likic, R. A meta-analysis regarding fluvoxamine and hospitalization risk of COVID-19 patients: TOGETHER making a difference. J. Infect. 2023, 86, 154–225. [Google Scholar] [CrossRef] [PubMed]
- Wen, W.; Chen, C.; Tang, J.; Wang, C.; Zhou, M.; Cheng, Y.; Zhou, X.; Wu, Q.; Zhang, X.; Feng, Z.; et al. Efficacy and safety of three new oral antiviral treatment (molnupiravir, fluvoxamine and Paxlovid) for COVID-19: A meta-analysis. Ann. Med. 2022, 54, 516–523. [Google Scholar] [CrossRef]
- Deng, J.; Rayner, D.; Ramaraju, H.B.; Abbas, U.; Garcia, C.; Heybati, K.; Zhou, F.; Huang, E.; Park, Y.J.; Moskalyk, M. Efficacy and safety of selective serotonin reuptake inhibitors in COVID-19 management: A systematic review and meta-analysis. Clin. Microbiol. Infect. 2023, 29, 578–586. [Google Scholar] [CrossRef]
- Calusic, M.; Marcec, R.; Luksa, L.; Jurkovic, I.; Kovac, N.; Mihaljevic, S.; Likic, R. Safety and efficacy of fluvoxamine in COVID-19 ICU patients: An open label, prospective cohort trial with matched controls. Br. J. Clin. Pharmacol. 2022, 88, 2065–2073. [Google Scholar] [CrossRef]
- Rahman, M.M.; Mahi, A.M.; Melamed, R.; Alam, M.A.U. Effects of Antidepressants on COVID-19 Outcomes: Retrospective Study on Large-Scale Electronic Health Record Data. Interact. J. Med. Res. 2023, 12, e39455. [Google Scholar] [CrossRef] [PubMed]
- Bramante, C.T.; Huling, J.D.; Tignanelli, C.J.; Buse, J.B.; Liebovitz, D.M.; Nicklas, J.M.; Cohen, K.; Puskarich, M.A.; Belani, H.K.; Proper, J.L.; et al. Randomized Trial of Metformin, Ivermectin, and Fluvoxamine for COVID-19. N. Engl. J. Med. 2022, 387, 599–610. [Google Scholar] [CrossRef]
- Bramante, C.T.; Buse, J.B.; Liebovitz, D.M.; Nicklas, J.M.; Puskarich, M.A.; Cohen, K.; Belani, H.K.; Anderson, B.J.; Huling, J.D.; Tignanelli, C.J.; et al. Outpatient treatment of COVID-19 and incidence of post-COVID-19 condition over 10 months (COVID-OUT): A multicentre, randomised, quadruple-blind, parallel-group, phase 3 trial. Lancet Infect. Dis. 2023. epub ahead of print. [Google Scholar] [CrossRef]
- McCarthy, M.W.; Naggie, S.; Boulware, D.R.; Lindsell, C.J.; Stewart, T.G.; Felker, G.M.; Jayaweera, D.; Sulkowski, M.; Gentile, N.; Bramante, C.; et al. Effect of Fluvoxamine vs Placebo on Time to Sustained Recovery in Outpatients with Mild to Moderate COVID-19: A Randomized Clinical Trial. JAMA 2023, 329, 296–305. [Google Scholar] [CrossRef]
- Marzolini, C.; Marra, F.; Boyle, A.; Khoo, S.; Back, D.J. Fluvoxamine for the treatment of COVID-19. Lancet Glob Health 2022, 10, e331. [Google Scholar] [CrossRef]
- van Harten, J. Overview of the pharmacokinetics of fluvoxamine. Clin. Pharmacokinet. 1995, 29 (Suppl. 1), 1–9. [Google Scholar] [CrossRef]
- Fluvoxamine Prices GoodRx. Available online: https://www.ramq.gouv.qc.ca/en/media/12091 (accessed on 15 April 2023).
- Mills, F.P.; Reis, G.; Wilson, L.A.; Thorlund, K.; Forrest, J.I.; Guo, C.M.; Boulware, D.R.; Mills, E.J. Early Treatment with Fluvoxamine among Patients with COVID-19: A Cost-Consequence Model. Am. J. Trop. Med. Hyg. 2023, 108, 101–106. [Google Scholar] [CrossRef] [PubMed]
- Arulanandam, B.; Beladi, H.; Chakrabarti, A. Obesity and COVID-19 mortality are correlated. Sci. Rep. 2023, 13, 5895. [Google Scholar] [CrossRef] [PubMed]
- Sawadogo, W.; Tsegaye, M.; Gizaw, A.; Adera, T. Overweight and obesity as risk factors for COVID-19-associated hospitalisations and death: Systematic review and meta-analysis. BMJ Nutr. Prev. Health 2022, 5, 10–18. [Google Scholar] [CrossRef] [PubMed]
- Sattar, N.; McInnes, I.B.; McMurray, J.J.V. Obesity Is a Risk Factor for Severe COVID-19 Infection: Multiple Potential Mechanisms. Circulation 2020, 142, 4–6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dicker, D.; Bettini, S.; Farpour-Lambert, N.; Fruhbeck, G.; Golan, R.; Goossens, G.; Halford, J.; O’Malley, G.; Mullerova, D.; Ramos Salas, X.; et al. Obesity and COVID-19: The Two Sides of the Coin. Obes. Facts 2020, 13, 430–438. [Google Scholar] [CrossRef]
- Wu, N.; Joyal-Desmarais, K.; Ribeiro, P.A.B.; Vieira, A.M.; Stojanovic, J.; Sanuade, C.; Yip, D.; Bacon, S.L. Long-term effectiveness of COVID-19 vaccines against infections, hospitalisations, and mortality in adults: Findings from a rapid living systematic evidence synthesis and meta-analysis up to December, 2022. Lancet Respir. Med. 2023, 11, 439–452. [Google Scholar] [CrossRef]
- Huang, I.; Pranata, R. Lymphopenia in severe coronavirus disease-2019 (COVID-19): Systematic review and meta-analysis. J. Intensive Care 2020, 8, 36. [Google Scholar] [CrossRef]
- Zhao, Q.; Meng, M.; Kumar, R.; Wu, Y.; Huang, J.; Deng, Y.; Weng, Z.; Yang, L. Lymphopenia is associated with severe coronavirus disease 2019 (COVID-19) infections: A systemic review and meta-analysis. Int. J. Infect. Dis. 2020, 96, 131–135. [Google Scholar] [CrossRef]
- Niu, J.; Sareli, C.; Mayer, D.; Visbal, A.; Sareli, A. Lymphopenia as a Predictor for Adverse Clinical Outcomes in Hospitalized Patients with COVID-19: A Single Center Retrospective Study of 4485 Cases. J. Clin. Med. 2022, 11, 700. [Google Scholar] [CrossRef]
- Diao, B.; Wang, C.; Tan, Y.; Chen, X.; Liu, Y.; Ning, L.; Chen, L.; Li, M.; Liu, Y.; Wang, G.; et al. Reduction and Functional Exhaustion of T Cells in Patients with Coronavirus Disease 2019 (COVID-19). Front. Immunol. 2020, 11, 827. [Google Scholar] [CrossRef]
- Pontelli, M.C.; Castro, I.A.; Martins, R.B.; La Serra, L.; Veras, F.P.; Nascimento, D.C.; Silva, C.M.; Cardoso, R.S.; Rosales, R.; Gomes, R.; et al. SARS-CoV-2 productively infects primary human immune system cells in vitro and in COVID-19 patients. J. Mol. Cell Biol. 2022, 14, mjac021. [Google Scholar] [CrossRef]
- Ratajczak, M.Z.; Kucia, M. SARS-CoV-2 infection and overactivation of Nlrp3 inflammasome as a trigger of cytokine “storm” and risk factor for damage of hematopoietic stem cells. Leukemia 2020, 34, 1726–1729. [Google Scholar] [CrossRef]
- He, Z.; Zhao, C.; Dong, Q.; Zhuang, H.; Song, S.; Peng, G.; Dwyer, D.E. Effects of severe acute respiratory syndrome (SARS) coronavirus infection on peripheral blood lymphocytes and their subsets. Int. J. Infect. Dis. 2005, 9, 323–330. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Varghese, J.; Sandmann, S.; Ochs, K.; Schrempf, I.M.; Frommel, C.; Dugas, M.; Schmidt, H.H.; Vollenberg, R.; Tepasse, P.R. Persistent symptoms and lab abnormalities in patients who recovered from COVID-19. Sci. Rep. 2021, 11, 12775. [Google Scholar] [CrossRef]
- Drewry, A.M.; Samra, N.; Skrupky, L.P.; Fuller, B.M.; Compton, S.M.; Hotchkiss, R.S. Persistent lymphopenia after diagnosis of sepsis predicts mortality. Shock 2014, 42, 383–391. [Google Scholar] [CrossRef] [Green Version]
- Firth, D. Bias reduction of maximum likelihood estimates. Biometrika 1993, 80, 27–38. [Google Scholar] [CrossRef]
- Heinze, G.; Schemper, M. A solution to the problem of separation in logistic regression. Stat. Med. 2002, 21, 2409–2419. [Google Scholar] [CrossRef] [PubMed]
- Berwanger, O. Antithrombotic Therapy for Outpatients with COVID-19: Implications for Clinical Practice and Future Research. JAMA 2021, 326, 1685–1686. [Google Scholar] [CrossRef]
- Talasaz, A.H.; Sadeghipour, P.; Kakavand, H.; Aghakouchakzadeh, M.; Kordzadeh-Kermani, E.; Van Tassell, B.W.; Gheymati, A.; Ariannejad, H.; Hosseini, S.H.; Jamalkhani, S.; et al. Recent Randomized Trials of Antithrombotic Therapy for Patients with COVID-19: JACC State-of-the-Art Review. J. Am. Coll. Cardiol. 2021, 77, 1903–1921. [Google Scholar] [CrossRef]
Fluvoxamine + SOC (N = 53) | SOC (N = 50) | p | |
---|---|---|---|
Median Age (years) | 45 (IQR 41–55) | 49 (IQR 39–60) | 0.65 |
Male Gender n (%) | 25 (47) | 29 (58) | 0.33 |
BMI (kg/m2) | |||
Median | 26.4 (24.0–31.3) | 25.8 (23.6–28.3) | 0.25 |
Comorbidities n (%) | |||
Obesity (BMI > 30) | 15 (28) | 7 (14) | 0.10 |
Hypertension | 10(19) | 7 (14) | 0.60 |
Diabetes | 5(9) | 6(12) | 0.76 |
Dyslipidemia | 6(11) | 3(6) | 0.49 |
Autoimmunity | 5(9) | 3(6) | 0.72 |
Neurologic | 3(9) | 2(4) | 1 |
Thrombophilia | 3(6) | 0 | 0.24 |
Cancer | 3(6) | 0 | 0.24 |
COPD | 1(2) | 1(2) | 1 |
Other | 28(53) | 22(44) | 0.43 |
Vaccination n (%) | |||
Fully vaccinated | 38 (72) | 40 (80) | 0.37 |
Booster shot | 16 (30) | 10 (20) | 0.26 |
Treatment n (%) | |||
Enoxaparin prophylaxis | 15 (28) | 11 (22) | 0.50 |
Budesonide | 53 (100) | 50 (100) | 1 |
Outcome n (%) | |||
Clinical deterioration | 2 (4%) | 8 (16%) | 0.048 |
Hospitalization/ICU | 1/0 | 6/1 | 0.05 |
Deaths | 0 (0) | 0 (0) | - |
All Patients (n = 103) | Odds Ratio | 95% Confidence Interval | p |
---|---|---|---|
Unadjusted effect | |||
Fluvoxamine | 0.24 | 0.06–1.05 | 0.06 |
Adjusted effects | |||
Fluvoxamine | 0.12 | 0.02–0.70 | 0.02 |
Age | 1.05 | 0.99–1.11 | 0.08 |
female gender | 0.82 | 0.20–3.34 | 0.77 |
BMI > 30 | 8.2 | 1.55–43.11 | 0.01 |
Full vaccination | 0.17 | 0.03–0.84 | 0.03 |
Fluvoxamine + SOC (N = 53) | SOC (N = 50) | p | |
---|---|---|---|
Complete blood count (CBC) | |||
White Blood Cell count (/μL) | 5520 (IQR 4680–6300) | 5383 (IQR 4500–6600) | 0.75 |
Lymphocyte count (/μL) | 1862 (IQR 1451–2211) | 1638 (IQR 1210–2005) | 0.03 |
Lymphocyte count < 1000 (/μL) † | 1(2%) | 4(8%) | 0.20 |
Hemoglobin (g/dL) | 14 (IQR 13.1–15.0) | 14 (IQR 12.6–15.2) | 0.49 |
Platelet count (×103/μL) | 214 (IQR 180–267) | 199 (171–276) | 0.63 |
Biochemistry/Biomarkers | |||
C-reactive protein (mg/L) | 4 (IQR 2.4–8.9) | 4.6 (IQR 3.1–16) | 0.15 |
C-reactive protein > 5 mg/L | 22 (42%) | 23 (46%) | 0.69 |
C-reactive protein > 100 mg/L † | 0 | 3 (20%) | 0.11 |
Serum ferritin (ng/mL) | 132(IQR 72–199) | 122(IQR 70–188) | 0.9 |
Serum ferritin > 1000 (ng/mL) † | 0 | 1(2%) | 0.49 |
Lactate dehydrogenase (LDH) U/L | 165(IQR 140–201) | 166 (IQR 118–193) | 0.43 |
Creatine phosphokinase (CPK) U/L | 87(66–115) | 77(44–118) | 0.20 |
Troponin assay > 0.40 ng/mL | 0 | 0 | |
D-dimer assay > 500 μg/mL | 9 (17%) | 16 (32%) | 0.11 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tsiakalos, A.; Ziakas, P.D.; Polyzou, E.; Schinas, G.; Akinosoglou, K. Early Fluvoxamine Reduces the Risk for Clinical Deterioration in Symptomatic Outpatients with COVID-19: A Real-World, Retrospective, before–after Analysis. Microorganisms 2023, 11, 2073. https://doi.org/10.3390/microorganisms11082073
Tsiakalos A, Ziakas PD, Polyzou E, Schinas G, Akinosoglou K. Early Fluvoxamine Reduces the Risk for Clinical Deterioration in Symptomatic Outpatients with COVID-19: A Real-World, Retrospective, before–after Analysis. Microorganisms. 2023; 11(8):2073. https://doi.org/10.3390/microorganisms11082073
Chicago/Turabian StyleTsiakalos, Aristotelis, Panayiotis D. Ziakas, Eleni Polyzou, Georgios Schinas, and Karolina Akinosoglou. 2023. "Early Fluvoxamine Reduces the Risk for Clinical Deterioration in Symptomatic Outpatients with COVID-19: A Real-World, Retrospective, before–after Analysis" Microorganisms 11, no. 8: 2073. https://doi.org/10.3390/microorganisms11082073
APA StyleTsiakalos, A., Ziakas, P. D., Polyzou, E., Schinas, G., & Akinosoglou, K. (2023). Early Fluvoxamine Reduces the Risk for Clinical Deterioration in Symptomatic Outpatients with COVID-19: A Real-World, Retrospective, before–after Analysis. Microorganisms, 11(8), 2073. https://doi.org/10.3390/microorganisms11082073