Bloodstream Infections: Comparison of Diagnostic Methods and Therapeutic Consequences between a Hospital in a Resource-Limited Setting and Two French Hospitals
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Characteristics of Study Population
3.2. Bacteriological Data
3.3. Antibiotic Therapy Adequacy
3.4. Patients’ Clinical Outcomes
4. Discussion
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Dellinger, R.P.; Levy, M.M.; Rhodes, A.; Annane, D.; Gerlach, H.; Opal, S.M.; Sevransky, J.E.; Sprung, C.L.; Douglas, I.S.; Jaeschke, R.; et al. Surviving Sepsis Campaign: International Guidelines for Management of Severe Sepsis and Septic Shock: 2012. Crit. Care Med. 2013, 41, 580–637. [Google Scholar] [CrossRef] [PubMed]
- Galar, A.; Leiva, J.; Espinosa, M.; Guillén-Grima, F.; Hernáez, S.; Yuste, J. Clinical and economic evaluation of the impact of rapid microbiological diagnostic testing. J. Infect. 2012, 65, 302–309. [Google Scholar] [CrossRef] [PubMed]
- Key Points from the Evidence|Clostridium Difficile Infection: Risk with Broad-Spectrum Antibiotics|Advice|NICE. NICE. 2015. Available online: https://www.nice.org.uk/advice/esmpb1/chapter/key-points-from-the-evidence (accessed on 7 February 2023).
- Caliendo, A.M.; Gilbert, D.N.; Ginocchio, C.C.; Hanson, K.E.; May, L.; Quinn, T.C.; Tenover, F.C.; Alland, D.; Blaschke, A.J.; Bonomo, R.A.; et al. Better Tests, Better Care: Improved Diagnostics for Infectious Diseases. Clin. Infect. Dis. 2013, 57, S139–S170. [Google Scholar] [CrossRef]
- Evans, L.; Rhodes, A.; Alhazzani, W.; Antonelli, M.; Coopersmith, C.M.; French, C.; Machado, F.R.; Mcintyre, L.; Ostermann, M.; Prescott, H.C.; et al. Surviving Sepsis Campaign: International Guidelines for Management of Sepsis and Septic Shock 2021. Crit. Care Med. 2021, 49, e1063–e1143. [Google Scholar] [CrossRef]
- Gupta, E.; Saxena, J.; Kumar, S.; Sharma, U.; Rastogi, S.; Srivastava, V.K.; Kaushik, S.; Jyoti, A. Fast Track Diagnostic Tools for Clinical Management of Sepsis: Paradigm Shift from Conventional to Advanced Methods. Diagnostics 2023, 13, 277. [Google Scholar] [CrossRef] [PubMed]
- Florio, W.; Baldeschi, L.; Rizzato, C.; Tavanti, A.; Ghelardi, E.; Lupetti, A. Detection of Antibiotic-Resistance by MALDI-TOF Mass Spectrometry: An Expanding Area. Front. Cell. Infect. Microbiol. 2020, 10, 572909. [Google Scholar] [CrossRef]
- Huttunen, R.; Syrjänen, J.; Vuento, R.; Aittoniemi, J. Current concepts in the diagnosis of blood stream infections. Are novel molecular methods useful in clinical practice? Int. J. Infect. Dis. 2013, 17, e934–e938. [Google Scholar] [CrossRef]
- Reddy, K.; Whitelaw, A. Can the Xpert MRSA/SA BC assay be used as an antimicrobial stewardship tool? A prospective assay validation and descriptive impact assessment study in a South African setting. BMC Infect. Dis. 2021, 21, 177. [Google Scholar] [CrossRef]
- Sango, A.; McCarter, Y.S.; Johnson, D.; Ferreira, J.; Guzman, N.; Jankowski, C.A.; Renvoisé, A.; Decré, D.; Amarsy-Guerle, R.; Huang, T.-D.; et al. Stewardship Approach for Optimizing Antimicrobial Therapy through Use of a Rapid Microarray Assay on Blood Cultures Positive for Enterococcus Species. J. Clin. Microbiol. 2013, 51, 4008–4011. [Google Scholar] [CrossRef]
- Tjandra, K.C.; Ram-Mohan, N.; Abe, R.; Hashemi, M.M.; Lee, J.-H.; Chin, S.M.; Roshardt, M.A.; Liao, J.C.; Wong, P.K.; Yang, S. Diagnosis of Bloodstream Infections: An Evolution of Technologies towards Accurate and Rapid Identification and Antibiotic Susceptibility Testing. Antibiotics 2022, 11, 511. [Google Scholar] [CrossRef]
- Lebanon Overview: Development News, Research, Data|World Bank. Available online: https://www.worldbank.org/en/country/lebanon/overview#1 (accessed on 5 June 2023).
- Mizrahi, A.; Jaureguy, F.; Petit, H.; de Ponfilly, G.P.; Carbonnelle, E.; Le Monnier, A.; Zahar, J.-R.; Pilmis, B. Early Empirical Antibiotic Therapy Modification in Sepsis Using Beta-Lacta Test Directly on Blood Cultures. Int. J. Transl. Med. 2022, 2, 448–455. [Google Scholar] [CrossRef]
- Jarlier, V.; Nicolas, M.-H.; Fournier, G.; Philippon, A. Extended Broad-Spectrum -Lactamases Conferring Transferable Resistance to Newer-Lactam Agents in Enterobacteriaceae: Hospital Prevalence and Susceptibility Patterns. Clin. Infect. Dis. 1988, 10, 867–878. [Google Scholar] [CrossRef]
- Comité de l’Antibiograme de la Société Française de Microbiologie. Société Française de Microbiologie. Available online: https://www.sfm-microbiologie.org/boutique/comite-de-lantibiograme-de-la-sfm-casfm/ (accessed on 12 February 2023).
- MASTDISCS COMBI CARBA PLUS. Available online: https://mast-group.com/uk/products/amr/antibiotic-resistance-detection-sets/d73c/ (accessed on 12 February 2023).
- Cepheid|Carbapenem Resistance Molecular Test-Xpert Carba-R. Available online: https://www.cepheid.com/en/tests/Healthcare-Associated-Infections/Xpert-Carba-R (accessed on 12 February 2023).
- Weiss, E.; Zahar, J.-R.; Lesprit, P.; Ruppe, E.; Leone, M.; Chastre, J.; Lucet, J.-C.; Paugam-Burtz, C.; Brun-Buisson, C.; Timsit, J.-F.; et al. Elaboration of a consensual definition of de-escalation allowing a ranking of β-lactams. Clin. Microbiol. Infect. 2015, 21, 649.e1–649.e10. [Google Scholar] [CrossRef] [PubMed]
- Saliba, R.; Zahar, J.-R.; Dabar, G.; Riachy, M.; Karam-Sarkis, D.; Husni, R. Limiting the Spread of Multidrug-Resistant Bacteria in Low-to-Middle-Income Countries: One Size Does Not Fit All. Pathogens 2023, 12, 144. [Google Scholar] [CrossRef]
- Zowawi, H.M.; Balkhy, H.H.; Walsh, T.R.; Paterson, D.L. β-Lactamase Production in Key Gram-Negative Pathogen Isolates from the Arabian Peninsula. Clin. Microbiol. Rev. 2013, 26, 361–380. [Google Scholar] [CrossRef] [PubMed]
- Talaat, M.; Zayed, B.; Tolba, S.; Abdou, E.; Gomaa, M.; Itani, D.; Hutin, Y.; Hajjeh, R. Increasing Antimicrobial Resistance in World Health Organization Eastern Mediterranean Region, 2017–2019. Emerg. Infect. Dis. 2022, 28, 717–724. [Google Scholar] [CrossRef] [PubMed]
- Mehl, A.; Åsvold, B.O.; Kümmel, A.; Lydersen, S.; Paulsen, J.; Haugan, I.; Solligård, E.; Damås, J.K.; Harthug, S.; Edna, T.-H. Trends in antimicrobial resistance and empiric antibiotic therapy of bloodstream infections at a general hospital in Mid-Norway: A prospective observational study. BMC Infect. Dis. 2017, 17, 116. [Google Scholar] [CrossRef]
- Pradipta, I.S.; Sodik, D.C.; Parwati, I.; Lestari, K.; Halimah, E.; Diantini, A.; Abdulah, R. Antibiotic resistance in sepsis patients: Evaluation and recommendation of antibiotic use. N. Am. J. Med. Sci. 2013, 5, 344–352. [Google Scholar] [CrossRef]
- Goodman, K.E.; Lessler, J.; Cosgrove, S.E.; Harris, A.D.; Lautenbach, E.; Han, J.H.; Milstone, A.M.; Massey, C.J.; Tamma, P.D. A Clinical Decision Tree to Predict Whether a Bacteremic Patient Is Infected With an Extended-Spectrum β-Lactamase–Producing Organism. Clin. Infect. Dis. 2016, 63, 896–903. [Google Scholar] [CrossRef]
- MacGowan, A.; Grier, S.; Stoddart, M.; Reynolds, R.; Rogers, C.; Pike, K.; Smartt, H.; Wilcox, M.; Wilson, P.; Kelsey, M.; et al. Impact of rapid microbial identification on clinical outcomes in bloodstream infection: The RAPIDO randomized trial. Clin. Microbiol. Infect. 2020, 26, 1347–1354. [Google Scholar] [CrossRef]
- Timbrook, T.T.; Morton, J.B.; McConeghy, K.W.; Caffrey, A.R.; Mylonakis, E.; LaPlante, K.L. The Effect of Molecular Rapid Diagnostic Testing on Clinical Outcomes in Bloodstream Infections: A Systematic Review and Meta-analysis. Clin. Infect. Dis. 2016, 64, 15–23. [Google Scholar] [CrossRef]
- Nadjm, B.; Dat, V.Q.; Campbell, J.I.; Dung, V.T.V.; Torre, A.; Tu, N.T.C.; Van, N.T.T.; Trinh, D.T.; Lan, N.P.H.; Trung, N.V.; et al. A randomised controlled trial of matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDITOF-MS) versus conventional microbiological methods for identifying pathogens: Impact on optimal antimicrobial therapy of invasive bacterial and fungal infections in Vietnam. J. Infect. 2019, 78, 454–460. [Google Scholar] [CrossRef] [PubMed]
- Jeon, Y.D.; Seong, H.; Kim, D.; Ahn, M.Y.; Jung, I.Y.; Jeong, S.J.; Choi, J.Y.; Song, Y.G.; Yong, D.; Lee, K.; et al. Impact of matrix-assisted laser desorption/ionization time of flight mass spectrometric evaluation on the clinical outcomes of patients with bacteremia and fungemia in clinical settings lacking an antimicrobial stewardship program: A pre-post quasi experimental study. BMC Infect. Dis. 2018, 18, 385. [Google Scholar] [CrossRef]
- Anton-Vazquez, V.; Hine, P.; Krishna, S.; Chaplin, M.; Planche, T. Rapid versus standard antimicrobial susceptibility testing to guide treatment of bloodstream infection. Cochrane Database Syst. Rev. 2021, 5, CD013235. [Google Scholar] [CrossRef] [PubMed]
- Paharik, A.E.; Schreiber, H.L.; Spaulding, C.N.; Dodson, K.W.; Hultgren, S.J. Narrowing the spectrum: The new frontier of precision antimicrobials. Genome Med. 2017, 9, 110. [Google Scholar] [CrossRef]
- Beam, A.; Clinger, E.; Hao, L. Effect of Diet and Dietary Components on the Composition of the Gut Microbiota. Nutrients 2021, 13, 2795. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.-J.; Liu, D.; Ren, H.-Y.; Zhang, X.-Y.; Zhang, J. Effects of sepsis and its treatment measures on intestinal flora structure in critical care patients. World J. Gastroenterol. 2021, 27, 2376–2393. [Google Scholar] [CrossRef]
- Krockow, E.; Colman, A.; Chattoe-Brown, E.; Jenkins, D.; Perera, N.; Mehtar, S.; Tarrant, C. Balancing the risks to individual and society: A systematic review and synthesis of qualitative research on antibiotic prescribing behaviour in hospitals. J. Hosp. Infect. 2018, 101, 428–439. [Google Scholar] [CrossRef]
Characteristics | France | Lebanon | p-Value |
---|---|---|---|
Total | 100 | 50 | |
Males, n (%) | 59 (59) | 27 (54) | 0.6 |
Age, median [IQR] | 71 [56–81] | 72 [62–82] | 0.8 |
Ward of hospitalization, n (%) | |||
Medical | 79 (79) | 41 (82) | 0.82 |
Intensive care unit | 15 (15) | 7 (14) | 1 |
Surgery | 6 (6) | 2 (4) | 0.71 |
Route of infection, n (%) | |||
Urinary | 37 (37) | 22 (44) | 0.47 |
Digestive | 24 (24) | 15 (30) | 0.43 |
Pulmonary | 15 (15) | 4 (8) | 0.3 |
Catheter | 11 (11) | 6(12) | 1 |
Surgical site | 2 (2) | 3 (6) | 0.33 |
Primary bacteremia | 6 (6) | 0 (0) | 1 |
Cutaneous | 3 (3) | 0 (0) | 0.55 |
Endocarditis | 1 (1) | 0 (0) | 1 |
Skeletal | 1 (1) | 0 (0) | 1 |
Type of infection, n (%) | |||
Community-acquired | 52 (52) | 28 (56) | 0.72 |
Healthcare-associated | 42 (42) | 20 (40) | 0.86 |
Unknown | 6 (6) | 2 (4) | 0.71 |
Hospitalization in the last 6 months, n (%) | 49 (49) | 30 (60) | 0.22 |
Antibiotics use in the last 3 months, n (%) | 25 (25) | 20 (40) | 0.08 |
Colonization with MDRO in the last 12 months, n (%) | 5 (5) | 16 (32) | <0.01 |
Colonization with VRE and/or CPE in the last 12 months, n (%) | 3 (3) | 5 (10) | 0.11 |
Characteristics | France | Lebanon | p-Value |
---|---|---|---|
Causative pathogen | |||
Escherichia coli, n (%) | 50 (50) | 31 (62) | 0.22 |
Klebsiella pneumoniae, n (%) | 12 (12) | 9 (18) | 0.32 |
Enterobacter spp., n (%) | 10 (10) | 0 (0) | 0.03 |
Pseudomonas aeruginosa, n (%) | 13 (13) | 4 (8) | 0.42 |
Other, n (%) | 15 (15) | 6 (12) | 0.8 |
Mechanism of resistance | |||
ESBL, n (%) | 12 (12) | 19 (38) | <0.01 |
AmpC, n (%) | 4 (4) | 3 (6) | 1 |
CPE, n (%) | 0 (0) | 6 (12) | 0.002 |
First day of positivity | |||
Time to positivity (hours), median [IQR] | 10.6 [6–11.65] | 12 [9.35–17.8] | <0.001 |
Gram stain | 100 (100) | 43 (86) | 0.0003 |
Mobility | 36 (36) | 43 (86) | 0.0001 |
Genus identification | 81 (81) | 0 (0) | 0.0001 |
Species identification | 74 (74) | 0 (0) | 0.0001 |
BetaLACTA® test | 78 (78) | 0 (0) | 0.0001 |
Positive rapid test | 11 (11) | 0 (0) | 0.01 |
Identification of mechanism of resistance | 70 (70) | 0 (0) | 0.01 |
AST by disk diffusion | 100 (100) | 33 (66) | 0.0001 |
AST reading | 25 (25) | 0 (0) | 0.0001 |
Second day of positivity | |||
Genus identification | 100 (100) | 28 (56) | 0.0001 |
Species identification | 99 (99) | 25 (50) | 0.0001 |
BetaLACTA® test | 3 (3) | 0 (0) | 0.24 |
AST performed | 36 (36) | 15 (30) | 0.58 |
Time to genus identification (h), median [IQR] | 26.2 [13.8–32.4] | 36.5 [24.3–48.2] | <0.001 |
Time to species identification (h), median [IQR] | 26.4 [14.4–32.2] | 42.6 [24.5–48.5] | <0.001 |
Time to mechanism of resistance identification (h), median [IQR] | 29 [15.3–33] | 37.5 [23.3–49.2] | 0.0004 |
Time to definitive laboratory result (h), median [IQR] | 41.6 [33–55] | 43.6 [24.9–50] | 0.008 |
Characteristics | CPE, Other MDRO | Non-MDRO | p-Value |
---|---|---|---|
Total | 37 | 113 | |
Males, n (%) | 20 (54) | 66 (58.4) | 0.83 |
Location, n (%) | |||
France | 12 (32.5) | 88 (77.9) | <0.01 |
Lebanon | 25 (67.5) | 25 (22.1) | |
Ward of hospitalization, n (%) | |||
Medical | 28 (75.7) | 92 (81.4) | 0.48 |
Surgery | 3 (8.1) | 5 (4.4) | 0.4 |
Intensive care | 6 (16.2) | 16 (14.2) | 0.79 |
Route of infection, n (%) | |||
Urinary | 18 (48.6) | 41 (36.3) | 0.24 |
Digestive | 11 (29.7) | 28 (24.8) | 0.66 |
Catheter | 4 (10.8) | 13 (11.5) | 1 |
Pulmonary | 2 (5.4) | 17 (15) | 0.16 |
Surgical site | 2 (5.4) | 3 (2.7) | 0.59 |
Primary bacteremia | 0 (0) | 6 (5.4) | 0.33 |
Cutaneous | 0 (0) | 3 (0) | 1 |
Endocarditis | 0 (0) | 1 (0) | 1 |
Skeletal | 0 (0) | 1 (0) | 1 |
Type of infection, n (%) | |||
Community-acquired | 17 (46) | 63 (55.7) | 0.34 |
Healthcare-associated | 18 (48.6) | 44 (38.9) | 0.33 |
Unknown | 2 (5.4) | 6 (5.4) | 1 |
Hospitalization in the last 6 months, n (%) | 20 (54) | 59 (52.2) | 1 |
Antibiotics use in the last 3 months, n (%) | 17 (46) | 28 (24.7) | 0.02 |
Colonization with VRE and/or CPE in the last 12 months, n (%) | 4 (10.8) | 4 (3.5) | 0.1 |
Colonization with other MDRO in the last 12 months, n (%) | 14 (37.8) | 7 (6.2) | <0.01 |
Species | |||
Escherichia coli, n (%) | 28 (75.7) | 53 (46.9) | 0.002 |
Klebsiella pneumoniae, n (%) | 7 (18.9) | 14 (12.4) | 0.41 |
Enterobacter spp., n (%) | 1 (2.7) | 9 (8) | 0.45 |
Pseudomonas aeruginosa, n (%) | 0 (0) | 17 (15) | 0.007 |
Other, n (%) | 1 (2.7) | 20 (17.7) | 0.02 |
Empirical adequate antibiotic therapy, n (%) | 20 (54) | 31 (27.4) | 0.004 |
Targeted adequate antibiotic therapy, n (%) | 2 (5.4) | 5 (4.4) | 1 |
30-day mortality, n (%) | 6 (16.2) | 16 (14.1) | 0.79 |
Characteristics | France | Lebanon | p-Value |
---|---|---|---|
| |||
| |||
| 41 (41) | 14 (28) | 0.15 |
| 14 (14) | 14 (28) | 0.04 |
| 40 (40) | 21 (42) | 0.86 |
| 5 (5) | 1 (2) | 0.66 |
| |||
| 38 (38) | 13 (26) | 0.2 |
| 48 (48) | 26 (52) | 0.72 |
| 12 (12) | 9 (18) | 0.36 |
| 2 (2) | 1 (2) | 1 |
| |||
| |||
| 16 (16) | 14 (28) | 0.08 |
| 32 (32) | 14 (28) | 0.7 |
| 49 (49) | 21 (42) | 0.48 |
| 3 (3) | 1 (2) | 0.1 |
| |||
| |||
| 8 (8) | 1 (2) | 0.27 |
| 34 (34) | 29 (58) | 0.008 |
| 52 (52) | 17 (34) | 0.03 |
| 6 (6) | 3 (6) | 1 |
| |||
| 9 (9) | 1 (2) | 0.42 |
| 68 (68) | 34 (68) | 1 |
| 19 (19) | 14 (28) | 1 |
| 2 (2) | 1 (2) | 1 |
Characteristics | France | Lebanon | p-Value |
---|---|---|---|
Complications within 3 months, n (%) | 3 (3) | 0 (0) | 0.55 |
Length of hospital stay (days), median [IQR] | 11 [6–17.5] | 11 [8–18] | 0.97 |
30-day mortality, n (%) | 13 (13) | 9 (18) | 0.46 |
IQR, interquartile range |
Characteristics | Death | Survival | p-Value |
---|---|---|---|
Total | 22 | 128 | |
Males, n (%) | 11 (50) | 77 (60.1) | 0.48 |
Location, n (%) | |||
France | 13 (59.1) | 87 (68) | 0.46 |
Lebanon | 9 (40.9) | 41 (32) | |
Ward of hospitalization, n (%) | |||
Medical | 17 (77.3) | 103 (80.4) | 0.77 |
Surgery | 0 (0) | 8 (6.3) | 0.60 |
Intensive care | 5 (22.7) | 17 (13.3) | 0.32 |
Route of infection, n (%) | |||
Urinary | 5 (22.7) | 54 (42.2) | 0.1 |
Digestive | 5 (22.7) | 34 (26.6) | 0.79 |
Catheter | 5 (22.7) | 12 (9.4) | 0.13 |
Pulmonary | 5 (22.7) | 14 (10.9) | 0.15 |
Surgical site | 0 (0) | 5 (3.9) | 1 |
Primary bacteremia | 2 (9.2) | 4 (3.1) | 0.21 |
Cutaneous | 0 (0) | 3 (2.3) | 1 |
Endocarditis | 0 (0) | 1 (0.8) | 1 |
Skeletal | 0 (0) | 1 (0.8) | 1 |
Type of infection, n (%) | |||
Community-acquired | 8 (36.4) | 72 (56.3) | 0.1 |
Healthcare-associated | 10 (45.5) | 52 (40.6) | 0.81 |
Unknown | 4 (18.1) | 4 (3.1) | 0.01 |
Hospitalization in the last 6 months, n (%) | 14 (63.6) | 65 (50.8) | 0.35 |
Antibiotics use in the last 3 months, n (%) | 12 (54.5) | 33 (25.7) | 0.01 |
Colonization with VRE and/or CPE in the last 12 months, n (%) | 2 (9.2) | 6 (4.7) | 0.33 |
Colonization with other MDRO in the last 12 months, n (%) | 2 (9.2) | 19 (14.8) | 0.74 |
Species | |||
Escherichia coli, n (%) | 10 (45.4) | 71 (55.5) | 0.48 |
Klebsiella pneumoniae, n (%) | 5 (22.7) | 16 (12.5) | 0.19 |
Enterobacter spp., n (%) | 1 (4.5) | 9 (7) | 1 |
Pseudomonas aeruginosa, n (%) | 3 (13.7) | 14 (10.9) | 0.71 |
Other, n (%) | 3 (13.7) | 18 (14.1) | 1 |
MDRO | 8 (36.3) | 29 (22.6) | 0.18 |
ESBL, n (%) | 5 (22.7) | 26 (20.3) | 0.77 |
CPE, n (%) | 3 (13.6) | 3 (2.3) | 0.04 |
Initial effective antibiotic therapy, n (%) | 13 (59) | 103 (80.4) | 0.049 |
Final effective antibiotic therapy, n (%) | 19 (86.3) | 113 (88.2) | 0.73 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Eid, R.; Zahar, J.-R.; Ait Ali, C.; Mizrahi, A.; Ibrahim, R.; Banh, E.; Halouani, H.; Jauréguy, F.; Pilmis, B.; Saliba, R. Bloodstream Infections: Comparison of Diagnostic Methods and Therapeutic Consequences between a Hospital in a Resource-Limited Setting and Two French Hospitals. Microorganisms 2023, 11, 2136. https://doi.org/10.3390/microorganisms11092136
Eid R, Zahar J-R, Ait Ali C, Mizrahi A, Ibrahim R, Banh E, Halouani H, Jauréguy F, Pilmis B, Saliba R. Bloodstream Infections: Comparison of Diagnostic Methods and Therapeutic Consequences between a Hospital in a Resource-Limited Setting and Two French Hospitals. Microorganisms. 2023; 11(9):2136. https://doi.org/10.3390/microorganisms11092136
Chicago/Turabian StyleEid, Racha, Jean-Ralph Zahar, Chahrazed Ait Ali, Assaf Mizrahi, Racha Ibrahim, Emeline Banh, Habib Halouani, Françoise Jauréguy, Benoit Pilmis, and Rindala Saliba. 2023. "Bloodstream Infections: Comparison of Diagnostic Methods and Therapeutic Consequences between a Hospital in a Resource-Limited Setting and Two French Hospitals" Microorganisms 11, no. 9: 2136. https://doi.org/10.3390/microorganisms11092136
APA StyleEid, R., Zahar, J. -R., Ait Ali, C., Mizrahi, A., Ibrahim, R., Banh, E., Halouani, H., Jauréguy, F., Pilmis, B., & Saliba, R. (2023). Bloodstream Infections: Comparison of Diagnostic Methods and Therapeutic Consequences between a Hospital in a Resource-Limited Setting and Two French Hospitals. Microorganisms, 11(9), 2136. https://doi.org/10.3390/microorganisms11092136