Gut Dysbiosis and Hemodynamic Changes as Links of the Pathogenesis of Complications of Cirrhosis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients
2.2. Gut Microbiome Analysis
2.3. Systemic Hemodynamic Assessment
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Di Pascoli, M.; Sacerdoti, D.; Pontisso, P.; Angeli, P.; Bolognesi, M. Molecular Mechanisms Leading to Splanchnic Vasodilation in Liver Cirrhosis. J. Vasc. Res. 2017, 54, 92–99. [Google Scholar] [CrossRef]
- Moller, S.; Bendtsen, F. The pathophysiology of arterial vasodilatation and hyperdynamic circulation in cirrhosis. Liver Int. 2018, 38, 570–580. [Google Scholar] [CrossRef]
- Bolognesi, M.; Di Pascoli, M.; Verardo, A.; Gatta, A. Splanchnic vasodilation and hyperdynamic circulatory syndrome in cirrhosis. World J. Gastroenterol. 2014, 20, 2555–2563. [Google Scholar] [CrossRef]
- Ponziani, F.R.; Zocco, M.A.; Cerrito, L.; Gasbarrini, A.; Pompili, M. Bacterial translocation in patients with liver cirrhosis: Physiology, clinical consequences, and practical implications. Expert. Rev. Gastroenterol. Hepatol. 2018, 12, 641–656. [Google Scholar] [CrossRef]
- Maslennikov, R.; Ivashkin, V.; Efremova, I.; Poluektova, E.; Shirokova, E. The gut-liver axis in cirrhosis: Are hemodynamic changes a missing link? World J. Clin. Cases 2021, 9, 9320–9332. [Google Scholar] [CrossRef] [PubMed]
- Gómez-Hurtado, I.; Such, J.; Sanz, Y.; Francés, R. Gut microbiota-related complications in cirrhosis. World J. Gastroenterol. 2014, 20, 15624–15631. [Google Scholar] [CrossRef] [PubMed]
- Simbrunner, B.; Mandorfer, M.; Trauner, M.; Reiberger, T. Gut-liver axis signaling in portal hypertension. World J. Gastroenterol. 2019, 25, 5897–5917. [Google Scholar] [CrossRef] [PubMed]
- Maslennikov, R.; Pavlov, C.; Ivashkin, V. Small intestinal bacterial overgrowth in cirrhosis: Systematic review and meta-analysis. Hepatol. Int. 2018, 12, 567–576. [Google Scholar] [CrossRef]
- Maslennikov, R.; Pavlov, C.; Ivashkin, V. Is small intestinal bacterial overgrowth a cause of hyperdynamic circulation in cirrhosis? Turk. J. Gastroenterol. 2019, 30, 964–975. [Google Scholar] [CrossRef] [PubMed]
- Jin, M.; Kalainy, S.; Baskota, N.; Chiang, D.; Deehan, E.C.; McDougall, C.; Tandon, P.; Martínez, I.; Cervera, C.; Walter, J.; et al. Faecal microbiota from patients with cirrhosis has a low capacity to ferment non-digestible carbohydrates into short-chain fatty acids. Liver Int. 2019, 39, 1437–1447. [Google Scholar] [CrossRef]
- Zeng, Y.; Chen, S.; Fu, Y.; Wu, W.; Chen, T.; Chen, J.; Yang, B.; Ou, Q. Gut microbiota dysbiosis in patients with hepatitis B virus-induced chronic liver disease covering chronic hepatitis, liver cirrhosis and hepatocellular carcinoma. J. Viral Hepat. 2020, 27, 143–155. [Google Scholar] [CrossRef]
- Kajihara, M.; Koido, S.; Kanai, T.; Ito, Z.; Matsumoto, Y.; Takakura, K.; Saruta, M.; Kato, K.; Odamaki, T.; Xiao, J.; et al. Characterisation of blood microbiota in patients with liver cirrhosis. Eur. J. Gastroenterol. Hepatol. 2019, 31, 1577–1583. [Google Scholar] [CrossRef]
- Chen, Z.; Xie, Y.; Zhou, F.; Zhang, B.; Wu, J.; Yang, L.; Xu, S.; Stedtfeld, R.; Chen, Q.; Liu, J.; et al. Featured Gut Microbiomes Associated With the Progression of Chronic Hepatitis B Disease. Front. Microbiol. 2020, 11, 383. [Google Scholar] [CrossRef]
- Zheng, R.; Wang, G.; Pang, Z.; Ran, N.; Gu, Y.; Guan, X.; Yuan, Y.; Zuo, X.; Pan, H.; Zheng, J.; et al. Liver cirrhosis contributes to the disorder of gut microbiota in patients with hepatocellular carcinoma. Cancer Med. 2020, 9, 4232–4250. [Google Scholar] [CrossRef] [PubMed]
- Lapidot, Y.; Amir, A.; Nosenko, R.; Uzan-Yulzari, A.; Veitsman, E.; Cohen-Ezra, O.; Davidov, Y.; Weiss, P.; Bradichevski, T.; Segev, S.; et al. Alterations in the Gut Microbiome in the Progression of Cirrhosis to Hepatocellular Carcinoma. mSystems 2020, 5, e00153-20. [Google Scholar] [CrossRef] [PubMed]
- Bajaj, J.S.; Heuman, D.M.; Hylemon, P.B.; Sanyal, A.J.; White, M.B.; Monteith, P.; Noble, N.A.; Unser, A.B.; Daita, K.; Fisher, A.R.; et al. Altered profile of human gut microbiome is associated with cirrhosis and its complications. J. Hepatol. 2014, 60, 940–947. [Google Scholar] [CrossRef] [PubMed]
- Bajaj, J.S.; Betrapally, N.S.; Hylemon, P.B.; Heuman, D.M.; Daita, K.; White, M.B.; Unser, A.; Thacker, L.R.; Sanyal, A.J.; Kang, D.J.; et al. Salivary microbiota reflects changes in gut microbiota in cirrhosis with hepatic encephalopathy. Hepatology 2015, 62, 1260–1271. [Google Scholar] [CrossRef] [PubMed]
- Ahluwalia, V.; Betrapally, N.S.; Hylemon, P.B.; White, M.B.; Gillevet, P.M.; Unser, A.B.; Fagan, A.; Daita, K.; Heuman, D.M.; Zhou, H.; et al. Impaired Gut-Liver-Brain Axis in Patients with Cirrhosis. Sci. Rep. 2016, 6, 26800. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Jin, Y.; Li, J.; Zhao, L.; Li, Z.; Xu, J.; Zhao, F.; Feng, J.; Chen, H.; Fang, C.; et al. Small Bowel Transit and Altered Gut Microbiota in Patients With Liver Cirrhosis. Front. Physiol. 2018, 9, 470. [Google Scholar] [CrossRef]
- Inoue, T.; Nakayama, J.; Moriya, K.; Kawaratani, H.; Momoda, R.; Ito, K.; Iio, E.; Nojiri, S.; Fujiwara, K.; Yoneda, M.; et al. Gut Dysbiosis Associated With Hepatitis C Virus Infection. Clin. Infect. Dis. 2018, 67, 869–877. [Google Scholar] [CrossRef]
- Maslennikov, R.; Ivashkin, V.; Efremova, I.; Alieva, A.; Kashuh, E.; Tsvetaeva, E.; Poluektova, E.; Shirokova, E.; Ivashkin, K. Gut dysbiosis is associated with poorer long-term prognosis in cirrhosis. World J. Hepatol. 2021, 13, 557–570. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Yang, F.; Lu, H.; Wang, B.; Chen, Y.; Lei, D.; Wang, Y.; Zhu, B.; Li, L. Characterization of fecal microbial communities in patients with liver cirrhosis. Hepatology 2011, 54, 562–572. [Google Scholar] [CrossRef] [PubMed]
- Kakiyama, G.; Pandak, W.M.; Gillevet, P.M.; Hylemon, P.B.; Heuman, D.M.; Daita, K.; Takei, H.; Muto, A.; Nittono, H.; Ridlon, J.M.; et al. Modulation of the fecal bile acid profile by gut microbiota in cirrhosis. J. Hepatol. 2013, 58, 949–955. [Google Scholar] [CrossRef]
- Bajaj, J.S.; Vargas, H.E.; Reddy, K.R.; Lai, J.C.; O’Leary, J.G.; Tandon, P.; Wong, F.; Mitrani, R.; White, M.B.; Kelly, M.; et al. Association Between Intestinal Microbiota Collected at Hospital Admission and Outcomes of Patients With Cirrhosis. Clin. Gastroenterol. Hepatol. 2019, 17, 756–765. [Google Scholar] [CrossRef]
- Zhang, L.; Wu, Y.N.; Chen, T.; Ren, C.H.; Li, X.; Liu, G.X. Relationship between intestinal microbial dysbiosis and primary liver cancer. Hepatobiliary Pancreat. Dis. Int. 2019, 18, 149–157. [Google Scholar] [CrossRef]
- Berzigotti, A.; Tsochatzis, E.; Boursier, J.; Castera, L.; Cazzagon, N.; Friedrich-Rust, M.; Petta, S.; Thiele, M. EASL Clinical Practice Guidelines on non-invasive tests for evaluation of liver disease severity and prognosis—2021 update. J. Hepatol. 2021, 75, 659–689. [Google Scholar] [CrossRef]
- Fouhy, F.; Deane, J.; Rea, M.C.; O’Sullivan, Ó.; Ross, R.P.; O’Callaghan, G.; Plant, B.J.; Stanton, C. The effects of freezing on faecal microbiota as determined using MiSeq sequencing and culture-based investigations. PLoS ONE 2015, 10, e0119355. [Google Scholar] [CrossRef]
- Zheng, W.; Tsompana, M.; Ruscitto, A.; Sharma, A.; Genco, R.; Sun, Y.; Buck, M.J. An accurate and efficient experimental approach for characterization of the complex oral microbiota. Microbiome 2015, 3, 48. [Google Scholar] [CrossRef]
- Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 2014, 30, 2114–2120. [Google Scholar] [CrossRef]
- Parikh, H.I.; Koparde, V.N.; Bradley, S.P.; Buck, G.A.; Sheth, N.U. MeFiT: Merging and filtering tool for illumina paired-end reads for 16S rRNA amplicon sequencing. BMC Bioinform. 2016, 17, 491. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Garrity, G.M.; Tiedje, J.M.; Cole, J.R. Naive Bayesian Classifier for Rapid Assignment of rRNA Sequences into the New Bacterial Taxonomy. Appl. Environ. Microbiol. 2007, 73, 5261–5267. [Google Scholar] [CrossRef] [PubMed]
- Lang, R.M.; Badano, L.P.; Mor-Avi, V.; Afilalo, J.; Armstrong, A.; Ernande, L.; Flachskampf, F.A.; Foster, E.; Goldstein, S.A.; Kuznetsova, T.; et al. Recommendations for cardiac chamber quantification by echocardiography in adults: An update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J. Am. Soc. Echocardiogr. 2015, 28, 1–39.e14. [Google Scholar] [CrossRef] [PubMed]
- Marwick, T.H.; Gillebert, T.C.; Aurigemma, G.; Chirinos, J.; Derumeaux, G.; Galderisi, M.; Gottdiener, J.; Haluska, B.; Ofili, E.; Segers, P.; et al. Recommendations on the Use of Echocardiography in Adult Hypertension: A Report from the European Association of Cardiovascular Imaging (EACVI) and the American Society of Echocardiography (ASE). J. Am. Soc. Echocardiogr. 2015, 28, 727–754. [Google Scholar] [CrossRef] [PubMed]
- Rudski, L.G.; Lai, W.W.; Afilalo, J.; Hua, L.; Handschumacher, M.D.; Chandrasekaran, K.; Solomon, S.D.; Louie, E.K.; Schiller, N.B. Guidelines for the echocardiographic assessment of the right heart in adults: A report from the American Society of Echocardiography endorsed by the European Association of Echocardiography, a registered branch of the European Society of Cardiology, and the Canadian Society of Echocardiography. J. Am. Soc. Echocardiogr. 2010, 23, 685–713. [Google Scholar] [CrossRef]
- Bossone, E.; D’andrea, A.; D’alto, M.; Citro, R.; Argiento, P.; Ferrara, F.; Cittadini, A.; Rubenfire, M.; Naeije, R. Echocardiography in pulmonary arterial hypertension: From diagnosis to prognosis. J. Am. Soc. Echocardiogr. 2013, 26, 1–14. [Google Scholar] [CrossRef]
- Sangkum, L.; Liu, G.L.; Yu, L.; Yan, H.; Kaye, A.D.; Liu, H. Minimally invasive or noninvasive cardiac output measurement: An update. J. Anesth. 2016, 30, 461–480. [Google Scholar] [CrossRef]
- Chemla, D.; Castelain, V.; Humbert, M.; Hébert, J.L.; Simonneau, G.; Lecarpentier, Y.; Hervé, P. New formula for predicting mean pulmonary artery pressure using systolic pulmonary artery pressure. Chest 2004, 126, 1313–1317. [Google Scholar] [CrossRef]
- Fussner, L.A.; Krowka, M.J. Current Approach to the Diagnosis and Management of Portopulmonary Hypertension. Curr. Gastroenterol. Rep. 2016, 18, 29. [Google Scholar] [CrossRef]
- Horn, P.S.; Pesce, A.J. Reference Intervals. In A User’s Guide; AACC Press: Washington, DC, USA, 2005. [Google Scholar]
- Maslennikov, R.; Driga, A.; Ivashkin, K.; Ivashkin, V. NT-proBNP as a biomarker for hyperdynamic circulation in decompensated cirrhosis. Gastroenterol. Hepatol. Bed Bench 2018, 11, 325–332. [Google Scholar]
- Ferral, H.; Fimmel, C.J.; Sonnenberg, A.; Alonzo, M.J.; Aquisto, T.M. Transjugular Liver Biopsy with Hemodynamic Evaluation: Correlation between Hepatic Venous Pressure Gradient and Histologic Diagnosis of Cirrhosis. J. Clin. Imaging Sci. 2021, 11, 25. [Google Scholar] [CrossRef]
- Berg, R.D.; Garlington, A.W. Translocation of certain indigenous bacteria from the gastrointestinal tract to the mesenteric lymph nodes and other organs in a gnotobiotic mouse model. Infect. Immun. 1979, 23, 403–411. [Google Scholar] [CrossRef] [PubMed]
- Poxton, I.R.; Edmond, D.M. Biological activity of Bacteroides lipopolysaccharide—Reappraisal. Clin. Infect. Dis. 1995, 20 (Suppl. S2), S149–S153. [Google Scholar] [CrossRef] [PubMed]
- Maslennikov, R.; Ivashkin, V.; Efremova, I.; Poluektova, E.; Shirokova, E. Probiotics in Hepatology: An Update. World J. Hepatol. 2021, 13, 1154–1166. [Google Scholar] [CrossRef] [PubMed]
Parameter | Calculation |
---|---|
End-diastolic and end-systolic volume of the left ventricle | Modified Simpson’s disk method |
Ejection fraction of the left ventricle | ((end-diastolic volume) − (end-systolic volume))/(end-diastolic volume) |
Stroke volume | (Doppler velocity time integral) × (cross-sectional aorta area) [36] |
Mean arterial pressure | ((systolic blood pressure) + 2 × (diastolic blood pressure))/3 |
Cardiac output | (stroke volume) × (heart rate) |
Systemic vascular resistance | (mean arterial pressure)/(cardiac output) |
Systolic pulmonary artery pressure | (right atrium pressure estimated from diameter of inferior vena cava and respiratory changes) + 4 × (the peak velocity of the tricuspid valve regurgitant jet)2 [34,35] |
Mean pulmonary artery pressure | 0.61 × (systolic pulmonary artery pressure) + 2 mmHg [37] |
Cirrhosis with Hyperdynamic Circulation (CrHC) (n = 16) | Cirrhosis with Normodynamic Circulation (CrNC) (n = 31) | Healthy Controls (HC) (n = 50) | p, CrHC vs. CrNC | p, CrHC vs. HC | p, CrNC vs. HC | |
---|---|---|---|---|---|---|
Age, years | 49 [39–53] | 53 [37–60] | 46 [42–52] | 0.432 | 0.887 | 0.061 |
Body mass index, kg/m2 | 24.1 [22.5–27.2] | 24.1 [22.7–27.6] | 25.7 [23.9–27.3] | 0.937 | 0.262 | 0.125 |
Male/female | 8/8 | 14/17 | 20/30 | 0.497 | 0.338 | 0.410 |
End-diastolic volume of the left ventricle, mL | 129 [118–138] | 97 [87–111] | 98 [91–103] | <0.001 | <0.001 | 0.782 |
Ejection fraction of the left ventricle, % | 62.8 [61.2–64.4] | 60.8 [58.6–63.8] | 65.1 [62.5–66.3] | 0.119 | 0.023 | <0.001 |
Stroke volume, mL | 79 [73–86] | 60 [55–71] | 62 [59–68] | <0.001 | <0.001 | 0.248 |
Heart rate, bpm | 77 [70–87] | 70 [64–80] | 73 [70–76] | 0.092 | 0.103 | 0.509 |
Cardiac output, L/min | 5.8 [5.6–6.7] | 4.2 [3.8–4.6] | 4.5 [4.2–4.8] | <0.001 | <0.001 | 0.063 |
Mean blood pressure, mmHg | 89 [77–92] | 88 [83–95] | 90 [87–92] | 0.613 | 0.246 | 0.406 |
Systemic vascular resistance, dyn·s·cm−5 | 1096 [1011–1327] | 1683 [1436–1917] | 1633 [1484–1730] | <0.001 | <0.001 | 0.315 |
Mean pulmonary artery pressure, mmHg | 23.4 [17.6–26.4] | 17.3 [13.6–20.3] | 15.2 [13.7–16.8] | 0.024 | <0.001 | 0.106 |
Cirrhosis with Hyperdynamic Circulation (n = 16) | Cirrhosis with Normodynamic Circulation (n = 31) | p | |
---|---|---|---|
Etiology of cirrhosis: alcohol | 6 (37.5%) | 7 (22.6%) | >0.050 |
autoimmune hepatitis | 2 (12.5%) | 5 (16.2%) | |
HBV | 1 (6.3%) | 5 (16.1%) | |
HCV | 2 (12.5%) | 7 (22.6%) | |
mixed | 4 (25.0%) | 5 (16.1%) | |
cryptogenic | 1 (6.3%) | 2 (6.5%) | |
Child–Pugh score | 9 [8–11] | 6 [6–8] | 0.007 |
Esophageal varices (Grade 1), n (%) | 4 (25.0%) | 11 (35.5%) | 0.349 |
Esophageal varices (Grade 2–3), n (%) | 6 (37.5%) | 17 (54.9%) | 0.207 |
Minimal hepatic encephalopathy, n (%) | 4 (25.0%) | 14 (45.2%) | 0.151 |
Overt hepatic encephalopathy, n (%) | 9 (56.3%) | 8 (23.8%) | 0.042 |
Ascites, n (%) | 12 (75.0%) | 14 (45.2%) | 0.049 |
Minimal ascites, n (%) | 4 (25.0%) | 9 (29.0%) | 0.527 |
Clinically significant ascites, n (%) | 8 (50.0%) | 5 (16.1%) | 0.018 |
Portopulmonary hypertension, n (%) | 7 (43.8%) | 5 (16.1%) | 0.046 |
Red blood cells, 1012 cell/L | 3.7 [3.1–4.2] | 3.9 [3.7–4.5] | 0.062 |
White blood cells, 109 cell/L | 4.5 [3.5–7.3] | 3.5 [2.8–4.8] | 0.106 |
Platelets, 109 cell/L | 89 [59–107] | 79 [58–115] | 0.866 |
Serum total protein, g/L | 69 [63–75] | 73 [63–78] | 0.340 |
Serum albumin, g/L | 31 [28–36] | 38 [32–42] | 0.014 |
Hypoalbuminemia (serum albumin < 35 g/L), n (%) | 11 (68.8%) | 9 (29.0%) | 0.011 |
Serum total bilirubin, μmol/L | 56 [36–83] | 31 [22–51] | 0.014 |
Mild hyperbilirubinemia (total bilirubin = 22–51 μmol/L), n (%) | 5 (31.3%) | 17 (54.8%) | 0.110 |
Severe hyperbilirubinemia (total bilirubin > 51 μmol/L), n (%) | 9 (56.3%) | 7 (22.6%) | 0.025 |
Prothrombin index (Quick test), % | 53 [45–65] | 66 [57–71] | 0.003 |
Hypoprothrombinemia (prothrombin index < 60%), n (%) | 10 (62.5%) | 10 (32.3%) | 0.047 |
Creatinine, mg/dL | 0.8 [0.6–0.9] | 0.7 [0.6–0.9] | 0.694 |
Serum sodium, mmol/L | 139 [138–141] | 142 [140–144] | 0.013 |
Serum potassium, mmol/L | 4.2 [3.2–4.6] | 4.3 [4.1–4.7] | 0.121 |
Serum glucose, mmol/L | 5.3 [4.7–5.6] | 5.2 [4.6–5.7] | 0.955 |
Alanine aminotransferase, U/L | 58 [27–127] | 36 [23–59] | 0.167 |
Aspartate aminotransferase, U/L | 77 [47–176] | 47 [29–64] | 0.022 |
Gamma glutamyl transferase, U/L | 96 [37–144] | 59 [27–140] | 0.452 |
Alkaline phosphatase, U/L | 235 [176–339] | 214 [166–286] | 0.598 |
C-reactive protein, mg/L | 11.6 [5.3–17.1] | 3.4 [0.8–9.8] | 0.021 |
Systemic inflammation (C-reactive protein > 10 mg/L), n (%) | 9 (56.3%) | 6 (19.4%) | 0.013 |
Splenic length, cm | 15.7 [14.2–17.0] | 15.7 [13.9–19.2] | 0.788 |
Taxa | Cirrhosis with Hyperdynamic Circulation (n = 16) | Cirrhosis with Normodynamic Circulation (n = 31) | p |
---|---|---|---|
Firmicutes | 87.2 [68.4–91.1] | 84.8 [69.3–91.0] | 0.745 |
Clostridia | 71.4 [52.6–85.4] | 76.0 [62.5–83.1] | 0.711 |
Lachnospiraceae | 34.0 [22.8–45.9] | 36.5 [21.8–48.9] | 0.745 |
Ruminococcaceae | 24.3 [10.8–34.1] | 22.2 [14.9–36.6] | 0.745 |
Peptostreptococcaceae | 1.3 [0.2–4.0] | 0.2 [0.0–0.9] | 0.071 |
Bacilli | 6.1 [1.3–13.6] | 1.1 [0.5–4.6] | 0.042 |
Streptococcaceae | 1.3 [0.3–8.1] | 0.4 [0.1–3.1] | 0.049 |
Lactobacillaceae | 0.2 [0.2–1.2] | 0.1 [0.0–0.4] | 0.047 |
Negativicutes | 0.5 [0.2–0.8] | 0.4 [0.1–1.3] | 0.884 |
Veillonellaceae | 0.4 [0.1–0.8] | 0.2 [0.0–0.8] | 0.522 |
Erysipelotrichia | 0.3 [0.1–0.5] | 0.7 [0.3–1.1] | 0.063 |
Holdemanella | 0.03 [0.00–0.37] | 0.00 [0.00–0.02] | 0.022 |
Fusobacteria | 0.0 [0.0–0.1] | 0.0 [0.0–0.0] | 0.047 |
Bacteroidetes | 5.6 [0.9–6.4] | 6.9 [4.5–15.7] | 0.038 |
Bacteroidaceae | 0.8 [0.1–2.4] | 3.1 [0.8–4.2] | 0.029 |
Rikenellaceae | 0.1 [0.0–0.9] | 0.4 [0.0–0.9] | 0.278 |
Porphyromonadaceae | 0.3 [0.0–0.4] | 0.3 [0.1–0.5] | 0.222 |
Prevotellaceae | 0.3 [0.0–2.7] | 0.3 [0.0–7.0] | 0.493 |
Actinobacteria | 0.9 [0.5–2.1] | 0.7 [0.2–2.3] | 0.400 |
Bifidobacteriaceae | 0.5 [0.2–1.8] | 0.4 [0.0–1.7] | 0.479 |
Micrococcaceae | 0.01 [0.00–0.02] | 0.05 [0.01–0.11] | 0.013 |
Proteobacteria | 2.3 [1.2–8.2] | 0.7 [0.1–2.2] | 0.020 |
Enterobacteriaceae | 2.0 [0.6–7.6] | 0.3 [0.0–1.7] | 0.008 |
Verrucomicrobiae | 0.0 [0.0–0.2] | 0.0 [0.0–1.5] | 0.955 |
Akkermansiaceae | 0.0 [0.0–0.2] | 0.0 [0.0–0.9] | 0.767 |
EDV | EF | SV | HR | CO | MBP | SVR | MPAP | |
---|---|---|---|---|---|---|---|---|
Clostridia | N.S. | N.S. | N.S. | N.S. | N.S. | N.S. | N.S. | N.S. |
Bacilli | r = 0.317; p = 0.029 | N.S. | r = 0.330; p = 0.024 | N.S. | r = 0.402; p = 0.005 | N.S. | r = −0.328; p = 0.025 | N.S. |
Streptococcaceae | r = 0.406; p = 0.005 | N.S. | r = 0.378; p = 0.009 | N.S. | r = 0.415; p = 0.004 | N.S. | r = −0.290; p = 0.048 | N.S. |
Lactobacillaceae | N.S. | N.S. | N.S. | N.S. | r = 0.373; p = 0.010 | N.S. | r = −0.333; p = 0.022 | N.S. |
Fusobacteria | r = 0.311; p = 0.037 | N.S. | N.S. | N.S. | r = 0.316; p = 0.034 | N.S. | r = −0.424; p = 0.004 | N.S. |
Bacteroidetes | N.S. | N.S. | N.S. | r = −0.483; p = 0.001 | r = −0.290; p = 0.048 | N.S. | N.S. | N.S. |
Proteobacteria | r = 0.454; p = 0.001 | N.S. | r = 0.431; p = 0.002 | N.S. | r = 0.435; p = 0.002 | N.S. | r = −0.434; p = 0.002 | r = 0.290; p = 0.048 |
Enterobacteriaceae | r = 0.447; p = 0.002 | N.S. | r = 0.426; p = 0.003 | N.S. | r = 0.479; p = 0.001 | N.S. | r = −0.437; p = 0.002 | N.S. |
Micrococcaceae | r = 0.321; p = 0.031 | N.S. | r = 0.360; p = 0.015 | N.S. | r = 0.363; p = 0.014 | N.S. | r = −0.362; p = 0.015 | r = 0.339; p = 0.028 |
Holdemanella | N.S. | N.S. | N.S. | N.S. | N.S. | N.S. | N.S. | r = −0.356; p = 0.016 |
Function of the Gut Microbiota | LOG (CrHC/CrNC) | p |
---|---|---|
Amino acid metabolism | 0.08 | 0.043 |
Aminobenzoate degradation | 0.08 | 0.043 |
Bacterial invasion of epithelial cells | 0.53 | 0.019 |
Benzoate degradation | 0.12 | 0.036 |
Dioxin degradation | 0.15 | 0.027 |
Electron transfer carriers | 0.44 | 0.004 |
Inorganic ion transport and metabolism | 0.08 | 0.040 |
Limonene and pinene degradation | 0.11 | 0.040 |
Lysine degradation | 0.11 | 0.045 |
Naphthalene degradation | 0.04 | 0.025 |
Phosphotransferase system (PTS) | 0.19 | 0.020 |
Protein digestion and absorption | −0.29 | 0.036 |
Staphylococcus aureus infection | 0.32 | 0.002 |
Stilbenoid, diarylheptanoid and gingerol biosynthesis | 1.15 | 0.023 |
Transcription-related proteins | 0.26 | 0.048 |
Tryptophan metabolism | 0.11 | 0.045 |
Xylene degradation | 0.12 | 0.030 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Efremova, I.; Maslennikov, R.; Poluektova, E.; Zharkova, M.; Kudryavtseva, A.; Krasnov, G.; Fedorova, M.; Shirokova, E.; Kozlov, E.; Levshina, A.; et al. Gut Dysbiosis and Hemodynamic Changes as Links of the Pathogenesis of Complications of Cirrhosis. Microorganisms 2023, 11, 2202. https://doi.org/10.3390/microorganisms11092202
Efremova I, Maslennikov R, Poluektova E, Zharkova M, Kudryavtseva A, Krasnov G, Fedorova M, Shirokova E, Kozlov E, Levshina A, et al. Gut Dysbiosis and Hemodynamic Changes as Links of the Pathogenesis of Complications of Cirrhosis. Microorganisms. 2023; 11(9):2202. https://doi.org/10.3390/microorganisms11092202
Chicago/Turabian StyleEfremova, Irina, Roman Maslennikov, Elena Poluektova, Maria Zharkova, Anna Kudryavtseva, George Krasnov, Maria Fedorova, Elena Shirokova, Evgenii Kozlov, Anna Levshina, and et al. 2023. "Gut Dysbiosis and Hemodynamic Changes as Links of the Pathogenesis of Complications of Cirrhosis" Microorganisms 11, no. 9: 2202. https://doi.org/10.3390/microorganisms11092202
APA StyleEfremova, I., Maslennikov, R., Poluektova, E., Zharkova, M., Kudryavtseva, A., Krasnov, G., Fedorova, M., Shirokova, E., Kozlov, E., Levshina, A., & Ivashkin, V. (2023). Gut Dysbiosis and Hemodynamic Changes as Links of the Pathogenesis of Complications of Cirrhosis. Microorganisms, 11(9), 2202. https://doi.org/10.3390/microorganisms11092202