The Abnormal Accumulation of Lipopolysaccharide Secreted by Enriched Gram-Negative Bacteria Increases the Risk of Rotavirus Colonization in Young Adults
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethics Statement
2.2. Collection and Process of Stool Samples
2.3. Detection of Antibiotic Residues in Urine Sample
2.4. Dietary Investigation
2.5. DNA Extraction and 16S rRNA Gene Sequencing
2.6. Metagenomic Sequencing and Following Analysis
2.7. Determination of LPS Concentration in Stool Sample
2.8. Data Statistical Analysis
3. Results
3.1. Excessive Intake of Animal-Derived Food Is Associated with High Level of Antibiotic Residues in Urine
3.2. The Structure of Gut Microbiota in Patient Group Is Totally Different from Healthy Group
3.3. LPS Level in Patient Group Is Higher Than in Healthy Group
3.4. Several Enriched Bacteria Taxa and High LPS Level Increase the Risk of HRV Colonization
3.5. Relative Abundance of Key Genes Involved in Lipid A Biosynthesis Plays an Important Role in LPS Synthesis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Gómez-Rial, J.; Rivero-Calle, I.; Salas, A.; Martinón-Torres, F. Rotavirus and autoimmunity. J. Infect. 2020, 81, 183–189. [Google Scholar] [CrossRef]
- Crawford, S.E.; Ramani, S.; Tate, J.E.; Parashar, U.D.; Svensson, L.; Hagbom, M.; Franco, M.A.; Greenberg, H.B.; O’Ryan, M.; Kang, G.; et al. Rotavirus infection. Nat. Rev. Dis. Primers 2017, 3, 17083. [Google Scholar] [CrossRef]
- Anderson, E.J.; Weber, S.G. Rotavirus infection in adults. Lancet Infect. Dis. 2004, 4, 91–99. [Google Scholar] [CrossRef]
- Adak, A.; Khan, M.R. An insight into gut microbiota and its functionalities. Cell. Mol. Life Sci. 2019, 76, 473–493. [Google Scholar] [CrossRef]
- Fan, Y.; Pedersen, O. Gut microbiota in human metabolic health and disease. Nat. Rev. Microbiol. 2021, 19, 55–71. [Google Scholar] [CrossRef]
- Robinson, C.M.; Jesudhasan, P.R.; Pfeiffer, J.K. Bacterial lipopolysaccharide binding enhances virion stability and promotes environmental fitness of an enteric virus. Cell Host Microbe 2014, 15, 36–46. [Google Scholar] [CrossRef]
- Kuss, S.K.; Best, G.T.; Etheredge, C.A.; Pruijssers, A.J.; Frierson, J.M.; Hooper, L.V.; Dermody, T.S.; Pfeiffer, J.K. Intestinal microbiota promote enteric virus replication and systemic pathogenesis. Science 2011, 334, 249–252. [Google Scholar] [CrossRef]
- Størdal, K.; Kahrs, C.; Tapia, G.; Agardh, D.; Kurppa, K.; Stene, L.C. Review article: Exposure to microbes and risk of coeliac disease. Aliment. Pharmacol. Ther. 2021, 53, 43–62. [Google Scholar] [CrossRef]
- Xiong, L.; Li, Y.; Li, J.; Yang, J.; Shang, L.; He, X.; Liu, L.; Luo, Y.; Xie, X. Intestinal microbiota profiles in infants with acute gastroenteritis caused by rotavirus and norovirus infection: A prospective cohort study. Int. J. Infect. Dis. 2021, 111, 76–84. [Google Scholar] [CrossRef]
- Robinson, T.P.; Wertheim, H.F.; Kakkar, M.; Kariuki, S.; Bu, D.; Price, L.B. Animal production and antimicrobial resistance in the clinic. Lancet 2016, 387, e1–e3. [Google Scholar] [CrossRef]
- Liu, Y.; Wu, Y.; Wu, J.; Li, X.; Yu, L.; Xie, K.; Zhang, M.; Ren, L.; Ji, Y.; Li, Y. Exposure to Veterinary Antibiotics via Food Chain Disrupts Gut Microbiota and Drives Increased Escherichia coli Virulence and Drug Resistance in Young Adults. Pathogens 2022, 11, 1062. [Google Scholar] [CrossRef]
- Kulis-Horn, R.K.; Tiemann, C. Evaluation of a laboratory-developed test for simultaneous detection of norovirus and rotavirus by real-time RT-PCR on the Panther Fusion® system. Eur. J. Clin. Microbiol. Infect. Dis. 2020, 39, 103–112. [Google Scholar] [CrossRef]
- Liu, K.; Zhang, J.; Geng, M.; Zhu, Y.; Liu, X.; Ding, P.; Wang, B.; Liu, W.; Liu, Y.; Tao, F. A stable isotope dilution assay for multi-class antibiotics in pregnant urines by LC–MS/MS. Chromatographia 2020, 83, 507–521. [Google Scholar] [CrossRef]
- Zhao, W.; Hasegawa, K.; Chen, J. The use of food-frequency questionnaires for various purposes in China. Public Health Nutr. 2002, 5, 829–833. [Google Scholar] [CrossRef] [PubMed]
- Dong, Y.; Wang, P.; Yang, X.; Chen, M.; Li, J. Potential of gut microbiota for lipopolysaccharide biosynthesis in European women with type 2 diabetes based on metagenome. Front. Cell Dev. Biol. 2022, 10, 1027413. [Google Scholar] [CrossRef] [PubMed]
- Gibiino, G.; Lopetuso, L.R.; Scaldaferri, F.; Rizzatti, G.; Binda, C.; Gasbarrini, A. Exploring Bacteroidetes: Metabolic key points and immunological tricks of our gut commensals. Dig. Liver Dis. 2018, 50, 635–639. [Google Scholar] [CrossRef]
- Van Langevelde, P.; Kwappenberg, K.M.; Groeneveld, P.H.; Mattie, H.; van Dissel, J.T. Antibiotic-induced lipopolysaccharide (LPS) release from Salmonella typhi: Delay between killing by ceftazidime and imipenem and release of LPS. Antimicrob. Agents Chemother. 1998, 42, 739–743. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, X.; Zhu, Y.; Yang, L.; Sun, L.; Wei, R.; Chen, G.; Wang, Q.; Sheng, J.; Liu, A.; et al. Antibiotic exposure across three generations from Chinese families and cumulative health risk. Ecotoxicol. Environ. Saf. 2020, 191, 110237. [Google Scholar] [CrossRef]
- Liu, X.; Steele, J.C.; Meng, X.Z. Usage, residue, and human health risk of antibiotics in Chinese aquaculture: A review. Environ. Pollut. 2017, 223, 161–169. [Google Scholar] [CrossRef]
- Li, N.; Ho, K.W.K.; Ying, G.G.; Deng, W.J. Veterinary antibiotics in food, drinking water, and the urine of preschool children in Hong Kong. Environ. Int. 2017, 108, 246–252. [Google Scholar] [CrossRef]
- Medawar, E.; Enzenbach, C.; Roehr, S.; Villringer, A.; Riedel-Heller, S.G.; Witte, A.V. Less Animal-Based Food, Better Weight Status: Associations of the Restriction of Animal-Based Product Intake with Body-Mass-Index, Depressive Symptoms and Personality in the General Population. Nutrients 2020, 12, 1492. [Google Scholar] [CrossRef] [PubMed]
- Petermann-Rocha, F.; Parra-Soto, S.; Gray, S.; Anderson, J.; Welsh, P.; Gill, J.; Sattar, N.; Ho, F.K.; Celis-Morales, C.; Pell, J.P. Vegetarians, fish, poultry, and meat-eaters: Who has higher risk of cardiovascular disease incidence and mortality? A prospective study from UK Biobank. Eur. Heart J. 2021, 42, 1136–1143. [Google Scholar] [CrossRef]
- Ramirez, J.; Guarner, F.; Bustos Fernandez, L.; Maruy, A.; Sdepanian, V.L.; Cohen, H. Antibiotics as Major Disruptors of Gut Microbiota. Front. Cell. Infect. Microbiol. 2020, 10, 572912. [Google Scholar] [CrossRef] [PubMed]
- Gozalbo-Rovira, R.; Rubio-Del-Campo, A.; Santiso-Bellón, C.; Vila-Vicent, S.; Buesa, J.; Delgado, S.; Molinero, N.; Margolles, A.; Yebra, M.J.; Collado, M.C.; et al. Interaction of Intestinal Bacteria with Human Rotavirus during Infection in Children. Int. J. Mol. Sci. 2021, 22, 1010. [Google Scholar] [CrossRef] [PubMed]
- Dan, Z.; Mao, X.; Liu, Q.; Guo, M.; Zhuang, Y.; Liu, Z.; Chen, K.; Chen, J.; Xu, R.; Tang, J.; et al. Altered gut microbial profile is associated with abnormal metabolism activity of Autism Spectrum Disorder. Gut Microbes 2020, 11, 1246–1267. [Google Scholar] [CrossRef] [PubMed]
- Zhao, W.; Yu, M.L.; Tao, X.; Cheng, M.H.; Liu, C.C.; Liu, Y.; Li, Y.G. Analysis of the intestinal microbial community altered during rotavirus infection in suckling mice. Virol. J. 2021, 18, 254. [Google Scholar] [CrossRef]
- Yekani, M.; Rezaee, M.A.; Beheshtirouy, S.; Baghi, H.B.; Bazmani, A.; Farzinazar, A.; Memar, M.Y.; Sóki, J. Carbapenem resistance in Bacteroides fragilis: A review of molecular mechanisms. Anaerobe 2022, 76, 102606. [Google Scholar] [CrossRef]
- Ghotaslou, R.; Yekani, M.; Memar, M.Y. The role of efflux pumps in Bacteroides fragilis resistance to antibiotics. Microbiol. Res. 2018, 210, 1–5. [Google Scholar] [CrossRef]
- Zmora, N.; Zilberman-Schapira, G.; Suez, J.; Mor, U.; Dori-Bachash, M.; Bashiardes, S.; Kotler, E.; Zur, M.; Regev-Lehavi, D.; Brik, R.B.; et al. Personalized Gut Mucosal Colonization Resistance to Empiric Probiotics Is Associated with Unique Host and Microbiome Features. Cell 2018, 174, 1388–1405. [Google Scholar] [CrossRef]
- Liu, L.; Wang, H.; Chen, X.; Zhang, Y.; Zhang, H.; Xie, P. Gut microbiota and its metabolites in depression: From pathogenesis to treatment. eBioMedicine 2023, 90, 104527. [Google Scholar] [CrossRef]
- Mao, Z.H.; Gao, Z.X.; Liu, D.W.; Liu, Z.S.; Wu, P. Gut microbiota and its metabolites-molecular mechanisms and management strategies in diabetic kidney disease. Front. Immunol. 2023, 14, 1124704. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Bai, X.; Wang, R.; Zhao, H.; Wang, L.; Liu, J.; Li, M.; Chen, Z.; Wang, Z.; Li, L.; et al. 4-octyl Itaconate inhibits lipopolysaccharide (LPS)-induced osteoarthritis via activating Nrf2 signalling pathway. J. Cell. Mol. Med. 2022, 26, 1515–1529. [Google Scholar] [CrossRef] [PubMed]
Group | P5 | P25 | P50 | P75 | p Value | ||
---|---|---|---|---|---|---|---|
PVAs | Tetracycline hydrochloride | Healthy group | 0.32 | 0.32 | 0.425 | 0.4425 | 0.01 |
Patient group | 0.6 | 0.6125 | 0.655 | 0.7275 | |||
Doxycycline hydrochloride | Healthy group | 0.21 | 0.2375 | 0.325 | 0.3375 | 0.011 | |
Patient group | 0.55 | 0.58 | 0.615 | 0.68 | |||
Oxytetracycline hydrochloride | Healthy group | 0.91 | 0.97 | 1.045 | 1.09 | 0.33 | |
Patient group | 0.86 | 0.875 | 0.955 | 1.065 | |||
Sulfametoxydiazine | Healthy group | 1.07 | 1.1125 | 1.28 | 1.4025 | 0.011 | |
Patient group | 1.5 | 1.53 | 1.66 | 1.77 | |||
Norfloxacin | Healthy group | 0.8 | 0.83 | 0.9 | 0.95 | 0.025 | |
Patient group | 0.64 | 0.66 | 0.745 | 0.8225 | |||
Sulfamethoxazole | Healthy group | 0.86 | 0.89 | 1.015 | 1.1175 | 0.011 | |
Patient group | 1.15 | 1.18 | 1.28 | 1.36 | |||
Ofloxacin | Healthy group | 0.91 | 0.97 | 1.045 | 1.09 | 0.33 | |
Patient group | 0.86 | 0.875 | 0.955 | 1.065 | |||
Penicillin V | Healthy group | 0 | 0 | 0 | 0 | 0.004 | |
Patient group | 4.55 | 4.6575 | 5.05 | 5.2025 | |||
Lomefloxacin hydrochloride | Healthy group | 0 | 0 | 0 | 0 | 0.004 | |
Patient group | 7.68 | 7.7975 | 8.155 | 8.445 | |||
VAs | N4-acetylsulfamonomethoxine | Healthy group | 4.22 | 4.2425 | 4.645 | 5.07 | 0.336 |
Patient group | 4.21 | 4.215 | 4.24 | 4.7375 | |||
Cefquinome sulfate | Healthy group | 51 | 52.5 | 54.5 | 57 | 0.011 | |
Patient group | 103 | 105.25 | 121.5 | 133.25 | |||
Ceftiofur | Healthy group | 0.12 | 0.1275 | 0.175 | 0.2675 | 0.011 | |
Patient group | 1.95 | 2.045 | 2.39 | 2.945 | |||
Cyadox | Healthy group | 201 | 211.5 | 222.5 | 231.25 | 0.011 | |
Patient group | 360 | 363.5 | 381 | 389.5 | |||
HAs | Levofloxacin | Healthy group | 6.12 | 6.1425 | 6.455 | 6.8125 | 0.67 |
Patient group | 6.22 | 6.2925 | 6.53 | 6.85 | |||
Clarithromycin | Healthy group | 0.89 | 0.905 | 0.925 | 0.96 | 1 | |
Patient group | 0.9 | 0.9075 | 0.94 | 0.95 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, Y.; Pei, S.; Wu, J.; Tu, X.; Ren, L.; Ji, Y.; Yao, Y.; Liu, Y. The Abnormal Accumulation of Lipopolysaccharide Secreted by Enriched Gram-Negative Bacteria Increases the Risk of Rotavirus Colonization in Young Adults. Microorganisms 2023, 11, 2280. https://doi.org/10.3390/microorganisms11092280
Wu Y, Pei S, Wu J, Tu X, Ren L, Ji Y, Yao Y, Liu Y. The Abnormal Accumulation of Lipopolysaccharide Secreted by Enriched Gram-Negative Bacteria Increases the Risk of Rotavirus Colonization in Young Adults. Microorganisms. 2023; 11(9):2280. https://doi.org/10.3390/microorganisms11092280
Chicago/Turabian StyleWu, Yifan, Shuang Pei, Jie Wu, Xinru Tu, Lingling Ren, Yanli Ji, Yuyou Yao, and Yehao Liu. 2023. "The Abnormal Accumulation of Lipopolysaccharide Secreted by Enriched Gram-Negative Bacteria Increases the Risk of Rotavirus Colonization in Young Adults" Microorganisms 11, no. 9: 2280. https://doi.org/10.3390/microorganisms11092280
APA StyleWu, Y., Pei, S., Wu, J., Tu, X., Ren, L., Ji, Y., Yao, Y., & Liu, Y. (2023). The Abnormal Accumulation of Lipopolysaccharide Secreted by Enriched Gram-Negative Bacteria Increases the Risk of Rotavirus Colonization in Young Adults. Microorganisms, 11(9), 2280. https://doi.org/10.3390/microorganisms11092280