The Brucella Effector Protein BspF Regulates Apoptosis through the Crotonylation of p53
Abstract
:1. Introduction
2. Materials and Methods
2.1. Strains, Cells, and Reagents
2.2. Plasmids and Antibodies
2.3. Western Blotting Analysis and Co-Immunoprecipitation Experiments
2.4. Quantitative Real-Time PCR (qRT-PCR) Assay
2.5. Brucella Culture and Cell Infection Assay
2.6. Determining the Intracellular Survival of Brucella Abortus ΔBspF
2.7. Flow Cytometry Analysis
2.8. Statistical Analysis
3. Results
3.1. Brucella Effector Protein BspF Attenuates Crotonylation of p53
3.2. BspF Reduces the Expression of p53 Protein
3.3. Brucella ΔbspF Mutant Strain Effects on Cell Apoptosis
3.4. BspF Inhibits the Transcription and Protein Expression of Apoptosis-Related Genes through Its GNAT Domain
3.5. BspF Can Promote the Survival of Brucella
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Atluri, V.L.; Xavier, M.N.; de Jong, M.F.; den Hartigh, A.B.; Tsolis, R.M. Interactions of the human pathogenic Brucella species with their hosts. Annu. Rev. Microbiol. 2011, 65, 523–541. [Google Scholar] [CrossRef] [PubMed]
- Fretin, D.; Fauconnier, A.; Kohler, S.; Halling, S.; Leonard, S.; Nijskens, C.; Ferooz, J.; Lestrate, P.; Delrue, R.M.; Danese, I.; et al. The sheathed flagellum of Brucella melitensis is involved in persistence in a murine model of infection. Cell. Microbiol. 2005, 7, 687–698. [Google Scholar] [CrossRef] [PubMed]
- Ficht, T. Brucella taxonomy and evolution (vol 5, pg 859, 2010). Future Microbiol. 2010, 5, 1299. [Google Scholar] [CrossRef]
- Carmichael, L.E.; Bruner, D.W. Characteristics of a newly-recognized species of Brucella responsible for infectious canine abortions. Cornell Vet. 1968, 48, 579–592. [Google Scholar] [PubMed]
- Buddle, M.B. Studies on Brucella ovis (n.sp.), a cause of genital disease of sheep in New Zealand and Australia. J. Hyg. 1956, 54, 351–364. [Google Scholar] [CrossRef]
- Stoenner, H.G.; Lackman, D.B. A new species of Brucella isolated from the desert wood rat, Neotoma lepida Thomas. Am. J. Vet. Res. 1957, 18, 947–951. [Google Scholar]
- Seleem, M.N.; Boyle, S.M.; Sriranganathan, N. Brucellosis: A re-emerging zoonosis. Vet. Microbiol. 2010, 140, 392–398. [Google Scholar] [CrossRef]
- von Bargen, K.; Gorvel, J.P.; Salcedo, S.P. Internal affairs: Investigating the Brucella intracellular lifestyle. FEMS Microbiol. Rev. 2012, 36, 533–562. [Google Scholar] [CrossRef]
- Naroeni, A.; Porte, F. Role of cholesterol and the ganglioside GM(1) in entry and short-term survival of Brucella suis in murine macrophages. Infect. Immun. 2002, 70, 1640–1644. [Google Scholar] [CrossRef]
- Archambaud, C.; Salcedo, S.P.; Lelouard, H.; Devilard, E.; de Bovis, B.; Van Rooijen, N.; Gorvel, J.P.; Malissen, B. Contrasting roles of macrophages and dendritic cells in controlling initial pulmonary Brucella infection. Eur. J. Immunol. 2010, 40, 3458–3471. [Google Scholar] [CrossRef]
- Myeni, S.; Child, R.; Ng, T.W.; Kupko, J.J., 3rd; Wehrly, T.D.; Porcella, S.F.; Knodler, L.A.; Celli, J. Brucella modulates secretory trafficking via multiple type IV secretion effector proteins. PLoS Pathog. 2013, 9, e1003556. [Google Scholar] [CrossRef]
- Celli, J. The Intracellular Life Cycle of Brucella spp. Microbiol. Spectr. 2019, 3, 7. [Google Scholar] [CrossRef]
- De Bolle, X.; Crosson, S.; Matroule, J.Y.; Letesson, J.J. Brucella abortus Cell Cycle and Infection Are Coordinated. Trends Microbiol. 2015, 23, 812–821. [Google Scholar] [CrossRef]
- Starr, T.; Ng, T.W.; Wehrly, T.D.; Knodler, L.A.; Celli, J. Brucella intracellular replication requires trafficking through the late endosomal/lysosomal compartment. Traffic 2008, 9, 678–694. [Google Scholar] [CrossRef] [PubMed]
- Celli, J.; de Chastellier, C.; Franchini, D.M.; Pizarro-Cerda, J.; Moreno, E.; Gorvel, J.P. Brucella evades macrophage killing via VirB-dependent sustained interactions with the endoplasmic reticulum. J. Exp. Med. 2003, 198, 545–556. [Google Scholar] [CrossRef] [PubMed]
- Starr, T.; Child, R.; Wehrly, T.D.; Hansen, B.; Hwang, S.; López-Otin, C.; Virgin, H.W.; Celli, J. Selective subversion of autophagy complexes facilitates completion of the Brucella intracellular cycle. Cell Host Microbe 2012, 11, 33–45. [Google Scholar] [CrossRef] [PubMed]
- Boschiroli, M.L.; Ouahrani-Bettache, S.; Foulongne, V.; Michaux-Charachon, S.; Bourg, G.; Allardet-Servent, A.; Cazevieille, C.; Liautard, J.P.; Ramuz, M.; O’Callaghan, D. The Brucella suis virB operon is induced intracellularly in macrophages. Proc. Natl. Acad. Sci. USA 2002, 99, 1544–1549. [Google Scholar] [CrossRef]
- Roop, R.M., 2nd; Barton, I.S.; Hopersberger, D.; Martin, D.W. Uncovering the Hidden Credentials of Brucella Virulence. Microbiol. Mol. Biol. Rev. 2021, 85, e00021-19. [Google Scholar] [CrossRef]
- Ke, Y.; Wang, Y.; Li, W.; Chen, Z. Type IV Secretion System of Brucella spp. and its Effectors. Front. Cell. Infect. Microbiol. 2015, 5, 72. [Google Scholar] [CrossRef]
- Sieira, R.; Comerci, D.J.; Sánchez, D.O.; Ugalde, R.A. A homologue of an operon required for DNA transfer in Agrobacterium is required in Brucella abortus for virulence and intracellular multiplication. J. Bacteriol. 2000, 182, 4849–4855. [Google Scholar] [CrossRef]
- Lacerda, T.L.; Salcedo, S.P.; Gorvel, J.P. Brucella T4SS: The VIP pass inside host cells. Curr. Opin. Microbiol. 2013, 16, 45–51. [Google Scholar] [CrossRef] [PubMed]
- Zheng, M.; Lin, R.; Dong, Q.; Chen, J.; Jiang, P.; Zhang, H.; Liu, J.; Chen, Z.; Zhu, J. Effector Proteins of Type IV Secretion System: Weapons of Brucella Used to Fight Against Host Immunity. Curr Stem Cell Res Ther. 2023, 2, 22. [Google Scholar] [CrossRef] [PubMed]
- Smith, E.P.; Cotto-Rosario, A.; Borghesan, E.; Held, K.; Miller, C.N.; Celli, J. Epistatic Interplay between Type IV Secretion Effectors Engages the Small GTPase Rab2 in the Brucella Intracellular Cycle. mBio 2020, 11, e03350-19. [Google Scholar] [CrossRef] [PubMed]
- Ma, Q.; Wood, T.K. Protein acetylation in prokaryotes increases stress resistance. Biochem. Biophys. Res. Commun. 2011, 410, 846–851. [Google Scholar] [CrossRef] [PubMed]
- Borghesan, E.; Smith, E.P.; Myeni, S.; Binder, K.; Knodler, L.A.; Celli, J. A Brucella effector modulates the Arf6-Rab8a GTPase cascade to promote intravacuolar replication. EMBO J. 2021, 40, e107664. [Google Scholar] [CrossRef]
- Zhu, J.; Dong, Q.; Dong, C.; Zhang, X.; Zhang, H.; Chen, Z. Global Lysine Crotonylation Alterations of Host Cell Proteins Caused by Brucella Effector BspF. Front. Cell. Infect. Microbiol. 2020, 10, 603457. [Google Scholar] [CrossRef]
- Liao, P.; Bhattarai, N.; Cao, B.; Zhou, X.; Jung, J.H.; Damera, K.; Fuselier, T.T.; Thareja, S.; Wimley, W.C.; Wang, B.; et al. Crotonylation at serine 46 impairs p53 activity. Biochem. Biophys. Res. Commun. 2020, 524, 730–735. [Google Scholar] [CrossRef]
- Tan, M.J.; Luo, H.; Lee, S.; Jin, F.L.; Yang, J.S.; Montellier, E.; Buchou, T.; Cheng, Z.Y.; Rousseaux, S.; Rajagopal, N.; et al. Identification of 67 Histone Marks and Histone Lysine Crotonylation as a New Type of Histone Modification. Cell 2011, 146, 1015–1027. [Google Scholar] [CrossRef]
- Montellier, E.; Rousseaux, S.; Zhao, Y.M.; Khochbin, S. Histone crotonylation specifically marks the haploid male germ cell gene expression program. Bioessays 2012, 34, 187–193. [Google Scholar] [CrossRef]
- Wei, W.; Mao, A.Q.; Tang, B.; Zeng, Q.F.; Gao, S.N.; Liu, X.G.; Lu, L.; Li, W.P.; Du, J.X.; Li, J.W.; et al. Large-Scale Identification of Protein Crotonylation Reveals Its Role in Multiple Cellular Functions. J. Proteome Res. 2017, 16, 1743–1752. [Google Scholar] [CrossRef]
- Sabari, B.R.; Tang, Z.Y.; Huang, H.; Yong-Gonzalez, V.; Molina, H.; Kong, H.E.; Dai, L.Z.; Shimada, M.; Cross, J.R.; Zhao, Y.M.; et al. Intracellular Crotonyl-CoA Stimulates Transcription through p300-Catalyzed Histone Crotonylation (vol 58, pg 203, 2015). Mol. Cell 2018, 69, 533. [Google Scholar] [CrossRef] [PubMed]
- Hashemifar, I.; Yadegar, A.; Jazi, F.M.; Amirmozafari, N. Molecular prevalence of putative virulence-associated genes in Brucella melitensis and Brucella abortus isolates from human and livestock specimens in Iran. Microb. Pathog. 2017, 105, 334–339. [Google Scholar] [CrossRef] [PubMed]
- Fridman, J.S.; Lowe, S.W. Control of apoptosis by p53. Oncogene 2003, 22, 9030–9040. [Google Scholar] [CrossRef] [PubMed]
- Laptenko, O.; Prives, C. Transcriptional regulation by p53: One protein, many possibilities. Cell Death Differ. 2006, 13, 951–961. [Google Scholar] [CrossRef]
- Zhang, X.P.; Liu, F.; Wang, W. Coordination between cell cycle progression and cell fate decision by the p53 and E2F1 pathways in response to DNA damage. J. Biol. Chem. 2010, 285, 31571–31580. [Google Scholar] [CrossRef]
- Lamkanfi, M.; Dixit, V.M. Manipulation of host cell death pathways during microbial infections. Cell Host Microbe 2010, 8, 44–54. [Google Scholar] [CrossRef]
- Gross, A.; Terraza, A.; Ouahrani-Bettache, S.; Liautard, J.P.; Dornand, J. In vitro Brucella suis infection prevents the programmed cell death of human monocytic cells. Infect. Immun. 2000, 68, 342–351. [Google Scholar] [CrossRef]
- Ma, Z.; Li, R.; Hu, R.; Deng, X.; Xu, Y.; Zheng, W.; Yi, J.; Wang, Y.; Chen, C. Brucella abortus BspJ Is a Nucleomodulin That Inhibits Macrophage Apoptosis and Promotes Intracellular Survival of Brucella. Front. Microbiol. 2020, 11, 599205. [Google Scholar] [CrossRef]
- Aubrey, B.J.; Kelly, G.L.; Janic, A.; Herold, M.J.; Strasser, A. How does p53 induce apoptosis and how does this relate to p53-mediated tumour suppression? Cell Death Differ. 2018, 25, 104–113. [Google Scholar] [CrossRef]
- Eskandari, E.; Eaves, C.J. Paradoxical roles of caspase-3 in regulating cell survival, proliferation, and tumorigenesis. J. Cell Biol. 2022, 221, e202201159. [Google Scholar] [CrossRef]
- Wang, Y.; An, R.; Umanah, G.K.; Park, H.; Nambiar, K.; Eacker, S.M.; Kim, B.; Bao, L.; Harraz, M.M.; Chang, C.; et al. A nuclease that mediates cell death induced by DNA damage and poly(ADP-ribose) polymerase-1. Science 2016, 354, aad6872. [Google Scholar] [CrossRef] [PubMed]
Reactive Component | Volume (µL) |
---|---|
cDNA | 1 |
Forward primer | 1 |
Reverse primer | 1 |
2× Prime STAR Max Premix | 10 |
ddH2O | 7 |
Total volume | 20 |
Primer Name | Primer Sequences (5′-3′) | Target Fragment (bp) | Restriction Endonucleases | |
---|---|---|---|---|
Flag-p53 | Forward: | AAAGAATTCATGGAGGAGCCGC | 1182 | EcoR I |
Reverse: | AAACTCGAGTCAGTCTGAGTCAGGC | Xho I | ||
Flag-p53K351A | Forward: | AGGCCTTGGAACTCGCGGATGCCCAGGCTGG | 1182 | EcoR I |
Reverse: | CCAGCCTGGGCATCCGCGAGTTCCAAGGCCT | Xho I |
Reactive Component | Volume (µL) |
---|---|
cDNA | 1 |
Forward primer | 0.5 |
Reverse primer | 0.5 |
SYBR qPCR Master Mix | 5 |
ddH2O | 3 |
Total volume | 10 |
Primer Names | Primer Sequence (5′-3′) | Product Length (bp) | |
---|---|---|---|
p53 | Forward: | ATGAGCCGCCTGAGGTTGG | 71 |
Reverse: | CAGTGTGATGATGGTGAGGATGG | ||
Caspase-3 | Forward: | GTGGAATTGATGCGTGATG | 193 |
Reverse: | TCTCAATGCCACAGTCCAGT | ||
AIF | Forward: | CGGCTCCCAGGCAACTTGTTC | 104 |
Reverse: | GGCACCAGCTCCTACTGTTGATAAG | ||
Bcl-2 | Forward: | GGCTACGAGTGGGATGCG | 168 |
Reverse: | TGGACCACAGGTGGCAC | ||
Bax | Forward: | AGAGGATGATTGCCGCC | 117 |
Reverse: | GTGCACAGGGCCTTGAG | ||
Bad | Forward: | CGGAGGATGAGTGACGAGTTTGTG | 79 |
Reverse: | GATCCCACCAGGACTGGAAGACTC | ||
β-actin | Forward: | AAAGACCTGTACGCCAACAC | 178 |
Reverse: | GTCATACTCCTGCTTGCTGAT |
Group | Normal Cells | The Early Apoptotic Cells (%) | The Late Apoptotic Cells (%) |
---|---|---|---|
Control (NI) | 84.70 ± 0.39 | 4.96 ± 0.43 | 11.94 ± 1.45 |
S2308-infected | 83.40 ± 0.54 | 1.76 ± 0.43 | 17.93 ± 1.33 |
ΔbspF-infected | 83.40 ± 0.26 | 4.36 ± 0.13 | 14.60 ± 0.46 |
Group | Normal Cells | The Early Apoptotic Cells (%) | The Late Apoptotic Cells (%) |
---|---|---|---|
Control (NI) | 73.70 ± 0.37 | 15.36 ± 1.13 | 5.7 ± 1.10 |
S2308-infected | 75.40 ± 0.45 | 4.86 ± 0.23 | 4.93 ± 0.63 |
ΔbspF-infected | 74.40 ± 0.74 | 15.66 ± 0.53 | 5.9 ± 0.23 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, R.; Li, A.; Li, Y.; Shen, R.; Du, F.; Zheng, M.; Zhu, J.; Chen, J.; Jiang, P.; Zhang, H.; et al. The Brucella Effector Protein BspF Regulates Apoptosis through the Crotonylation of p53. Microorganisms 2023, 11, 2322. https://doi.org/10.3390/microorganisms11092322
Lin R, Li A, Li Y, Shen R, Du F, Zheng M, Zhu J, Chen J, Jiang P, Zhang H, et al. The Brucella Effector Protein BspF Regulates Apoptosis through the Crotonylation of p53. Microorganisms. 2023; 11(9):2322. https://doi.org/10.3390/microorganisms11092322
Chicago/Turabian StyleLin, Ruiqi, Ang Li, Yuzhuo Li, Ruitong Shen, Fangyuan Du, Min Zheng, Jinying Zhu, Jingjing Chen, Pengfei Jiang, Huan Zhang, and et al. 2023. "The Brucella Effector Protein BspF Regulates Apoptosis through the Crotonylation of p53" Microorganisms 11, no. 9: 2322. https://doi.org/10.3390/microorganisms11092322
APA StyleLin, R., Li, A., Li, Y., Shen, R., Du, F., Zheng, M., Zhu, J., Chen, J., Jiang, P., Zhang, H., Liu, J., Chen, X., & Chen, Z. (2023). The Brucella Effector Protein BspF Regulates Apoptosis through the Crotonylation of p53. Microorganisms, 11(9), 2322. https://doi.org/10.3390/microorganisms11092322