Identification, Antioxidant Capacity, and Matrix Metallopeptidase 9 (MMP-9) In Silico Inhibition of Haloarchaeal Carotenoids from Natronococcus sp. and Halorubrum tebenquichense
Abstract
:1. Introduction
2. Materials and Methods
2.1. Strains
2.2. Carotenoid Pigments Extraction
2.3. C50 Carotenoid Profile Analysis
2.3.1. UV-Vis Spectroscopy
2.3.2. Thin-Layer Chromatography
2.4. Characterization of Carotenoids Produced by Natronococcus sp. TC6 and Halorubrum tebenquichense SU10
2.4.1. Nuclear Magnetic Resonance (1H-NMR)
2.4.2. UPLC-ESI-MS/MS Analysis
2.5. Bioprospection of Archaeal Carotenoids
2.5.1. 1,1-Diphenyl-2-picrylhydrazyl (DPPH) Radical Scavenging Assay
2.5.2. 2,2-Azino-bis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS) Radical Scavenging Assay
2.5.3. Ferric Reduction Antioxidant Power Test (FRAP)
2.5.4. Trolox Equivalent Antioxidant Capacity
2.5.5. Data Analysis
2.5.6. Docking Assays of Archaeal Carotenoid Fragments
2.5.7. Molecular Docking and Molecular Dynamics Simulation of MMP-9 and Bacterioruberin
3. Results
3.1. Identification of Carotenoids
3.1.1. UV-Vis Spectrum and TLC Analysis
3.1.2. NMR and UPLC-ESI-MS/MS Analysis for Identification of Carotenoids Profile
3.2. Bioprospection of Pigment Extracts
3.2.1. Antioxidant Activity
3.2.2. Docking Assays of Archaeal Carotenoid Fragments
3.2.3. Molecular Docking and Molecular Dynamics Simulations of MMP-9 and Bacterioruberin
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Will Chen, C.; Hsu, S.H.; Lin, M.T.; Hsu, Y.H. Mass Production of C50 Carotenoids by Haloferax Mediterranei in Using Extruded Rice Bran and Starch under Optimal Conductivity of Brined Medium. Bioprocess Biosyst. Eng. 2015, 38, 2361–2367. [Google Scholar] [CrossRef] [PubMed]
- Fang, C.J.; Ku, K.L.; Lee, M.H.; Su, N.W. Influence of Nutritive Factors on C50 Carotenoids Production by Haloferax Mediterranei ATCC 33500 with Two-Stage Cultivation. Bioresour. Technol. 2010, 101, 6487–6493. [Google Scholar] [CrossRef] [PubMed]
- Abbes, M.; Baati, H.; Guermazi, S.; Messina, C.; Santulli, A.; Gharsallah, N.; Ammar, E. Biological Properties of Carotenoids Extracted from Halobacterium halobium Isolated from a Tunisian Solar Saltern. BMC Complement. Altern. Med. 2013, 13, 255. [Google Scholar] [CrossRef] [PubMed]
- Kirti, K.; Amita, S.; Priti, S.; Kumar, A.M.; Jyoti, S. Colorful World of Microbes: Carotenoids and Their Applications. Adv. Biol. 2014, 2014, 837891. [Google Scholar] [CrossRef]
- Rodrigo-Baños, M.; Montero, Z.; Torregrosa-Crespo, J.; Garbayo, I.; Vílchez, C.; Martínez-Espinosa, R.M. Haloarchaea: A Promising Biosource for Carotenoid Production. In Carotenoids: Biosynthetic and Biofunctional Approaches; Advances in Experimental Medicine and Biology; Misawa, N., Ed.; Springer: Singapore, 2021; Volume 1261, pp. 165–174. [Google Scholar] [CrossRef]
- Yatsunami, R.; Ando, A.; Yang, Y.; Takaichi, S.; Kohno, M.; Matsumura, Y.; Ikeda, H.; Fukui, T.; Nakasone, K.; Fujita, N.; et al. Identification of Carotenoids from the Extremely Halophilic Archaeon Haloarcula japonica. Front. Microbiol. 2014, 5, 100. [Google Scholar] [CrossRef]
- Flegler, A.; Lipski, A. The C50 carotenoid bacterioruberin regulates membrane fluidity in pink-pigmented Arthrobacter species. Arch. Microbiol. 2022, 204, 70. [Google Scholar] [CrossRef]
- Giani, M.; Garbayo, I.; Vílchez, C.; Martínez-Espinosa, R.M. Haloarchaeal Carotenoids: Healthy Novel Compounds from Extreme Environments. Mar. Drugs 2019, 17, 524. [Google Scholar] [CrossRef]
- Giani, M.; Miralles-Robledillo, J.M.; Peiró, G.; Pire, C.; Martínez-Espinosa, R.M. Deciphering Pathways for Carotenogenesis in Haloarchaea. Molecules 2020, 25, 1197. [Google Scholar] [CrossRef]
- Rodriguez-Concepcion, M.; Avalos, J.; Bonet, M.L.; Boronat, A.; Gomez-Gomez, L.; Hornero-Mendez, D.; Limon, M.C.; Meléndez-Martínez, A.J.; Olmedilla-Alonso, B.; Palou, A.; et al. A Global Perspective on Carotenoids: Metabolism, Biotechnology, and Benefits for Nutrition and Health. Prog. Lipid Res. 2018, 70, 62–93. [Google Scholar] [CrossRef]
- Mandelli, F.; Miranda, V.S.; Rodrigues, E.; Mercadante, A.Z. Identification of Carotenoids with High Antioxidant Capacity Produced by Extremophile Microorganisms. World J. Microbiol. Biotechnol. 2012, 28, 1781–1790. [Google Scholar] [CrossRef]
- Lorantfy, B.; Renkecz, T.; Koch, C.; Horvai, G.; Lendl, B.; Herwig, C. Identification of Lipophilic Bioproduct Portfolio from Bioreactor Samples of Extreme Halophilic Archaea with HPLC-MS/MS. Anal. Bioanal. Chem. 2014, 406, 2421–2432. [Google Scholar] [CrossRef] [PubMed]
- Sahli, K.; Gomri, M.A.; Esclapez, J.; Gómez-Villegas, P.; Ghennai, O.; Bonete, M.J.; León, R.; Kharroub, K. Bioprospecting and Characterization of Pigmented Halophilic Archaeal Strains from Algerian Hypersaline Environments with Analysis of Carotenoids Produced by Halorubrum sp. BS2. J. Basic Microbiol. 2020, 60, 624–638. [Google Scholar] [CrossRef] [PubMed]
- Fariq, A.; Yasmin, A.; Jamil, M. Production, Characterization and Antimicrobial Activities of Bio-Pigments by Aquisalibacillus elongatus MB592, Salinicoccus sesuvii MB597, and Halomonas aquamarina MB598 Isolated from Khewra Salt Range, Pakistan. Extremophiles 2019, 23, 435–449. [Google Scholar] [CrossRef] [PubMed]
- Hou, J.; Cui, H.L. In Vitro Antioxidant, Antihemolytic, and Anticancer Activity of the Carotenoids from Halophilic Archaea. Curr. Microbiol. 2018, 75, 266–271. [Google Scholar] [CrossRef] [PubMed]
- Lizama, C.; Romero-Parra, J.; Andrade, D.; Riveros, F.; Bórquez, J.; Ahmed, S.; Venegas-Salas, L.; Cabalín, C.; Simirgiotis, M.J. Analysis of Carotenoids in Haloarchaea Species from Atacama Saline Lakes by High Resolution UHPLC-Q-Orbitrap-Mass Spectrometry: Antioxidant Potential and Biological Effect on Cell Viability. Antioxidants 2021, 10, 1230. [Google Scholar] [CrossRef] [PubMed]
- Zalazar, L.; Pagola, P.; Miró, M.V.; Churio, M.S.; Cerletti, M.; Martinez, C.; Iniesta-Cuerda, M.; Soler, A.J.; Cesari, A.; De Castro, R. Bacterioruberin Extracts from a Genetically Modified Hyperpigmented Haloferax Volcanii Strain: Antioxidant Activity and Bioactive Properties on Sperm Cells. J. Appl. Microbiol. 2018, 126, 796–810. [Google Scholar] [CrossRef]
- Dutta, B.; Bandopadhyay, R. Biotechnological potentials of halophilic microorganisms and their impact on mankind. Beni-Suef Univ. J. Basic Appl. Sci. 2022, 11, 75. [Google Scholar] [CrossRef]
- Moopantakath, J.; Imchen, M.; Anju, V.T.; Busi, S.; Dyavaiah, M.; Martínez-Espinosa, R.M.; Kumavath, R. Bioactive molecules from haloarchaea: Scope and prospects for industrial and therapeutic applications. Front. Microbiol. 2023, 14, 1113540. [Google Scholar] [CrossRef]
- Grivard, A.; Goubet, I.; Duarte Filho, L.M.D.S.; Thiéry, V.; Chevalier, S.; de Oliveira-Junior, R.G.; El Aouad, N.; Guedes da Silva Almeida, J.R.; Sitarek, P.; Quintans-Junior, L.J.; et al. Archaea carotenoids: Natural pigments with unexplored innovative potential. Mar. Drugs 2022, 20, 524. [Google Scholar] [CrossRef]
- Morilla, M.J.; Ghosal, K.; Romero, E.L. More Than Pigments: The Potential of Astaxanthin and Bacterioruberin-Based Nanomedicines. Pharmaceutics 2023, 15, 1828. [Google Scholar] [CrossRef]
- Opdenakker, G.; Vermeire, S.; Abu El-Asrar, A. How to place the duality of specific MMP-9 inhibition for treatment of inflammatory bowel diseases into clinical opportunities? Front. Immunol. 2022, 13, 983964. [Google Scholar] [CrossRef]
- Eberhardt, J.; Santos-Martins, A.; Tillack, A.F.; Forli, S. Autodock Vina 1.2.0: New docking methods, expanded force field, and phyton bindings. J. Chem. Inf. Model. 2020, 61, 3891. [Google Scholar] [CrossRef] [PubMed]
- Berendsen, H.J.C.; van der Spoel, D.; van Drunen, R. GROMACS: A message-passing parallel molecular dynamics implementation. Comput. Phys. Commun. 1995, 91, 43–56. [Google Scholar] [CrossRef]
- Brooks, B.R.; Brooks, C.L., III; Mackerell, A.D., Jr.; Nilsson, L.; Petrella, R.J.; Roux, B.; Won, Y.; Archontis, G.; Bartels, C.; Boresch, S.; et al. CHARMM: The biomolecular simulation program. J. Comput. Chem. 2009, 30, 1545–1614. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Cheng, X.; Swails, J.M.; Yeom, M.S.; Eastman, P.K.; Lemkul, J.A.; Wei, S.; Buckner, J.; Jeong, J.C.; Qi, Y.; et al. CHARMM-GUI Input Generator for NAMD, GROMACS, AMBER, OpenMM, and CHARMM/OpenMM Simulations Using the CHARMM36 Additive Force Field. J. Comput. Chem. 2016, 12, 405–413. [Google Scholar] [CrossRef]
- Jo, S.; Kim, T.; Iyer, V.G.; Im, W. CHARMM-GUI: A web-based graphical user interface for CHARMM. J. Comput. Chem. 2008, 29, 1859–1865. [Google Scholar] [CrossRef]
- Pettersen, E.F.; Goddard, T.D.; Huang, C.C.; Couch, G.S.; Greenblatt, D.M.; Meng, E.C.; Ferrin, T.E. UCSF Chimera, a visualization system for exploratory research and analysis. J. Comput. Chem. 2004, 25, 1605–1612. [Google Scholar] [CrossRef]
- Appleby, T.C.; Greenstein, A.E.; Hung, M.; Liclican, A.; Velasquez, M.; Villaseñor, A.G.; Wang, R.; Wong, M.H.; Liu, X.; Papalia, G.A.; et al. Bio-chemical characterization and structure determination of a potent, selective antibody inhibi-tor of human MMP9. J. Biol. Chem. 2017, 292, 6810–6820. [Google Scholar] [CrossRef]
- Müller, W.J.; Smit, M.S.; Van Heerden, E.; Capes, M.D.; DaSsarma, S. Complex Effects of Cytochrome P450 Monooxygenase on Purple Membrane and Bacterioruberin Production in an Extremely Halophilic Archaeon: Genetic, Phenotypic, and Transcriptomic Analyses. Front. Microbiol. 2018, 9, 2563. [Google Scholar] [CrossRef]
- Yang, Y.; Yatsunami, R.; Ando, A.; Miyoko, N.; Fukui, T.; Takaichi, S.; Nakamura, S. Complete Biosynthetic Pathway of the C50 Carotenoid Bacterioruberin from Lycopene in the Extremely Halophilic Archaeon Haloarcula japonica. J. Bacteriol. 2015, 197, 1614–1623. [Google Scholar] [CrossRef]
- Gupta, R.S.; Naushad, S.; Baker, S. Phylogenomic Analyses and Molecular Signatures for the Class Halobacteria and Its Two Major Clades: A Proposal for Division of the Class Halobacteria into an Emended Order Halobacteriales and Two New Orders, Haloferacales Ord. Nov. and Natrialbales Ord. Nov., Containing the Novel Families Haloferacaceae fam. nov. and Natrialbaceae fam. nov. Int. J. Syst. Evol. Microbiol. 2015, 65, 1050–1069. [Google Scholar] [CrossRef] [PubMed]
- Das, D.; Kalra, I.; Mani, K.; Salgaonkar, B.B.; Braganca, J.M. Characterization of Extremely Halophilic Archaeal Isolates from Indian Salt Pans and Their Screening for Production of Hydrolytic Enzymes. Environ. Sustain. 2019, 2, 227–239. [Google Scholar] [CrossRef]
- Vaz, B.M.; Kholany, M.; Pinto, D.C.; Macário, I.P.; Veloso, T.; Caetano, T.; Pereira, J.L.; Coutinho, J.A.P.; Ventura, S.P.M. Recovery of bacterioruberin and proteins using aqueous solutions of surface-active compounds. RSC Adv. 2022, 12, 30278–30286. [Google Scholar] [CrossRef]
- Yachai, M. Carotenoid Production by Halophilic Archaea and Its Applications. Ph.D. Dissertation, Prince of Songkla University, Songkhla, Thailand, 2009. [Google Scholar]
- Boileau, T.W.M.; Boileau, A.C.; Erdman, J.W. Bioavailability of All-Trans. and Cis-Isomers of Lycopene. Exp. Biol. Med. 2002, 227, 914–919. [Google Scholar] [CrossRef] [PubMed]
- Kushwaha, S.C.; Kramer, J.K.G.; Kates, M. Isolation and Characterization of C50-Carotenoid Pigments and Other Polar Isoprenoids from Halobacterium cutirubrum. Biochim. Biophys. Acta Lipids Lipid. Metab. 1975, 398, 303–314. [Google Scholar] [CrossRef]
- Goodwin, T.W. Biosynthesis of Carotenoids: An Overview. Methods Enzymol. 1993, 214, 330–340. [Google Scholar] [CrossRef]
- Naziri, D.; Hamidi, M.; Hassanzadeh, S.; Tarhriz, V.; Zanjani, B.M.; Nazemyieh, H.; Hejazi, M.A.; Hejazi, M.S. Analysis of Carotenoid Production by Halorubrum sp. TBZ126; an Extremely Halophilic Archeon from Urmia Lake. Adv. Pharm. Bull. 2014, 4, 61. [Google Scholar] [CrossRef]
- Rodrigo-Baños, M.; Garbayo, I.; Vílchez, C.; Bonete, M.J.; Martínez-Espinosa, R.M. Carotenoids from Haloarchaea and Their Potential in Biotechnology. Mar. Drugs 2015, 13, 5508–5532. [Google Scholar] [CrossRef]
- Giani, M.; Montoyo-Pujol, Y.G.; Peiró, G.; Martínez-Espinosa, R.M. Halophilic Carotenoids and Breast Cancer: From Salt Marshes to Biomedicine. Mar. Drugs 2021, 19, 594. [Google Scholar] [CrossRef]
- Giani, M.; Martínez-Espinosa, R.M. Carotenoids as a Protection Mechanism against Oxidative Stress in Haloferax mediterranei. Antioxidants 2020, 9, 1060. [Google Scholar] [CrossRef]
- Gómez-Villegas, P.; Vigara, J.; Vila, M.; Varela, J.; Barreira, L.; León, R. Antioxidant, Antimicrobial, and Bioactive Potential of Two New Haloarchaeal Strains Isolated from Odiel Salterns (Southwest Spain). Biology 2020, 9, 298. [Google Scholar] [CrossRef]
- Fiedor, J.; Burda, K. Potential Role of Carotenoids as Antioxidants in Human Health and Disease. Nutrients 2014, 6, 466–488. [Google Scholar] [CrossRef] [PubMed]
- Munteanu, I.G.; Apetrei, C. Analytical Methods Used in Determining Antioxidant Activity: A Review. Int. J. Mol. Sci. 2021, 22, 3380. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Liu, H.; Luo, X.; Deng, J.; Pan, Y.; Liang, H. Overexpression of SMYD3 and Matrix Metalloproteinase-9 Are Associated with Poor Prognosis of Patients with Gastric Cancer. Tumor Biol. 2015, 36, 4377–4386. [Google Scholar] [CrossRef] [PubMed]
- Mondal, S.; Adhikari, N.; Banerjee, S.; Amin, S.A.; Jha, T. Matrix Metalloproteinase-9 (MMP-9) and Its Inhibitors in Cancer: A Minireview. Eur. J. Med. Chem. 2020, 194, 112260. [Google Scholar] [CrossRef]
- Hegazy, G.E.; Abu-Serie, M.M.; Abo-Elela, G.M.; Ghozlan, H.; Sabry, S.A.; Soliman, N.A.; Abdel-Fattah, Y.R. In Vitro Dual (Anticancer and Antiviral) Activity of the Carotenoids Produced by Haloalkaliphilic Archaeon Natrialba sp. M6. Sci. Rep. 2020, 10, 5986. [Google Scholar] [CrossRef]
Carotenoid Identified | Molecular Formula | Theoretical Mass (m/z) | Measured Mass (m/z) | Strain Pool |
---|---|---|---|---|
Bacterioruberin (BAR) | C50H76O4 | 740.57 | 740.5 | Both strains |
Monoanhydrobacterioruberin (MABR) | C50H74O3 | 722.56 | 722.47 | Nc |
Bisahnydrobacterioruberin (BHR) | C50H72O2 | 704.55 | 704.53 | Both strains |
Trisanhydrobacterioruberin | C50H70O | 687.06 | 687.4 | Both strains |
2-isopentenyl-3,4 dihydrorhodopin (DIR) | C45H64O | 620.96 | 620.3 | Hr |
Astaxanthin | C40H52O4 | 596.83 | 597.39 | Hr |
β-carotene | C40H56 | 536.87 | 537.2 | Both strains |
Phytoene | C40H64 | 544.94 | 543.50 | Nc |
Lycopersene | C40H66 | 547.0 | 545.96 | Nc |
Compound (Ligand) | Binding Energies (kcal/mol) Matrix Metallopeptidase 9 (MMP-9) | H-Bonds |
---|---|---|
Fragment 1, Bacterioruberin | −8.3 | 1 |
Fragment 2, Monoanhydrobacterioruberin | −8.2 | 1 |
Fragment 3, Bisanhydrobacterioruberin | −7.4 | 1 |
Fragment 4, 9-cis-26-cis bacterioruberin | −6.7 | 1 |
Fragment 5, 9-cis-bacterioruberin | −6.6 | 3 |
Fragment 6, 13-cis-bacterioruberin | −6.8 | 1 |
Fragment 7, Trisanhydrobacterioruberin | −8.3 | 1 |
Binding Site | Binding Energies (kcal/mol) | Binding Residues |
---|---|---|
Binding Site 1 | −5.3 | D139, R143, L147, A150, F396, L397, P429, G428, E427, N437, K433, L431, V436 |
Binding Site 2 | −5.1 | V101, R106, F107, Q108, L187, L188, A189, H190, F192, G190, L409, D410, G438, P193 |
Allosteric Binding Site | −5.9 | R51, F107, Q108, G178, Y179, P180, D182, P196, G197, I198 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Delgado-Garcia, M.; Gómez-Secundino, O.; Rodríguez, J.A.; Mateos-Díaz, J.C.; Muller-Santos, M.; Aguilar, C.N.; Camacho-Ruiz, R.M. Identification, Antioxidant Capacity, and Matrix Metallopeptidase 9 (MMP-9) In Silico Inhibition of Haloarchaeal Carotenoids from Natronococcus sp. and Halorubrum tebenquichense. Microorganisms 2023, 11, 2344. https://doi.org/10.3390/microorganisms11092344
Delgado-Garcia M, Gómez-Secundino O, Rodríguez JA, Mateos-Díaz JC, Muller-Santos M, Aguilar CN, Camacho-Ruiz RM. Identification, Antioxidant Capacity, and Matrix Metallopeptidase 9 (MMP-9) In Silico Inhibition of Haloarchaeal Carotenoids from Natronococcus sp. and Halorubrum tebenquichense. Microorganisms. 2023; 11(9):2344. https://doi.org/10.3390/microorganisms11092344
Chicago/Turabian StyleDelgado-Garcia, Mariana, Osvaldo Gómez-Secundino, Jorge A. Rodríguez, Juan Carlos Mateos-Díaz, Marcelo Muller-Santos, Cristobal N. Aguilar, and Rosa Maria Camacho-Ruiz. 2023. "Identification, Antioxidant Capacity, and Matrix Metallopeptidase 9 (MMP-9) In Silico Inhibition of Haloarchaeal Carotenoids from Natronococcus sp. and Halorubrum tebenquichense" Microorganisms 11, no. 9: 2344. https://doi.org/10.3390/microorganisms11092344
APA StyleDelgado-Garcia, M., Gómez-Secundino, O., Rodríguez, J. A., Mateos-Díaz, J. C., Muller-Santos, M., Aguilar, C. N., & Camacho-Ruiz, R. M. (2023). Identification, Antioxidant Capacity, and Matrix Metallopeptidase 9 (MMP-9) In Silico Inhibition of Haloarchaeal Carotenoids from Natronococcus sp. and Halorubrum tebenquichense. Microorganisms, 11(9), 2344. https://doi.org/10.3390/microorganisms11092344