Impact of the Combination of Probiotics and Digital Poultry System on Behavior, Welfare Parameters, and Growth Performance in Broiler Chicken
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethical Approval
2.2. Animals, Experimental Design, and Feeding Management
2.3. Digital Poultry System
2.4. Growth Performance and Immune Organ Index
2.5. Immune Biomarkers
2.6. Cecal Microbiota
2.7. Animal Behavior and Welfare Indicators
2.8. Statistical Analysis
3. Results
3.1. Growth Performance and Organ Index
3.2. Immune Biomarkers
3.3. Cecal Microbiota
3.4. Animal Behavior and Welfare
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Park, S.O. Application strategy for sustainable livestock production with farm animal algorithms in response to climate change up to 2050: A review. Czech. J. Anim. Sci. 2022, 67, 425–441. [Google Scholar] [CrossRef]
- Yaqoob, M.U.; Wang, G.; Wang, M. An updated review on probiotics as an alternative of antibiotics in poultry-A review. Anim. Biosci. 2022, 35, 1109–1120. [Google Scholar] [CrossRef] [PubMed]
- Shehata, A.A.; Yalçın, S.; Latorre, J.D.; Basiouni, S.; Attia, Y.A.; Abd El-Wahab, A.; Visscher, C.; El-Seedi, H.R.; Huber, C.; Hafez, H.M.; et al. Probiotics, prebiotics, and phytogenic substances for optimizing gut health in poultry. Microorganisms 2022, 10, 395–429. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.H.; Goh, Y.G.; Hwan, K.H.; Park, B.S. Effects of dietary probiotic mixture on growth performance, caecal microorganism and immune response in broiler chickens under heat stress. J. Korean Appl. Sci. Technol. 2018, 35, 807–815. [Google Scholar]
- Choi, Y.S.; Lee, H.S.; Park, B.S. Effect of a probiotic mixture on egg quality and egg production in laying hens. J. Korean Appl. Sci. Technol. 2019, 36, 748–757. [Google Scholar]
- Park, S.O.; Seo, K.H. Digital livestock system and probiotic mixture can improve growth performance of swine by enhancing immune function, cecal bacteria, cecal short chain fatty acid and nutrient digestibility. Front. Vet. Sci. 2023, 67, 425–441. [Google Scholar] [CrossRef] [PubMed]
- Astill, J.; Dara, R.A.; Fraser, E.D.G.; Roberts, B.; Sharif, S. Smart poultry management: Smart snsors, big data, and the internet of things. Comput. Electron. Agric. 2020, 170, 105291–105402. [Google Scholar] [CrossRef]
- Park, S.O. Applying a smart livestock system as a development strategy for the animal life industry in the future: A review. Korean Soc. Appl. Sci. Technol. 2021, 38, 241–262. [Google Scholar]
- Park, S.O.; Zammit, V.A. Effect of digital livestock system on animal behavior and welfare, and fatty acid profiles of egg in laying hens. J. Anim. Feed Sci. 2023, 32, 174–180. [Google Scholar] [CrossRef]
- Groher, T.; Heitkämper, K.; Umstätte, C. Digital technology adoption in livestock production with a special focus on ruminant farming. Animals 2020, 14, 2404–2413. [Google Scholar] [CrossRef]
- Neethirajan, S.; Kemp, B. Digital livestock farmimg. Sens. Bio-Sens. Res. 2021, 32, 100408–100420. [Google Scholar] [CrossRef]
- Choukidar, G.A.; Dawande, N.A. A survey on smart poultry farm automation and monitoring system. Int. J. Innov. Res. Sci. Eng. Technol. 2017, 6, 4806–4810. [Google Scholar]
- Wolfert, S.; Ge, L.; Verdouw, C.; Boogaardt, M.J. Big data in smart farming–A review. Agric. Syst. 2017, 153, 69–80. [Google Scholar] [CrossRef]
- Um, K.H.; Zammit, V.A.; Park, S.O. Utilization of ICT-based feeding system on egg production, egg quality, blood parameters and caecal microflora in laying hens. Anim. Nutr. Feed Technol. 2020, 20, 289–300. [Google Scholar] [CrossRef]
- Akinyemi, F.; Adewole, D. Environmental stress in chickens and the potential effectiveness of dietary vitamin supplementation. Front. Anim. Sci. 2021, 2, 775311–775332. [Google Scholar] [CrossRef]
- Jones, T.A.; Donnelly, C.A.; Dawkins, M.S. Environmental and management factors affecting the welfare of chickens on commercial farms in the UK and Denmark stocked at five densities. Poult. Sci. 2005, 84, 1155–1165. [Google Scholar] [CrossRef]
- da Silva, M.I.L.; de Lima Almeida Paz, I.C.; Chaves, G.H.C.; de Lima Almeida, I.C.; Ouros, C.C.D.; de Souza, S.R.L.; Milbradt, E.L.; Caldara, F.R.; Satin, A.J.G.; da Costa, G.A.; et al. Behaviour and animal welfare indicators of broiler chickens housed in an enriched environment. PLoS ONE 2021, 16, e0256963–e0256979. [Google Scholar] [CrossRef]
- Jiang, S.; Yan, F.F.; Hu, J.Y.; Mohammed, A.; Cheng, H.W. Bacillus subtilis-based probiotic improves skeletal health and immunity in broiler chickens exposed to heat stress. Animals 2021, 11, 1494. [Google Scholar] [CrossRef]
- NRC. Guide for the Care and Use of Laboratory Animals, 8th ed.; The national Academies Press: Washington, DC, USA, 2010. [Google Scholar]
- AOAC. Official Methods of Analysis, 15th ed.; AOAC International: Arlington, VA, USA, 2007. [Google Scholar]
- Aviagen. ROSS Broiler Pocjet Guide. 2018. Available online: www.aviagen.com (accessed on 5 May 2018).
- Davis, A.K.; Maney, D.L.; Maerz, J.C. Review: The use of leukocyte profiles to measure stress in vertebrates. A review for ecologists. Funct. Ecol. 2008, 22, 760–772. [Google Scholar] [CrossRef]
- Welfare Quality® Consortium. Welfare Quality® Assessment Protocol for Poultry (Broilers, Laying Hens); Welfare Quality® Consortium: Lelystad, The Netherlands, 2009. [Google Scholar]
- Biasato, I.; Bellezza, O.S.; Chemello, G.; Gariglio, M.; Fiorilla, E.; Dabbou, S.; Pipan, M.; Dekleva, D.; Macchi, E.; Gasco, L.; et al. Welfare implications for broiler chickens reared in an insect larvae-enriched environment: Focus on bird behaviour, plumage status, leg health, and excreta corticosterone. Front. Physiol. 2022, 13, 930158–930274. [Google Scholar] [CrossRef]
- Jacquier, V.; Walsh, M.C.; Schyns, G.; Claypool, J.; Blokker, B.; Bortoluzzi, C.; Geremia, J. Evaluation of a precision biotic on the growth performance, welfare indicators, ammonia output, and litter quality of broiler chickens. Animals 2022, 12, 231–243. [Google Scholar] [CrossRef] [PubMed]
- SAS Institute. SAS Users Guide: Statistics; SAS Institute Inc.: Cary, NC, USA, 2010. [Google Scholar]
- Zammit, V.A.; Park, S.O. Effect of smart poultry on growth performance, blood biochemistry parameters and cecal fermentation indices of broiler chickens. Anim. Nutr. Feed Technol. 2020, 20, 419–432. [Google Scholar] [CrossRef]
- Soumeh, E.A.; Cedeno, A.D.R.C.; Niknafs, S.; Bromfield, J.; Hoffman, L.C. The Efficiency of probiotics administrated via different routes and doses in enhancing production performance, meat quality, gut morphology, and microbial profile of broiler chickens. Animals 2021, 11, 3607–3627. [Google Scholar] [CrossRef]
- Qorbanpour, M.; Fahim, T.; Javandel, F.; Nosrati, M.; Paz, E.; Seidavi, A.; Ragni, M.; Laudadio, V.; Tufarelli, V. Effect of dietary ginger (Zingiber officinale Roscoe) and multi-strain probiotic on growth and carcass traits, blood biochemistry, immune responses and intestinal microflora in broiler chickens. Animals 2018, 8, 117–127. [Google Scholar] [CrossRef] [PubMed]
- Mahfuz, S.U.; Nahar, M.J.; Mo, C.; Ganfu, Z.; Zhongjun, V.; Hui, S. Inclusion of probiotic on chicken performance and immunity: A review. Int. J. Poult. Sci. 2017, 6, 328–335. [Google Scholar] [CrossRef]
- Xu, X.; Liang, W.; Xu, Z. Remote monitoring cost minimization for an unreliable sensor network with guaranteed network throughput. Inf. Process Agric. 2014, 1, 83–94. [Google Scholar] [CrossRef]
- Stanley, D.; Denman, S.E.; Hughes, R.J.; Geier, M.S.; Crowley, T.M.; Chen, H.; Haring, V.R.; Moore, R.J. Intestinal microbiota as sociated with differential feed conversion efficiency in chickens. Appl. Microbiol. Biotechnol. 2012, 96, 1361–1369. [Google Scholar] [CrossRef]
- Mahale, R.B.; Sonavane, S.S. Smart poultry farm monitoring using IOT and wireless sensor networks. Int. J. Adv. Res. Comput. Sci. 2016, 7, 187–190. [Google Scholar]
- Park, B.S.; Um, K.H.; Park, S.O.; Zammit, V.A. Effect of stocking density on behavioral traits, blood biochemical parameters and immune responses in meat ducks exposed to heat stress. Arch. Anim. Breed. 2018, 61, 425–432. [Google Scholar] [CrossRef]
- Haslam, S.M.; Knowles, T.G.; Brown, S.N.; Wilkins, L.J.; Kestin, S.C.; Warriss, P.D.; Nicol, C.J. Factors affecting the prevalence of foot pad dermatitis, hock burn and breast burn in broiler chicken. Brit. Poult. Sci. 2007, 48, 264–275. [Google Scholar] [CrossRef]
- Marcantonio, L.D.; Marotta, F.; Vulpiani, M.P.; Sonntag, Q.; Iannetti, L.; Janowicz, A.; Serafino, G.D.; Giannatale, E.D.; Garofolo, G. Investigating the cecal microbiota in broiler poultry farms and its potential relationships with animal welfare. Res. Vet. Sci. 2022, 144, 115–125. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Luo, S.; Yan, C. Gut microbiota implications for health and welfare in farm animals. Animals 2021, 12, 93–107. [Google Scholar] [CrossRef] [PubMed]
- Kabir, S.M.L. The role of probiotics in the poultry industry. Int. J. Mol. Sci. 2009, 10, 3531–3546. [Google Scholar] [CrossRef] [PubMed]
- Tactacan, G.B.; Guenter, W.; Lewis, N.J.; Rodriguez-Lecompte, J.C.; House, J.D. Performance and welfare of laying hens in conventional and enriched cages. Poult. Sci. 2009, 88, 698–707. [Google Scholar] [CrossRef]
- de Jong, I.C.; Bos, B.; van Harn, J.; Mostert, P.; te Beest, D. Differences and variation in welfare performance of broiler flocks in three production systems. Poult. Sci. 2022, 101, 101933–101946. [Google Scholar] [CrossRef] [PubMed]
Ingredients | Grower (Days 1–21) | Finisher (Days 22–35) |
---|---|---|
Yellow corn | 52.00 | 50.00 |
Soybean meal | 34.00 | 25.00 |
Corn gluten meal | 4.70 | 5.70 |
Wheat bran | 0 | 10.00 |
Beef tallow | 5.00 | 5.00 |
Limestone | 1.25 | 1.25 |
Dicalcium phosphate | 1.70 | 1.70 |
Salt | 0.25 | 0.25 |
DL-methionine | 0.30 | 0.30 |
L-lysine-HCL | 0.30 | 0.30 |
Mineral premix a | 0.34 | 0.34 |
Vitamin premix b | 0.16 | 0.16 |
Probiotic mixture c Chemical composition | 0.05 | 0.05 |
Metabolizable energy, Kcal/kg | 3100 | 3150 |
Crude protein | 22.0 | 20.0 |
Lysine | 1.32 | 1.15 |
Methionine | 0.52 | 0.50 |
Methionine + cysteine | 0.78 | 0.73 |
Calcium | 1.00 | 1.00 |
Available phosphorous | 0.45 | 0.40 |
Items | Conventional System | Digital Poultry System | SEM 2 | p-Value 3 | ||||
---|---|---|---|---|---|---|---|---|
CON | CON500 | DPCS | DPS500 | P | D | P × D | ||
Grower, (d 1–21) | ||||||||
Body weight, g/bird | 841 c | 860 b | 858 b | 876 a | 11.58 | 0.020 | 0.031 | 0.017 |
Feed intake, g.bird | 980 c | 997 b | 1002 b | 1022 a | 12.01 | 0.019 | 0.020 | 0.030 |
Feed conversion ratio | 1.16 | 1.16 | 1.17 | 1.17 | 0.010 | 0.072 | 0.103 | 0.097 |
Finisher (d 22–35) | ||||||||
Body weight, g/bird | 1085 c | 1213 b | 1199 b | 1310 a | 18.78 | 0.030 | 0.022 | 0.018 |
Feed intake, g.bird | 2015 c | 2116 b | 2100 b | 2191 a | 27.40 | 0.022 | 0.016 | 0.009 |
Feed conversion ratio | 1.85 a | 1.74 b | 1.75 b | 1.67 c | 0.010 | 0.010 | 0.015 | 0.019 |
Overall (d 1–35) | ||||||||
Body weight, g/bird | 1926 c | 2073 b | 2057 b | 2186 a | 26.76 | 0.013 | 0.025 | 0.016 |
Feed intake, g.bird | 2995 c | 3113 b | 3102 b | 3213 a | 41.26 | 0.025 | 0.012 | 0.020 |
Feed conversion ratio | 1.56 a | 1.50 b | 1.51 b | 1.47 c | 0.008 | 0.017 | 0.020 | 0.015 |
Items | Conventional System | Digital Poultry System | SEM 2 | p-Value 3 | ||||
---|---|---|---|---|---|---|---|---|
CON | CON500 | DPCS | DPS500 | P | D | P × D | ||
Spleen | 0.10 c | 0.13 b | 0.13 b | 0.15 a | 0.002 | 0.011 | 0.020 | 0.026 |
Thymus | 0.11 c | 0.16 b | 0.16 b | 0.20 a | 0.002 | 0.015 | 0.007 | 0.020 |
Bursa of Fabricius | 0.08 c | 0.11 b | 0.12 b | 0.16 a | 0.001 | 0.027 | 0.017 | 0.031 |
Items | Conventional System | Digital Poultry System | SEM 2 | p-Value 3 | ||||
---|---|---|---|---|---|---|---|---|
CON | CON500 | DPCS | DPS500 | P | D | P × D | ||
Corticosterone, ng/mL | 2.17 a | 1.24 b | 1.03 b | 0.50 c | 0.017 | 0.031 | 0.020 | 0.011 |
IgG, μg/dL | 56.59 c | 67.72 b | 68.63 b | 88.06 a | 0.752 | 0.022 | 0.017 | 0.025 |
Heterophil (H), % | 19.28 a | 17.21 b | 16.88 b | 15.64 c | 0.231 | 0.027 | 0.012 | 0.018 |
Lymphocyte (L), % | 66.72 c | 70.66 b | 70.80 b | 75.17 a | 0.920 | 0.008 | 0.015 | 0.031 |
H/L ratios | 0.29 a | 0.24 b | 0.23 b | 0.21 c | 0.001 | 0.012 | 0.015 | 0.022 |
Items | Conventional System | Digital Poultry System | SEM 2 | p-Value 3 | ||||
---|---|---|---|---|---|---|---|---|
CON | CON500 | DPCS | DPS500 | P | D | P × D | ||
Lactobacillus | 6.47 c | 7.05 b | 7.33 b | 7.70 a | 0.066 | 0.009 | 0.010 | 0.008 |
E. coli | 6.75 a | 6.03 b | 5.83 b | 5.07 c | 0.074 | 0.011 | 0.005 | 0.010 |
Coliform bacteria | 7.60 a | 6.55 b | 6.42 b | 5.88 c | 0.060 | 0.025 | 0.010 | 0.005 |
Total aerobic bacteria | 7.85 a | 7.07 b | 6.89 b | 6.03 c | 0.090 | 0.001 | 0.005 | 0.001 |
Items | Conventional System | Digital Poultry System | SEM 2 | p-Value 3 | ||||
---|---|---|---|---|---|---|---|---|
CON | CON500 | DPCS | DPS500 | P | D | P × D | ||
Drinking | 18.85 a | 17.22 b | 17.38 b | 14.72 c | 0.0221 | 0.023 | 0.030 | 0.022 |
Eating | 33.86 c | 36.83 b | 37.01 b | 38.87 a | 0.364 | 0.015 | 0.025 | 0.015 |
Locomotion | 19.68 c | 22.05 b | 21.90 b | 23.16 a | 0.282 | 0.025 | 0.021 | 0.030 |
Grooming | 10.76 c | 11.57 b | 11.89 b | 13.22 a | 0.137 | 0.018 | 0.010 | 0.018 |
Resting | 16.85 a | 12.33 b | 12.82 b | 10.03 c | 0.169 | 0.015 | 0.023 | 0.023 |
Items | Conventional System | Digital Poultry System | SEM 2 | p-Value 3 | ||||
---|---|---|---|---|---|---|---|---|
CON | CON500 | DPCS | DPS500 | P | D | P × D | ||
Foot pads | 2.61 a | 2.02 b | 2.07 b | 1.68 c | 0.048 | 0.018 | 0.010 | 0.025 |
Knee burns | 2.57 a | 2.04 b | 1.83 b | 1.41 c | 0.055 | 0.017 | 0.022 | 0.019 |
Plumage | 2.84 a | 2.40 b | 2.38 b | 2.01 c | 0.032 | 0.020 | 0.020 | 0.025 |
Gait | 2.33 a | 1.82 b | 1.77 b | 1.39 c | 0.050 | 0.011 | 0.019 | 0.028 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zammit, V.A.; Park, S.-O. Impact of the Combination of Probiotics and Digital Poultry System on Behavior, Welfare Parameters, and Growth Performance in Broiler Chicken. Microorganisms 2023, 11, 2345. https://doi.org/10.3390/microorganisms11092345
Zammit VA, Park S-O. Impact of the Combination of Probiotics and Digital Poultry System on Behavior, Welfare Parameters, and Growth Performance in Broiler Chicken. Microorganisms. 2023; 11(9):2345. https://doi.org/10.3390/microorganisms11092345
Chicago/Turabian StyleZammit, Victor A, and Sang-O Park. 2023. "Impact of the Combination of Probiotics and Digital Poultry System on Behavior, Welfare Parameters, and Growth Performance in Broiler Chicken" Microorganisms 11, no. 9: 2345. https://doi.org/10.3390/microorganisms11092345
APA StyleZammit, V. A., & Park, S.-O. (2023). Impact of the Combination of Probiotics and Digital Poultry System on Behavior, Welfare Parameters, and Growth Performance in Broiler Chicken. Microorganisms, 11(9), 2345. https://doi.org/10.3390/microorganisms11092345