Plasma Bacterial DNA Load as a Potential Biomarker for the Early Detection of Colorectal Cancer: A Case–Control Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Blood Sample Collection
2.3. Determination of Clinical Biochemical and Laboratory Parameters
2.4. 16S rRNA Quantification via Real-Time qPCR
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions and Future Perspectives
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Li, N.; Lu, B.; Luo, C.; Cai, J.; Lu, M.; Zhang, Y.; Chen, H.; Dai, M. Incidence, mortality, survival, risk factor and screening of colorectal cancer: A comparison among China, Europe, and northern America. Cancer Lett. 2021, 522, 255–268. [Google Scholar] [CrossRef] [PubMed]
- Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2019. CA Cancer J. Clin. 2019, 69, 7–34. [Google Scholar] [CrossRef] [PubMed]
- Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2018, 68, 394–424. [Google Scholar] [CrossRef] [PubMed]
- Gately, S. Human Microbiota and Personalized Cancer Treatments: Role of Commensal Microbes in Treatment Outcomes for Cancer Patients. Cancer Treat. Res. 2019, 178, 253–264. [Google Scholar] [PubMed]
- Xing, C.; Du, Y.; Duan, T.; Nim, K.; Chu, J.; Wang, H.Y.; Wang, R.F. Interaction between microbiota and immunity and its implication in colorectal cancer. Front. Immunol. 2022, 13, 963819. [Google Scholar]
- Golder, A.M.; McMillan, D.C.; Park, J.H.; Mansouri, D.; Horgan, P.G.; Roxburgh, C.S. The prognostic value of combined measures of the systemic inflammatory response in patients with colon cancer: An analysis of 1700 patients. Br. J. Cancer 2021, 124, 1828–1835. [Google Scholar] [CrossRef]
- Niekamp, P.; Kim, C.H. Microbial Metabolite Dysbiosis and Colorectal Cancer. Gut Liver. 2023, 17, 190–203. [Google Scholar] [CrossRef]
- Caponio, G.R.; Celano, G.; Calabrese, F.M.; Riezzo, G.; Orlando, A.; D’Attoma, B.; Ignazzi, A.; Vacca, M.; Porrelli, A.; Tutino, V.; et al. Evaluation of the Effects of the Tritordeum-Based Diet Compared to the Low-FODMAPs Diet on the Fecal Metabolome of IBS-D Patients: A Preliminary Investigation. Nutrients 2022, 14, 4628. [Google Scholar] [CrossRef]
- Giacconi, R.; D’Aquila, P.; Malavolta, M.; Piacenza, F.; Bürkle, A.; Villanueva, M.N.; Dollé, M.E.T.; Jansen, E.; Grune, T.; Gonos, E.S.; et al. Bacterial DNAemia in Older Participants and Nonagenarian Offspring and Association with Redox Biomarkers: Results From MARK-AGE Study. J. Gerontol. A Biol. Sci. Med. Sci. 2023, 78, 42–50. [Google Scholar] [CrossRef]
- Potgieter, M.; Bester, J.; Kell, D.B.; Pretorius, E. The dormant blood microbiome in chronic, inflammatory diseases. FEMS Microbiol. Rev. 2015, 39, 567–591. [Google Scholar] [CrossRef]
- Traykova, D.; Schneider, B.; Chojkier, M.; Buck, M. Blood Microbiome Quantity and the Hyperdynamic Circulation in Decompensated Cirrhotic Patients. PLoS ONE 2017, 12, e0169310. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Wang, C.; Tang, C.; Zhao, X.; He, Q.; Li, J. Identification and Characterization of Blood and Neutrophil-Associated Microbiomes in Patients with Severe Acute Pancreatitis Using Next-Generation Sequencing. Front. Cell Infect. Microbiol. 2018, 8, 5. [Google Scholar] [CrossRef] [PubMed]
- Amar, J.; Lelouvier, B.; Servant, F.; Lluch, J.; Burcelin, R.; Bongard, V.; Elbaz, M. Blood Microbiota Modification After Myocardial Infarction Depends Upon Low-Density Lipoprotein Cholesterol Levels. J. Am. Heart Assoc. 2019, 8, e011797. [Google Scholar] [CrossRef] [PubMed]
- Mutignani, M.; Penagini, R.; Gargari, G.; Guglielmetti, S.; Cintolo, M.; Airoldi, A.; Leone, P.; Carnevali, P.; Ciafardini, C.; Petrocelli, G.; et al. Blood Bacterial DNA Load and Profiling Differ in Colorectal Cancer Patients Compared to Tumor-Free Controls. Cancers 2021, 13, 6363. [Google Scholar] [CrossRef]
- Zhou, H.; Liao, J.; Leng, Q.; Chinthalapally, M.; Dhilipkannah, P.; Jiang, F. Circulating Bacterial DNA as Plasma Biomarkers for Lung Cancer Early Detection. Microorganisms 2023, 11, 582. [Google Scholar] [CrossRef]
- Yang, Y.; Weng, W.; Peng, J.; Hong, L.; Yang, L.; Toiyama, Y.; Gao, R.; Liu, M.; Yin, M.; Pan, C.; et al. Fusobacterium nucleatum Increases Proliferation of Colorectal Cancer Cells and Tumor Development in Mice by Activating Toll-Like Receptor 4 Signaling to Nuclear Factor-κB, and Up-regulating Expression of MicroRNA-21. Gastroenterology 2017, 152, 851–866.e24. [Google Scholar] [CrossRef]
- Wang, S.; Liu, Y.; Li, J.; Zhao, L.; Yan, W.; Lin, B.; Guo, X.; Wei, Y. Fusobacterium nucleatum Acts as a Pro-carcinogenic Bacterium in Colorectal Cancer: From Association to Causality. Front. Cell Dev. Biol. 2021, 9, 710165. [Google Scholar] [CrossRef]
- Lee, J.B.; Kim, K.; Cho, H.Y.; Kim, D.; Kim, W.K.; Yong, D.; Lee, H.; Yoon, S.S.; Han, D.H.; Paik, S.; et al. Association between Fusobacterium nucleatum and patient prognosis in metastatic colon cancer. Sci. Rep. 2021, 11, 20263. [Google Scholar] [CrossRef]
- Kim, H.S.; Kim, C.G.; Kim, W.K.; Kim, K.; Yoo, J.; Min, B.S.; Paik, S.; Shin, S.J.; Lee, H.; Lee, K.; et al. Fusobacterium nucleatum induces a tumor microenvironment with diminished adaptive immunity against colorectal cancers. Front. Cell Infect. Microbiol. 2023, 13, 1101291. [Google Scholar] [CrossRef]
- Ahn, J.; Sinha, R.; Pei, Z.; Dominianni, C.; Wu, J.; Shi, J.; Goedert, J.J.; Hayes, R.B.; Yang, L. Human gut microbiome and risk for colorectal cancer. J. Natl. Cancer Inst. 2013, 105, 1907–1911. [Google Scholar] [CrossRef]
- Cao, Y.; Zheng, X.; Hu, Y.; Li, J.; Huang, B.; Zhao, N.; Liu, T.; Cai, K.; Tian, S. Levels of systemic inflammation response index are correlated with tumor-associated bacteria in colorectal cancer. Cell Death Dis. 2023, 14, 69. [Google Scholar] [CrossRef] [PubMed]
- D’Aquila, P.; Giacconi, R.; Malavolta, M.; Piacenza, F.; Bürkle, A.; Villanueva, M.M.; Dollé, M.E.T.; Jansen, E.; Grune, T.; Gonos, E.S.; et al. Microbiome in Blood Samples From the General Population Recruited in the MARK-AGE Project: A Pilot Study. Front. Microbiol. 2021, 12, 707515. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; He, W.; Jiang, C.; Guo, G.; Ke, B.; Dai, Q.; Long, J.; Xia, L. Prognostic value of inflammation-based scores in patients receiving radical resection for colorectal cancer. BMC Cancer 2018, 18, 1102. [Google Scholar] [CrossRef] [PubMed]
- Galizia, G.; Lieto, E.; Zamboli, A.; De Vita, F.; Castellano, P.; Romano, C.; Auricchio, A.; Cardella, F.; De Stefano, L.; Orditura, M. Neutrophil to lymphocyte ratio is a strong predictor of tumor recurrence in early colon cancers: A propensity score-matched analysis. Surgery 2015, 158, 112–120. [Google Scholar] [CrossRef] [PubMed]
- Zhu, B.; Zhang, J.; Zheng, Q.; Dong, B.; Wang, M.; Liu, J.; Cao, Y. Free Fatty Acid is a Promising Biomarker in Triage Screening for Patients with Colorectal Cancer: A Case-Control Study. Cancer Manag. Res. 2021, 13, 3749–3759. [Google Scholar] [CrossRef]
- Giacconi, R.; D’Aquila, P.; Balietti, M.; Giuli, C.; Malavolta, M.; Piacenza, F.; Costarelli, L.; Postacchini, D.; Passarino, G.; Bellizzi, D.; et al. Bacterial DNAemia in Alzheimer’s Disease and Mild Cognitive Impairment: Association with Cognitive Decline, Plasma BDNF Levels, and Inflammatory Response. Int. J. Mol. Sci. 2022, 24, 78. [Google Scholar] [CrossRef]
- Messaritakis, I.; Koulouridi, A.; Boukla, E.; Sfakianaki, M.; Vogiatzoglou, K.; Karagianni, M.; Gouvas, N.; Tsiaoussis, J.; Xynos, E.; Athanasakis, E.; et al. Investigation of Microbial Translocation, TLR and VDR Gene Polymorphisms, and Recurrence Risk in Stage III Colorectal Cancer Patients. Cancers 2022, 14, 4407. [Google Scholar] [CrossRef]
- Romanov, V.A.; Karasev, I.A.; Klimenko, N.S.; Koshechkin, S.I.; Tyakht, A.V.; Malikhova, O.A. Luminal and Tumor-Associated Gut Microbiome Features Linked to Precancerous Lesions Malignancy Risk: A Compositional Approach. Cancers 2022, 14, 5207. [Google Scholar] [CrossRef]
- Tan, C.C.S.; Ko, K.K.K.; Chen, H.; Liu, J.; Loh, M.; Chia, M.; Nagarajan, N.; Consortium SG10K_Health. No evidence for a common blood microbiome based on a population study of 9770 healthy humans. Nat. Microbiol. 2023, 8, 973–985. [Google Scholar] [CrossRef]
- Luchetti, M.M.; Ciccia, F.; Avellini, C.; Benfaremo, D.; Rizzo, A.; Spadoni, T.; Svegliati, S.; Marzioni, D.; Santinelli, A.; Costantini, A.; et al. Gut epithelial impairment, microbial translocation and immune system activation in inflammatory bowel disease-associated spondyloarthritis. Rheumatology 2021, 60, 92–102. [Google Scholar] [CrossRef]
- Kouzu, K.; Tsujimoto, H.; Kishi, Y.; Ueno, H.; Shinomiya, N. Bacterial Translocation in Gastrointestinal Cancers and Cancer Treatment. Biomedicines 2022, 10, 380. [Google Scholar] [CrossRef] [PubMed]
- Gao, Z.; Guo, B.; Gao, R.; Zhu, Q.; Qin, H. Microbiota disbiosis is associated with colorectal cancer. Front. Microbiol. 2015, 6, 20. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Q.; Lu, W.; Kong, X.; Shao, Y.W.; Hu, Y.; Wang, A.; Bao, H.; Cao, R.; Liu, K.; Wang, X.; et al. Alterations of circulating bacterial DNA in colorectal cancer and adenoma: A proof-of-concept study. Cancer Lett. 2021, 499, 201–208. [Google Scholar] [CrossRef]
- Carelli, L.L.; D’Aquila, P.; De Rango, F.; Incorvaia, A.; Sena, G.; Passarino, G.; Bellizzi, D. Modulation of Gut Microbiota through Low-Calorie and Two-Phase Diets in Obese Individuals. Nutrients 2023, 15, 1841. [Google Scholar] [CrossRef] [PubMed]
- Wilkins, L.J.; Monga, M.; Miller, A.W. Defining Dysbiosis for a Cluster of Chronic Diseases. Sci. Res. 2019, 9, 12918. [Google Scholar] [CrossRef]
- Noce, A.; Tranchita, E.; Marrone, G.; Grazioli, E.; Di Lauro, M.; Murri, A.; Vanni, G.; Della Morte Canosci, D.; Di Daniele, N.; Parisi, A.; et al. The possible role of physical activity in the modulation of gut microbiota in chronic kidney disease and its impact on cardiovascular risk: A narrative review. Eur. Rev. Pharmacol. Sci. 2023, 27, 3733–3746. [Google Scholar]
- Liu, N.; Ma, Q.; Ge, Y.; Yi, C.; Wei, L.; Tan, J.; Chu, Q.; Li, J.; Zhang, P.; Wang, H. Microbiome dysbiosis in lung cancer: From composition to therapy. NPJ Precis. Oncol. 2020, 4, 33. [Google Scholar] [CrossRef]
- Peterson, C.; Round, J.L. Defining dysbiosis and its influence on host immunity and disease. Cell Microbiol. 2014, 16, 1024–1033. [Google Scholar] [CrossRef]
- Campbell, C.; Kandalgaonkar, M.R.; Golonka, R.M.; Yeoh, B.S.; Vijay-Kumar, M.; Saha, P. Crosstalk between Gut Microbiota and Host Immunity: Impact on Inflammation and Immunotherapy. Biomedicines 2023, 11, 294. [Google Scholar]
- Medina-Larqué, A.; Rodríguez-Daza, M.; Roquim, M.; Dudonné, S.; Pilon, G.; Levy, É.; Marette, A.; Roy, D.; Jacques, H.; Desjardins, Y. Cranberry polyphenols and agave agavins impact gut immune response and microbiota composition while improving gut barrier function, inflammation, and glucose metabolism in mice fed an obesogenic diet. Front. Immunol. 2022, 13, 871080. [Google Scholar] [CrossRef]
- Speciani, M.C.; Cintolo, M.; Marino, M.; Oren, M.; Fiori, F.; Gargari, G.; Riso, P.; Ciafardini, C.; Mascaretti, F.; Parpinel, M.; et al. Flavonoid Intake in Relation to Colorectal Cancer Risk and Blood Bacterial DNA. Nutrients 2022, 14, 4516. [Google Scholar] [CrossRef]
- Messerer, D.A.C.; Schmidt, H.; Frick, M.; Huber-Lang, N. Ion and Water Transport in Neutrophil Granulocytes and Its Impairment during Sepsis. Int. J. Mol. Sci. 2021, 22, 1699. [Google Scholar] [CrossRef] [PubMed]
- Gálvez, N.M.; Bohmwald, K.; Pacheco, G.A.; Andrade, C.A.; Carreño, L.J.; Kalergis, A.M. Type I Natural Killer T Cells as Key Regulators of the Immune Response to Infectious Diseases. Clin. Microbiol. Rev. 2020, 34, e00232-20. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Chen, X.; Yang, Y.; Luo, N.; Yang, J.; Zhong, L.; Guo, T.; Yaun, Z.; Wei, Q.; Wang, C. Protective role of the novel cytokine Metrnl/ interleukin-41 in host immunity defense during sepsis by promoting macrophage recruitment and modulating Treg/Th17 immune cell balance. Clin. Immunol. 2023, 254, 109690. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Fan, M.; Zhang, S.; Qu, Y.; Zheng, S.; Song, J.; Miao, C. Intestinal Metrnl released into the gut lumen acts as a local regulator for gut antimicrobial peptides. Acta Pharmacol. Sin. 2016, 37, 1458–1466. [Google Scholar] [CrossRef]
- Ushach, I.; Burkhardt, A.M.; Martinez, C.; Hevezi, P.A.; Gerber, P.A.; Buhren, B.A.; Schrumpf, H.; Valle-Rios, R.; Vazquez, M.I.; Homey, B.; et al. METEORIN-LIKE is a cytokine associated with barrier tissues and alternatively activated macrophages. Clin. Immunol. 2015, 156, 119–127. [Google Scholar] [CrossRef]
- Jung, T.W.; Pyun, D.H.; Kim, T.J.; Lee, H.J.; Parl, E.S.; El-Aty, A.M.A.; Hwang, E.J.; Shin, Y.K.; Jeong, J.H. Meteorin-like protein (METRNL)/IL-41 improves LPS-induced inflammatory responses via AMPK or PPARδ-mediated signaling pathways. Adv. Med. Sci. 2021, 66, 155–161. [Google Scholar] [CrossRef]
- Chen, Z.; Song, W.; Shu, X.; Wen, W.; Devall, M.; Dampier, C.; Moratalla-Navarro, F.; Cai, Q.; Long, J.; Kaer, L.V.; et al. Novel insights into genetic susceptibility for colorectal cancer from transcriptome-wide association and functional investigation. J. Natl. Cancer Inst. 2023, djad178. [Google Scholar] [CrossRef]
- Uzun, M.; Ilhan, Y.S.; Bozdag, A.; Yilmaz, M.; Artas, G.; Kuloglu, T. Asprosin, irisin, and meteorin-like protein immunoreactivity in different stages of colorectal adenocarcinoma. Pathol. Res. Pract. 2023, 245, 154432. [Google Scholar] [CrossRef]
Parameters * | Total Cohort (n = 90) | Control (n = 40) | CRC (n = 50) | p ^ |
---|---|---|---|---|
Gender (M) (%) | 48 (53.33) | 12 (30.00) | 36 (72.00) | <0.001 Ψ |
Age (yrs) | 61.95 ± 13.39 | 54.12 ± 13.15 | 68.22 ± 9.90 | <0.0001 |
BMI (Kg/m2) | 26.08 ± 4.00 | 24.89 ± 3.76 | 27.03 ± 3.97 | 0.007 |
Smoking (%) | 0.01 Ψ | |||
No | 66 (73.33) | 33 (82.50) | 33 (66.00) | |
Ex | 13 (14.44) | 1 (2.50) | 12 (24.00) | |
Yes | 11 (12.22) | 6 (15.00) | 5 (10.00) | |
Hypertension (Yes) (%) | 41 (45.56) | 8 (20.00) | 33 (66.00) | <0.001 Ψ |
Diabetes (Yes) (%) | 13 (14.44) | 2 (5.00) | 11 (22.00) | 0.03 Ψ |
Comorbidities (Yes) (%) | 43 (47.78) | 10 (25.00) | 33 (66.00) | <0.001 Ψ |
Tumor Site (%) | -- | |||
Ascending-Cecum | 10 (20.00) | -- | 10 (20.00) | |
Transverse | 5 (10.00) | -- | 5 (10.00) | |
Descending | 2 (4.00) | -- | 2 (4.00) | |
Sigmoid-Rectum | 33 (66.00) | -- | 33 (66.00) | |
Grade (%) | -- | |||
G1 | 2 (4.26) | -- | 2 (4.26) | |
G2 | 24 (51.06) | -- | 24 (51.06) | |
G3 | 21 (44.68) | -- | 21 (44.68) | |
Tumor Staging (%) | -- | |||
T1 | 1 (2.13) | -- | 1 (2.13) | |
T2 | 10 (21.28) | -- | 10 (21.28) | |
T3 | 17 (36.17) | -- | 17 (36.17) | |
T4 | 19 (40.13) | -- | 19 (40.13) | |
MTD (cm) | 4.02 ± 1.51 | -- | 4.02 ± 1.51 | -- |
Endolymphatic Invasion (Yes) (%) | 35 (74.47) | -- | 35 (74.47) | -- |
Ulceration (Yes) (%) | 43 (91.49) | -- | 43 (91.49) | -- |
Leukocytes (103/µL) | 6.28 ± 2.16 | 5.62 ± 2.14 | 6.81 ± 2.04 | 0.001 |
Neutrophils (%) | 62.50 ± 9.52 | 57.61 ± 9.01 | 66.41 ± 8.06 | <0.0001 |
Lymphocytes (%) | 26.94 ± 8.37 | 31.76 ± 7.76 | 23.08 ± 6.71 | <0.0001 |
Neutrophils (103/µL) | 4.25 ± 2.55 | 3.34 ± 1.71 | 4.97 ± 2.87 | <0.0001 |
Lymphocytes (103/µL) | 1.59 ± 0.51 | 1.69 ± 0.42 | 1.51 ± 0.56 | 0.01 |
SIRI Index | 17.86 ± 36.82 | 0.81 ± 0.66 | 31.49 ± 45.11 | <0.0001 |
Glycemia (mg/dL) | 103.09 ± 23.20 | 95.92 ± 21.91 | 108.82 ± 22.80 | <0.0001 |
CEA (ng/mL) | 26.08 ± 103.45 | -- | 26.08 ± 103.45 | -- |
CA 19-9 (U/mL) | 270.79 ± 820.96 | -- | 270.79 ± 820.96 | -- |
Bacterial DNA (pg/mL) | 314.25 ± 103.11 | 238.24 ± 54.46 | 375.06 ± 91.98 | <0.0001 |
Parameters | Univariate Model | Adjusted Model 1 ^ | ||||||
---|---|---|---|---|---|---|---|---|
OR | se (OR) | p | 95% C.I. | OR | se (OR) | p | 95% C.I. | |
BMI | 1.17 | 0.07 | 0.02 | 1.03 to 1.32 | 1.10 | 0.08 | 0.20 | 0.95 to 1.28 |
Hypertension (Yes) | 7.76 | 3.85 | <0.001 | 2.94 to 20.50 | 3.39 | 1.97 | 0.03 | 1.09 to 10.58 |
Diabetes (Yes) | 5.36 | 4.30 | 0.04 | 1.11 to 25.80 | 3.71 | 3.39 | 0.15 | 0.62 to 22.20 |
Comorbidities (Yes) | 5.82 | 2.75 | <0.001 | 2.31 to 14.68 | 4.21 | 2.35 | 0.01 | 1.41 to 12.60 |
Leukocytes | 1.35 | 0.16 | 0.01 | 1.06 to 1.71 | 1.30 | 0.17 | 0.04 | 1.01 to 1.68 |
Lymphocytes | 0.47 | 0.21 | 0.09 | 0.20 to 1.11 | 0.50 | 0.26 | 0.18 | 0.18 to 1.38 |
Lymphocytes (%) | 0.84 | 0.03 | <0.001 | 0.78 to 0.91 | 0.84 | 0.04 | <0.001 | 0.76 to 0.92 |
Neutrophils | 1.66 | 0.26 | 0.001 | 1.22 to 2.26 | 1.58 | 0.27 | 0.008 | 1.13 to 2.21 |
Neutrophils (%) | 1.13 | 0.04 | <0.001 | 1.06 to 1.21 | 1.17 | 0.05 | <0.001 | 1.07 to 1.29 |
Bacterial DNA | 1.02 | 0.005 | <0.001 | 1.01 to 1.03 | 1.02 | 0.005 | <0.001 | 1.01 to 1.03 |
Laboratory Parameters | Control (n = 40) | CRC (n = 50) |
---|---|---|
Leukocytes (103/µL) | −0.29 (0.07) | 0.10 (0.50) |
Neutrophils (103/µL) | −0.39 (0.01) | 0.10 (0.49) |
Lymphocytes (103/µL) | 0.08 (0.63) | 0.07 (0.62) |
SIRI index | −0.60 (0.0001) | 0.04 (0.77) |
CEA (ng/mL) | -- | 0.15 (0.29) |
CA 19-9 (U/mL) | -- | −0.07 (0.63) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Giacconi, R.; Donghia, R.; Arborea, G.; Savino, M.T.; Provinciali, M.; Lattanzio, F.; Caponio, G.R.; Coletta, S.; Bianco, A.; Notarnicola, M.; et al. Plasma Bacterial DNA Load as a Potential Biomarker for the Early Detection of Colorectal Cancer: A Case–Control Study. Microorganisms 2023, 11, 2360. https://doi.org/10.3390/microorganisms11092360
Giacconi R, Donghia R, Arborea G, Savino MT, Provinciali M, Lattanzio F, Caponio GR, Coletta S, Bianco A, Notarnicola M, et al. Plasma Bacterial DNA Load as a Potential Biomarker for the Early Detection of Colorectal Cancer: A Case–Control Study. Microorganisms. 2023; 11(9):2360. https://doi.org/10.3390/microorganisms11092360
Chicago/Turabian StyleGiacconi, Robertina, Rossella Donghia, Graziana Arborea, Maria Teresa Savino, Mauro Provinciali, Fabrizia Lattanzio, Giusy Rita Caponio, Sergio Coletta, Antonia Bianco, Maria Notarnicola, and et al. 2023. "Plasma Bacterial DNA Load as a Potential Biomarker for the Early Detection of Colorectal Cancer: A Case–Control Study" Microorganisms 11, no. 9: 2360. https://doi.org/10.3390/microorganisms11092360
APA StyleGiacconi, R., Donghia, R., Arborea, G., Savino, M. T., Provinciali, M., Lattanzio, F., Caponio, G. R., Coletta, S., Bianco, A., Notarnicola, M., Bonfiglio, C., Passarino, G., D’Aquila, P., Bellizzi, D., & Pesole, P. L. (2023). Plasma Bacterial DNA Load as a Potential Biomarker for the Early Detection of Colorectal Cancer: A Case–Control Study. Microorganisms, 11(9), 2360. https://doi.org/10.3390/microorganisms11092360