Bacterial N-Acyl Homoserine Lactone Priming Enhances Leaf-Rust Resistance in Winter Wheat and Some Genomic Regions Are Associated with Priming Efficiency
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Priming and Phenotyping
2.3. Statistical Analysis
2.4. Genotypic Data and Genome-Wide Association Study (GWAS)
3. Results
3.1. Phenotypic Data
3.2. Genotypic Data
Population Structure
3.3. GWASs
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- IDRC. Facts and Figures on Food and Biodiversity. Canada: IDRC Communications, International Development Research Centre. 2020. Available online: https://idrc-crdi.ca/en/research-in-action/facts-figures-food-and-biodiversity (accessed on 22 September 2024).
- Bolton, M.D.; Kolmer, J.A.; Garvin, D.F. Wheat leaf rust caused by Puccinia triticina. Mol. Plant Pathol. 2008, 9, 563–575. [Google Scholar] [CrossRef] [PubMed]
- Kumar, D.; Kumar, A.; Chhokar, V.; Gangwar, O.P.; Bhardwaj, S.C.; Sivasamy, M.; Prasad, S.S.; Prakasha, T.L.; Khan, H.; Singh, R.; et al. Genome-Wide Association Studies in Diverse Spring Wheat Panel for Stripe, Stem, and Leaf Rust Resistance. Front. Plant Sci. 2020, 11, 748. [Google Scholar] [CrossRef] [PubMed]
- Huerta-Espino, J.; Singh, R.P.; German, S.; McCallum, B.D.; Park, R.F.; Chen, W.Q.; Bhardwaj, S.C.; Goyeau, H. Global status of wheat leaf rust caused by Puccinia triticina. Euphytica 2011, 179, 143–160. [Google Scholar] [CrossRef]
- Dyck, P.L.; Kerber, E.R. Resistance of the Race-Specific Type. In Diseases, Distribution, Epidemiology, and Control; Academic Press: New York, NY, USA, 1985; pp. 469–500. [Google Scholar]
- Zhang, P.; Yan, X.; Gebrewahid, T.W.; Zhou, Y.; Yang, E.; Xia, X.; He, Z.; Li, Z.; Liu, D. Genome-wide association mapping of leaf rust and stripe rust resistance in wheat accessions using the 90K SNP array. Theor. Appl. Genet. 2021, 134, 1233–1251. [Google Scholar] [CrossRef]
- Hernández-Reyes, C.; Schenk, S.T.; Neumann, C.; Kogel, K.H.; Schikora, A. N-acyl-homoserine lactones-producing bacteria protect plants against plant and human pathogens. Microb. Biotechnol. 2014, 7, 580–588. [Google Scholar] [CrossRef]
- Pang, Y.; Liu, X.; Ma, Y.; Chernin, L.; Berg, G.; Gao, K. Induction of systemic resistance, root colonisation and biocontrol activities of the rhizospheric strain of Serratia plymuthica are dependent on N-acyl homoserine lactones. Eur. J. Plant Pathol. 2009, 124, 261–268. [Google Scholar] [CrossRef]
- Schuhegger, R.; Ihring, A.; Gantner, S.; Bahnweg, G.; Knappe, C.; Vogg, G.; Hutzler, P.; Schmid, M.; Van Breusegem, F.; Eberl, L.E.O.; et al. Induction of systemic resistance in tomato by N-acyl-L-homoserine lactone-producing rhizosphere bacteria. Plant Cell Environ. 2006, 29, 909–918. [Google Scholar] [CrossRef]
- Wehner, G.; Kopahnke, D.; Richter, K.; Kecke, S.; Schikora, A.; Ordon, F. Priming is a suitable strategy to enhance resistance towards leaf rust in barley. Phytobiomes J. 2019, 3, 46–51. [Google Scholar] [CrossRef]
- Waters, C.M.; Bassler, B.L. Quorum sensing: Cell-to-cell communication in bacteria. Annu. Rev. Cell Dev. Biol. 2005, 21, 319–346. [Google Scholar] [CrossRef]
- Fuqua, W.C.; Winans, S.C.; Greenberg, E.P. Quorum sensing in bacteria: The LuxR-LuxI family of cell density-responsive transcriptional regulators. J. Bacteriol. 1994, 176, 269–275. [Google Scholar] [CrossRef]
- Fuqua, C.; Greenberg, E.P. Self perception in bacteria: Quorum sensing with acylated homoserine lactones. Curr. Opin. Microbiol. 1998, 1, 183–189. [Google Scholar] [CrossRef] [PubMed]
- Mathesius, U.; Mulders, S.; Gao, M.; Teplitski, M.; Caetano-Anollés, G.; Rolfe, B.G.; Bauer, W.D. Extensive and specific responses of a eukaryote to bacterial quorum-sensing signals. Proc. Natl. Acad. Sci. USA 2003, 100, 1444–1449. [Google Scholar] [CrossRef] [PubMed]
- Parsek, M.R.; Greenberg, E.P. Acyl-homoserine lactone quorum sensing in gram-negative bacteria: A signaling mechanism involved in associations with higher organisms. Proc. Natl. Acad. Sci. USA 2000, 97, 8789–8793. [Google Scholar] [CrossRef] [PubMed]
- Viswanath, G.; Sekar, J.; Prabavathy, V.R. Acyl homoserine lactone-producing rhizobacteria elicit systemic resistance in plants. In Microbial-Mediated Induced Systemic Resistance in Plants; Springer: Singapore, 2016; pp. 135–146. [Google Scholar]
- Schenk, S.T.; Stein, E.; Kogel, K.H.; Schikora, A. Arabidopsis growth and defense are modulated by bacterial quorum sensing molecules. Plant Signal. Behav. 2012, 7, 178–181. [Google Scholar] [CrossRef]
- Shrestha, A.; Elhady, A.; Adss, S.; Wehner, G.; Böttcher, C.; Heuer, H.; Ordon, F.; Schikora, A. Genetic Differences in Barley Govern the Responsiveness to N-Acyl Homoserine Lactone. Phytobiomes J. 2019, 3, 191–202. [Google Scholar] [CrossRef]
- Matros, A.; Schikora, A.; Ordon, F.; Wehner, G. QTL for induced resistance against leaf rust in barley. Front Plant Sci. 2023, 13, 1069087. [Google Scholar] [CrossRef]
- Moshynets, O.V.; Babenko, L.M.; Rogalsky, S.P.; Iungin, O.S.; Foster, J.; Kosakivska, I.V.; Potters, G.; Spiers, A.J. Priming winter wheat seeds with the bacterial quorum sensing signal N-hexanoyl-L-homoserine lactone (C6-HSL) shows potential to improve plant growth and seed yield. PLoS ONE 2019, 14, e0209460. [Google Scholar] [CrossRef]
- Camaille, M.; Fabre, N.; Clément, C.; Ait Barka, E. Advances in wheat physiology in response to drought and the role of plant growth promoting rhizobacteria to trigger drought tolerance. Microorganisms 2021, 9, 687. [Google Scholar] [CrossRef]
- Hadj Brahim, A.; Ben Ali, M.; Daoud, L.; Jlidi, M.; Akremi, I.; Hmani, H.; Feto, N.A.; Ben Ali, M. Biopriming of Durum Wheat Seeds with Endophytic Diazotrophic Bacteria Enhances Tolerance to Fusarium Head Blight and Salinity. Microorganisms 2022, 10, 970. [Google Scholar] [CrossRef]
- Varshney, R.K.; Nayak, S.N.; May, G.D.; Jackson, S.A. Next-generation sequencing technologies and their implications for crop genetics and breeding. Trends Biotechnol. 2009, 37, 522–530. [Google Scholar] [CrossRef]
- Vikas, V.K.; Pradhan, A.K.; Budhlakoti, N.; Mishra, D.C.; Chandra, T.; Bhardwaj, S.C.; Kumar, S.; Sivasamy, M.; Jayaprakash, P.; Nisha, R.; et al. Multi-locus genome-wide association studies (ML-GWAS) reveal novel genomic regions associated with seedling and adult plant stage leaf rust resistance in bread wheat (Triticum aestivum L.). Heredity 2022, 128, 434–449. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, H.G.M.D.; Iqbal, M.N.; Iqbal, M.A.; Zeng, Y.; Ullah, A.; Iqbal, M.; Raza, H.; Yar, M.M.; Anwaar, H.A.; Zahid, N.; et al. Genome wide association mapping through 90K SNP array against Leaf rust pathogen in bread wheat genotypes under field conditions. J. King Saud Univ. Sci. 2021, 33, 101628. [Google Scholar] [CrossRef]
- Soleimani, B.; Lehnert, H.; Keilwagen, J.; Plieske, J.; Ordon, F.; Naseri Rad, S.; Ganal, M.; Beier, S.; Perovic, D. Comparison between core set selection methods using different Illumina marker platforms: A case study of assessment of diversity in wheat. Front. Plant Sci. 2020, 11, 1040. [Google Scholar] [CrossRef] [PubMed]
- Kaufman, L.; Rousseeuw, P. Clustering by Means of Medoids in Statistical Data Analysis Based on the L1–Norm and Related Methods.(Y. Dodge, Dü.) Reports of the Faculty of Mathematics and Informatics; Delft University of Technology: Delft, The Netherlands, 1987. [Google Scholar]
- Wright, S. Evolution and the Genetics of Populations; University of Chicago Press: Chicago, IL, USA, 1978; Volume IV, p. 91. [Google Scholar]
- Wang, S.; Wong, D.; Forrest, K.; Allen, A.; Chao, S.; Huang, B.E.; Maccaferri, M.; Salvi, S.; Milner, S.G.; Cattivelli, L.; et al. Characterization of polyploid wheat genomic diversity using a high-density 90,000 single nucleotide polymorphism array. Plant Biotechnol. J. 2014, 12, 787–796. [Google Scholar] [CrossRef]
- Meier, U. Growth Stages of Mono- and Dicotyledonous Plants: BBCH Monograph; Open Agrar Repositorium: Quedlinburg, Germany, 2018. [Google Scholar]
- Zhu, T.; Wang, L.; Rimbert, H.; Rodriguez, J.C.; Deal, K.R.; De Oliveira, R.; Choulet, F.; Keeble-Gagnère, G.; Tibbits, J.; Rogers, J.; et al. Optical maps refine the bread wheat Triticum aestivum cv. Chinese Spring genome assembly. Plant J. 2021, 107, 303–314. [Google Scholar] [CrossRef]
- Browning, B.L.; Browning, S.R. A Unified Approach to Genotype Imputation and Haplotype-Phase Inference for Large Data Sets of Trios and Unrelated Individuals. Am. J. Hum. Genet. 2009, 84, 210–223. [Google Scholar] [CrossRef] [PubMed]
- Purcell, S.; Neale, B.; Todd-Brown, K.; Thomas, L.; Ferreira, M.A.; Bender, D.; Maller, J.; Sklar, P.; De Bakker, P.I.; Daly, M.J.; et al. A tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 2007, 81, 559–575. [Google Scholar] [CrossRef]
- Pritchard, J.K.; Stephens, M.; Donnelly, P. Inference of population structure using multilocus genotype data. Genetics 2000, 155, 945–959. [Google Scholar] [CrossRef]
- Perrier, X.; Jacquemoud-Collet, J.P. DARwin Software: Dissimilarity Analysis and Representation for Windows. 2006. Available online: http://darwin.cirad.fr (accessed on 26 April 2019).
- Bradbury, P.J.; Zhang, Z.; Kroon, D.E.; Casstevens, T.M.; Ramdoss, Y.; Buckler, E.S. TASSEL software for association mapping of complex traits in diverse samples. Bioinformatics 2007, 23, 2633–2635. [Google Scholar] [CrossRef]
- Lipka, A.E.; Tian, F.; Wang, Q.; Peiffer, J.; Li, M.; Bradbury, P.J.; Gore, M.A.; Buckler, E.S.; Zhang, Z. Genome association and prediction integrated tool. Bioinformatics 2012, 28, 2397–2399. [Google Scholar] [CrossRef]
- Liu, X.; Huang, M.; Fan, B.; Buckler, E.S.; Zhang, Z. Iterative Usage of Fixed and Random Effect Models for Powerful and Efficient Genome-Wide Association Studies. PLoS Genet. 2016, 12, e1005767. [Google Scholar] [CrossRef] [PubMed]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2021. [Google Scholar]
- Shin, J.H.; Blay, S.; McNeney, B.; Graham, J. LDheatmap: An R function for graphical display of pairwise linkage disequilibria between single nucleotide polymorphisms. J. Stat. Softw. 2006, 16, 1–9. [Google Scholar] [CrossRef]
- Warnes, G.; Gorjanc, G.; Leischand, F.; Man, M. Genetics: Population Genetics. R Package Version 1.3.8.1. 2013. Available online: http://CRAN.R-project.org/package=genetics (accessed on 22 September 2024).
- Sannemann, W.; Huang, B.E.; Mathew, B.; Leon, J. Multi-parent advanced generation inter-cross in barley: High-resolution quantitative trait locus mapping for flowering time as a proof of concept. Mol. Breed. 2015, 35, 86. [Google Scholar] [CrossRef]
- Lehnert, H.; Serfling, A.; Friedt, W.; Ordon, F. Genome-Wide Association Studies Reveal Genomic Regions Associated with the Response of Wheat (Triticum aestivum L.) to Mycorrhizae under Drought Stress Conditions. Front. Plant Sci. 2018, 9, 1728. [Google Scholar] [CrossRef]
- Desmedt, W.; Vanholme, B.; Kyndt, T. Plant defense priming in the field: A review. Recent Highlights Discov. Optim. Crop Prot. Prod. 2021, 87–124. [Google Scholar]
- Schenk, S.T.; Hernández-Reyes, C.; Samans, B.; Stein, E.; Neumann, C.; Schikora, M.; Reichelt, M.; Mithöfer, A.; Becker, A.; Kogel, K.H.; et al. N-Acyl-Homoserine Lactone Primes Plants for Cell Wall Reinforcement and Induces Resistance to Bacterial Pathogens via the Salicylic Acid/Oxylipin Pathway. Plant Cell 2014, 26, 2708–2723. [Google Scholar] [CrossRef]
- Adss, S.; Liu, B.; Beerhues, L.; Hahn, V.; Heuer, H.; Elhady, A. Priming soybean cv. Primus leads to successful systemic defense against the root-lesion nematode, Pratylenchus penetrans. Front. Plant Sci. 2012, 12, 651943. [Google Scholar] [CrossRef]
- Shrestha, A.; Schikora, A. AHL-priming for enhanced resistance as a tool in sustainable agriculture. FEMS Microbiol. Ecol. 2020, 96, fiaa226. [Google Scholar] [CrossRef]
- Sanchez-Mahecha, O.; Klink, S.; Heinen, R.; Rothballer, M.; Zytynska, S. Impaired microbial N-acyl homoserine lactone signalling increases plant resistance to aphids across variable abiotic and biotic environments. Plant Cell Environ. 2022, 45, 3052–3069. [Google Scholar] [CrossRef]
- Si, J.; Froussart, E.; Viaene, T.; Vázquez-Castellanos, J.F.; Hamonts, K.; Tang, L.; Beirinckx, S.; De Keyser, A.; Deckers, T.; Amery, F.; et al. Interactions between soil compositions and the wheat root microbiome under drought stress: From an in silico to in planta perspective. Comput. Struct. Biotechnol. J. 2021, 19, 4235–4247. [Google Scholar] [CrossRef]
- Salem, G.; Stromberger, M.E.; Byrne, P.F.; Manter, D.K.; El-Feki, W.; Weir, T.L. Genotype-specific response of winter wheat (Triticum aestivum L.) to irrigation and inoculation with ACC deaminase bacteria. Rhizosphere 2018, 8, 1–7. [Google Scholar] [CrossRef]
- Bartoli, C.; Boivin, S.; Marchetti, M.; Gris, C.; Gasciolli, V.; Gaston, M.; Auriac, M.-C.; Debellé, F.; Cottret, L.; Carlier, A.; et al. Rhizobium leguminosarum symbiovar viciae strains are natural wheat endophytes that can stimulate root development. Environ. Microbiol. 2022, 24, 5509–5523. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Luo, P.G. Changes in Photosynthesis Could Provide Important Insight into the Interaction between Wheat and Fungal Pathogens. Int. J. Mol. Sci. 2021, 22, 8865. [Google Scholar] [CrossRef] [PubMed]
- Guo, H.; Zhang, H.; Wang, G.; Wang, C.; Wang, Y.; Liu, X.; Ji, W. Identification and expression analysis of heat-shock proteins in wheat infected with powdery mildew and stripe rust. Plant Genome 2021, 14, e20092. [Google Scholar] [CrossRef]
- Liu, T.T.; Xu, M.Z.; Gao, S.Q.; Zhang, Y.; Yang, H.U.; Peng, J.I.N.; Cai, L.N.; Cheng, Y.; Chen, J.P.; Yang, J.; et al. Genome-wide identification and analysis of the regulation wheat DnaJ family genes following wheat yellow mosaic virus infe. J. Integr. Agric. 2022, 21, 153–169. [Google Scholar] [CrossRef]
- Wang, G.F.; Wei, X.; Fan, R.; Zhou, H.; Wang, X.; Yu, C.; Dong, L.; Dong, Z.; Wang, X.; Kang, Z.; et al. Molecular analysis of common wheat genes encoding three types of cytosolic heat shock protein 90 (Hsp90): Functional involvement of cytosolic Hsp90s in the control of wheat seedling growth and disease resistance. New Phytol. 2011, 191, 418–431. [Google Scholar] [CrossRef] [PubMed]
- Duan, Y.H.; Guo, J.; Ding, K.; Wang, S.J.; Zhang, H.; Dai, X.W.; Chen, Y.Y.; Govers, F.; Huang, L.L.; Kang, Z.S. Characterization of a wheat HSP70 gene and its expression in response to stripe rust infection and abiotic stresses. Mol. Biol. Rep. 2011, 38, 301–307. [Google Scholar] [CrossRef]
- Pandey, V.P.; Awasthi, M.; Singh, S.; Tiwari, S.; Dwivedi, U.N. A comprehensive review on function and application of plant peroxidases. Biochem. Anal. Biochem. 2017, 6, 308. [Google Scholar] [CrossRef]
- Johnson, L.B.; Cunningham, B.A. Peroxidase-Activity in Healthy and Leaf-Rust-Infected Wheat Leaves. Phytochemistry 1972, 11, 547. [Google Scholar] [CrossRef]
- Johnson, L.B.; Lee, R.F. Peroxidase Changes in Wheat Isolines with Compatible and Incompatible Leaf Rust Infections. Physiol. Plant Pathol. 1978, 13, 173–181. [Google Scholar] [CrossRef]
- Southerton, S.G.; Deverall, B.J. Changes in Phenylalanine Ammonia-Lyase and Peroxidase-Activities in Wheat Cultivars Expressing Resistance to the Leaf-Rust Fungus. Plant Pathol. 1990, 39, 223–230. [Google Scholar] [CrossRef]
- Anguelova-Merhar, V.S.; van der Westhuizen, A.J.; Pretorius, Z.A. Intercellular chitinase and peroxidase activities associated with resistance conferred by gene Lr35 to leaf rust of wheat. J. Plant Physiol. 2002, 159, 1259–1261. [Google Scholar] [CrossRef]
- Caruso, C.; Chilosi, G.; Leonardi, L.; Bertini, L.; Magro, P.; Buonocore, V.; Caporale, C. A basic peroxidase from wheat kernel with antifungal activity. Phytochemistry 2001, 58, 743–750. [Google Scholar] [CrossRef] [PubMed]
- Loutre, C.; Wicker, T.; Travella, S.; Galli, P.; Scofield, S.; Fahima, T.; Feuillet, C.; Keller, B. Two different CC-NBS-LRR genes are required for Lr10-mediated leaf rust resistance in tetraploid and hexaploid wheat. Plant J. 2009, 60, 1043–1054. [Google Scholar] [CrossRef]
- Zhao, R.H.; Liu, B.L.; Wan, W.T.; Jiang, Z.N.; Chen, T.T.; Wang, L.; Bie, T.D. Mapping and characterization of a novel adult-plant leaf rust resistance gene LrYang16G216 via bulked segregant analysis and conventional linkage method. Theor. Appl. Genet. 2023, 136, 1. [Google Scholar] [CrossRef]
- Amo, A.; Soriano, J.M. Unravelling consensus genomic regions conferring leaf rust resistance in wheat via meta-QTL analysis. Plant Genome 2022, 15, e20185. [Google Scholar] [CrossRef]
- Wang, P.; Hsu, C.C.; Du, Y.; Zhu, P.; Zhao, C.; Fu, X.; Zhang, C.; Paez, J.S.; Macho, A.P.; Tao, W.A.; et al. Mapping proteome-wide targets of protein kinases in plant stress responses. Proc. Natl. Acad. Sci. USA 2020, 117, 3270–3280. [Google Scholar] [CrossRef]
- Meng, X.Z.; Zhang, S.Q. MAPK Cascades in Plant Disease Resistance Signaling. Annu. Rev. Phytopathol. 2013, 51, 245–266. [Google Scholar] [CrossRef]
- De Zélicourt, A.; Colcombet, J.; Hirt, H. The Role of MAPK Modules and ABA during Abiotic Stress Signaling. Trends Plant Sci. 2016, 21, 677–685. [Google Scholar] [CrossRef] [PubMed]
- Schikora, A.; Schenk, S.T.; Stein, E.; Molitor, A.; Zuccaro, A.; Kogel, K.H. Homoserine Lactone Confers Resistance toward Biotrophic and Hemibiotrophic Pathogens via Altered Activation of AtMPK6. Plant Physiol. 2011, 157, 1407–1418. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Andargie, M.; Fang, R.Q. The function and biosynthesis of callose in high plants. Heliyon 2022, 8, e09248. [Google Scholar] [CrossRef]
- Pirselova, B.; Matusikova, I. Callose: The plant cell wall polysaccharide with multiple biological functions. Acta. Physiol. Plant 2013, 35, 635–644. [Google Scholar] [CrossRef]
- García-Andrade, J.; Ramírez, V.; Flors, V.; Vera, P. Arabidopsis ocp3 mutant reveals a mechanism linking ABA and JA to pathogen-induced callose deposition. Plant J. 2011, 67, 783–794. [Google Scholar] [CrossRef]
- Cano-Delgado, A.; Penfield, S.; Smith, C.; Catley, M.; Bevan, M. Reduced cellulose synthesis invokes lignification and defense responses in Arabidopsis thaliana. Plant J. 2003, 34, 351–362. [Google Scholar] [CrossRef]
- Menna, A.; Dora, S.; Sancho-Andrés, G.; Kashyap, A.; Meena, M.K.; Sklodowski, K.; Gasperini, D.; Coll, N.S.; Sánchez-Rodríguez, C. A primary cell wall cellulose-dependent defense mechanism against vascular pathogens revealed by time-resolved dual transcriptomics. BMC Biol. 2021, 19, 161. [Google Scholar] [CrossRef]
- Fatima, F.; McCallum, B.D.; Pozniak, C.J.; Hiebert, C.W.; McCartney, C.A.; Fedak, G.; You, F.M.; Cloutier, S. Identification of New Leaf Rust Resistance Loci in Wheat and Wild Relatives by Array-Based SNP Genotyping and Association Genetics. Front. Plant Sci. 2020, 11, 583738. [Google Scholar] [CrossRef]
- Leonova, I.N.; Skolotneva, E.S.; Salina, E.A. Genome-wide association study of leaf rust resistance in Russian spring wheat varieties. BMC Plant Biol. 2020, 20, 135. [Google Scholar] [CrossRef]
Trait | Priming | Mean | Min | Max | SD | CV (%) | Repeatability |
---|---|---|---|---|---|---|---|
Puccinia triticina (scores) | attM | 1.97 | 0 | 3.75 | 0.87 | 44.19 | 0.96 |
expR+ch | 1.89 | 0 | 3.75 | 0.83 | 43.91 | 0.97 | |
Puccinia triticina (%) | attM | 20.02 | 0 | 80.00 | 17.49 | 87.34 | 0.82 |
expR+ch | 16.42 | 0 | 80.00 | 14.10 | 85.90 | 0.84 | |
Relative infection (RI) | attM | 2.45 | 0.5 | 4.35 | 1.11 | 45.40 | 0.97 |
Relative infection (RI) | expR+ch | 2.33 | 0.5 | 4.21 | 1.07 | 45.87 | 0.98 |
Priming efficiency (PE) | 0.11 | −2.85 | 2.68 | 0.46 | 414.95 | 0.82 |
Effect | F Value | p-Value |
---|---|---|
Genotype | 355.9 | <0.001 |
Priming effects | 178.5 | <0.001 |
Genotype × priming effects | 1.9 | <0.001 |
Priming | Trait | QTL | SNP | Chr a | Pos b | p-Value | −log10P c | R2 d | SNP Effect | Annotation |
---|---|---|---|---|---|---|---|---|---|---|
attM | RI | QTL_RI_attM_1 | RAC875_c11652_544 | 2A | 34,649,538 | <0.001 | 3.14 | 0.30 | 0.23 | Eukaryotic aspartyl protease family protein |
RI | BobWhite_c2022_245 | 2A | 34,661,266 | <0.001 | 3.14 | 0.30 | 0.23 | Glucose-6-phosphate 1-dehydrogenase | ||
RI | QTL_RI_attM_2 | GENE-1805_65 | 3D | 423,606,962 | <0.001 | 3.04 | 0.30 | −0.20 | Kinase family protein | |
RI | QTL_RI_attM_3 | RAC875_c56205_127 | 6B | 721,632,069 | <0.001 | 3.19 | 0.31 | 0.30 | ATP-dependent RNA helicase | |
expR+ch | RI | QTL_RI_ expR+ch _1 | Tdurum_contig43943_56 | 1A | 11,438,538 | <0.001 | 3.25 | 0.29 | −0.49 | Chaperone protein DnaJ |
RI | QTL_RI_ expR+ch _2 | BS00068817_51 | 3B | 622,821,075 | <0.001 | 3.07 | 0.29 | 0.34 | LexA repressor | |
RI | QTL_RI_ expR+ch _3 | GENE-0221_350 | 6A | 50,835,408 | <0.001 | 3.20 | 0.29 | −0.28 | Cellulose synthase | |
RI | QTL_RI_ expR+ch _4 | RAC875_c10650_90 | 6B | 80,018,996 | <0.001 | 3.23 | 0.29 | 0.28 | Aminoalcoholphosphotransferase 1 | |
RI | QTL_RI_ expR+ch _4 | Kukri_c32307_481 | 6B | 81,396,472 | <0.001 | 3.64 | 0.30 | −0.30 | Cytochrome P450 | |
RI | TA005332-1378 | 6B | 82,034,544 | <0.001 | 3.23 | 0.29 | 0.28 | 50S ribosomal protein L4 | ||
RI | BS00067590_51 | 6B | 82,924,787 | <0.001 | 3.23 | 0.29 | −0.28 | Protein kinase family protein and Mitogen-activated protein kinase 1 | ||
RI | Kukri_c17622_298 | 6B | 82,951,636 | <0.001 | 3.42 | 0.29 | −0.29 | NBS-LRR-like resistance protein | ||
RI | QTL_RI_ expR+ch _5 | Excalibur_s111479_146 | 6B | 89,882,943 | <0.001 | 3.20 | 0.29 | 0.28 | Protein kinase | |
RI | QTL_RI_ expR+ch _6 | RAC875_c14309_317 | 6B | 659,313,464 | <0.001 | 3.02 | 0.29 | 0.26 | Lysine ketoglutarate reductase/saccharopine dehydrogenase | |
RI | QTL_RI_ expR+ch _7 | Kukri_c11397_2523 | 6B | 729,834,583 | <0.001 | 3.26 | 0.29 | −0.27 | Callose synthase | |
PE | QTL_PE_1 | wsnp_Ex_c39616_46871127 | 1B | 569,054,340 | <0.001 | 3.37 | 0.05 | −0.05 | H/ACA ribonucleoprotein complex non-core subunit NAF1 | |
PE | BS00021710_51 | 1B | 569,563,462 | <0.001 | 3.89 | 0.07 | 0.06 | Secretory carrier-associated membrane protein | ||
PE | QTL_PE_2 | CAP8_c359_95 | 3A | 74,742,550 | <0.001 | 3.22 | 0.05 | 0.06 | Clavaminate synthase-like protein | |
PE | QTL_PE_3 | wsnp_Ex_c1538_2937905 | 3A | 219,753,903 | < 0.001 | 4.14 | 0.08 | −0.10 | Peroxidase | |
PE | QTL_PE_4 | Tdurum_contig31586_197 | 3A | 512,355,527 | <0.001 | 3.02 | 0.04 | 0.05 | RING/U-box superfamily protein | |
PE | QTL_PE_5 | Tdurum_contig59566_1534 | 3B | 851,570,483 | <0.001 | 3.19 | 0.05 | 0.05 | Serine/threonine-protein kinase ATM | |
PE | Kukri_c55981_194 | 3B | 851,570,902 | <0.001 | 3.32 | 0.05 | −0.05 | Serine/threonine-protein kinase ATM | ||
PE | Tdurum_contig59566_2309 | 3B | 851,571,255 | <0.001 | 3.44 | 0.06 | 0.05 | Serine/threonine-protein kinase ATM | ||
PE | wsnp_JD_c18509_16968425 | 3B | 851,572,724 | <0.001 | 3.24 | 0.05 | 0.05 | Serine/threonine-protein kinase ATM |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Soleimani, B.; Lehnert, H.; Schikora, A.; Stahl, A.; Matros, A.; Wehner, G. Bacterial N-Acyl Homoserine Lactone Priming Enhances Leaf-Rust Resistance in Winter Wheat and Some Genomic Regions Are Associated with Priming Efficiency. Microorganisms 2024, 12, 1936. https://doi.org/10.3390/microorganisms12101936
Soleimani B, Lehnert H, Schikora A, Stahl A, Matros A, Wehner G. Bacterial N-Acyl Homoserine Lactone Priming Enhances Leaf-Rust Resistance in Winter Wheat and Some Genomic Regions Are Associated with Priming Efficiency. Microorganisms. 2024; 12(10):1936. https://doi.org/10.3390/microorganisms12101936
Chicago/Turabian StyleSoleimani, Behnaz, Heike Lehnert, Adam Schikora, Andreas Stahl, Andrea Matros, and Gwendolin Wehner. 2024. "Bacterial N-Acyl Homoserine Lactone Priming Enhances Leaf-Rust Resistance in Winter Wheat and Some Genomic Regions Are Associated with Priming Efficiency" Microorganisms 12, no. 10: 1936. https://doi.org/10.3390/microorganisms12101936
APA StyleSoleimani, B., Lehnert, H., Schikora, A., Stahl, A., Matros, A., & Wehner, G. (2024). Bacterial N-Acyl Homoserine Lactone Priming Enhances Leaf-Rust Resistance in Winter Wheat and Some Genomic Regions Are Associated with Priming Efficiency. Microorganisms, 12(10), 1936. https://doi.org/10.3390/microorganisms12101936