Microbes in Agriculture: Prospects and Constraints to Their Wider Adoption and Utilization in Nutrient-Poor Environments
Abstract
:1. Introduction
2. Overview of Plant–Bacterial Interactions in the Rhizosphere
3. Beneficial Soil Microbes and Plant Growth in Adverse Environments
4. Evolution of the Legume-Rhizobia Symbiosis for Promoting Plant Growth
5. Microbes in Crop Biofortification
Microorganism (s) | Treatment Application | Experimental Condition | Crop | Effect | References |
---|---|---|---|---|---|
* Glomus mosseae isolate 112 BEG | Single strain inoculation, supplemented with different levels of nitrogen (N) and phosphorus (P) | Glasshouse | Lettuce | At low P level, Mycorrhizal lettuce plants accumulate greater copper (Cu), iron (Fe), zinc (Zn), and manganese (Mn) at different N levels | [59] |
Azospirillum brasilense Ab-V6 | Single strain inoculation | Field | Maize | Increased grain Zn, Mn, and Cu concentrations | [90] |
Providencia sp. PW5 + N60P60K60 | Applied as a single strain together with N60P60K60 | Field | Wheat | Increased grain protein content by 18.6%Increased grain concentration of Fe, Mn, and Cu | [91] |
Acinetobacter sp. E6.2, * Glomus claroideum (synonym: Claroideoglomus claroideum); * Glomus claroideum, Enterobacter sp. B16 | Single strain and dual inoculation | Glasshouse | Wheat | Increased grain selenium (Se) concentration | [87,89] |
* Funneliformis mosseae and * Rhizophagus irregularis | Single strain and dual inoculation | Field | Chickpea | Increased grain Fe and Zn content | [86] |
Bacillus sp. YAM2 | Applied alone, or together with selenate | Naturally lit wire house | Wheat | Increased Fe and Se concentrations in stems and Kernels | [83] |
Bradyrhizobium japonicum strain WB74 | Applied alone or with 5 mM KNO3 | Glasshouse | Soybean | Genotype-dependent increase in shoot Mn, Zn, and Fe concentrations | [84] |
* Glomus mosseae (L.) + Rhizobium leguminosarum (L.) | Applied as a mixture and supplemented with different N and P rates | Field | Pea | Increased seed Fe, Cu, Zn, and Mn concentrations | [92] |
Sphingomonas sp. SaMR12, Enterobacter sp. SaCS20 | Single strain inoculations | Glasshouse, Hydroponic (in growth chamber) | Rice | Increased concentration of Zn in shoot and grain | [93] |
Anabaena sp.+ * Trichoderma viride | Biofilm formulation, supplemented with N, P and potassium (K) | Field | Rice | Increased grain Fe and Zn concentration | [94] |
6. Exploitation of Microbial Inoculants in Agriculture
Microorganism (s) | Treatment Application | Experiment Condition | Crop | Effect | References |
---|---|---|---|---|---|
Azospirillum brasilense, A. lipoferum | Sole inoculation as single strains | Field | Maize, Wheat | Increased grain yield in maize and wheat | [90] |
Bacillus amyloliquefaciens FZB45 | Applied alone at two rates, or together with four levels of phosphorus (P) in factorial experiment | Growth chamber | Cabbage | Increased plant growth at higher rates of phytate supply | [40] |
Bradyrhizobium sp. (strain CB 1809 + strain CPAC 7), (strain 29 W + SEMIA 587) | Applied as microbial consortium | Field | Soybean | Increased nodule occupancy Increased grain yield Increased grain N content | [107] |
Bradyrhizobium sp. | Applied alone, or together with phosphorus (P) or nitrogen (N) | Field | Common bean, Soybean | Inoculation alone increased grain yield Inoculation + P increased grain yield over inoculation alone, and N or P alone | [99] |
Bradyrhizobium sp. BR 3262 and Bradyrhizobium sp. BR 3267 | Sole inoculation as single strains | Field | Cowpea | Increased nodulation and plant growth Increased grain yield | [95] |
Bradyrhizobium strain USDA 110 | Sole inoculation, supplemented with P and organic manure | Field | Soybean | Increased nodulation Increased plant growth Increased rainwater use efficiency Increased agronomic P use efficiency Increased grain yield | [108] |
Bradyrhizobium sp. (76 native African isolates) | Sole inoculation as single strains | Glasshouse | Bambara groundnut | Increased leaf chlorophyll concentration over nitrate-feeding Increased stomatal conductance Increased photosynthetic rates Increased plant growth | [10] |
Bradyrhizobium sp. (40 native African isolates) | Sole inoculation as single strains | Glasshouse | Kersting’s groundnut | Increased leaf chlorophyll concentration over nitrate-feeding Increased stomatal conductance Increased photosynthetic rates Increased plant growth | [97] |
Bradyrhizobium sp. (17 native African isolates) | Sole inoculation as single strains | Glasshouse | Cowpea | Increased leaf chlorophyll concentration over nitrate-feeding Increased stomatal conductance Increased photosynthetic rates Increased plant growth | [109] |
Pseudomonas putida strain PSE3 + Rhizobium leguminosarum strain RP2 | Applied as microbial consortium | Glasshouse Field | pea | Increased nodulation and leghaemoglobin content of nodules Stimulates plant growth Increased leaf chlorophyll content | [106] |
Rhizobium leguminosarum strain RP2 | Applied alone or together with diammonium phosphate | Glasshouse Field | pea | Increased nodulation and leghaemoglobin content of nodules Stimulates plant growth | [106] |
Rhizobium sp. strains HB-429 | Applied alone, or together with different P levels | Field | Common bean | Increased plant growth Increased N-fixed Increased grain yield | [100] |
Microorganism (s) | Treatment Application | Experiment Condition | Crop | Effect | References |
---|---|---|---|---|---|
Aspergillus sp. NPF7 | Sole inoculation | Growth chamber | Chickpea, Wheat | Stimulated germination Increased plant growth via the synthesis of phytohormones (e.g., Indole-3-acetic acid (IAA), siderophore, gibberellic, phosphate solubilization) | [110] |
* Funneliformis mosseae, * Rhizophagus irregularis | Single-strain inoculation or dual inoculation | Field | Chickpea | Increased plant growth Increased grain yield | [86] |
* Glomus intraradices BEG 123 and * G. viscosum 126 | Sole inoculation as single strains | Glasshouse | Olive | Increased plant growth of two olive cultivars | [111] |
* G. deserticola, * G. spp. (G. claroideum, G. etunicatum, G. geosporum, G. intraradices, G. mosseae) | Applied as a microbial mixture. Field soil was also used as a control | Glasshouse | Maize | Increased plant growth compared to control (field soil) | [112] |
* Glomus sp. LPA21, Commercial * Glomus sp. (AGC or Phytotec) | Inoculation at different rates of 1–5% (w/w) | Glasshouse | Grapevine, Pineapple | Increased shoot and root growth relative to control | [113] |
* Glomus intraradices, Rhizobium tropici CIAT899 | Dual inoculation | Glasshouse | Common bean | Increased nodulation Promotes shoot and root growth compared to control or single inoculants Increased shoot N and P accumulation compared to control or single inoculants | [114] |
* Glomus fasciculatum + Azotobacter chroococcum + Bacillus sp. | Applied as a microbial consortium | Field | Wheat | Increased plant growth Increased grain yield | [115] |
* Glomus intraradices | Single-strain inoculation at different levels of salinity and P | Field | Pepper | Mycorrhizal inoculation increased plant growth at all salinity levels | [116] |
* G. mosseae, Bradyrhizobium sp. BXYD3 | Single strain inoculation or co-inoculation; supplanted with N, P, and potassium (K) | Field, Glasshouse | Soybean | Increased plant growth Increased N and P content of plants | [117] |
Phoma sp. GAH7 | Sole inoculation | Glasshouse | Cucumber | Increased plant height Increased plant weight | [118] |
* Rhizophagus irregularis DAOM 197198 | Sole inoculation, Uninoculated plots as control | Field | Potato | Increased tuber yield | [119] |
* Trichoderma virens, * Trichoderma atroviride | Single strain inoculation | Axenic conditions | Arabidopsis | Stimulates lateral root growth Increased biomass accumulation | [120] |
7. Constraints to the Wider Exploitation of Microbial Inoculants
7.1. Biotic and Abiotic Factors
7.2. Quality Control Issues
7.3. Limited Shelf Life
8. Future Perspectives
9. Concluding Remarks
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Alexandratos, N.; Bruinsma, J. World Agriculture Towards 2030/2050, The 2012 Revision; ESA Working Paper No. 23-03; FAO: Rome, Italy, 2012. [Google Scholar]
- Bhattacharyya, P.N.; Goswami, M.P.; Bhattacharyya, L.H. Perspective of Beneficial Microbes in Agriculture under Changing Climatic Scenario: A Review. J. Phytol. 2016, 8, 26–41. [Google Scholar] [CrossRef]
- Tripathi, A.D.; Mishra, R.; Maurya, K.K.; Singh, R.B.; Wilson, D.W. Estimates for World Population and Global Food Availability for Global Health; Watson, R.R., Singh, R., Takahashi, T., Eds.; Elsevier Inc.: Amsterdam, The Netherlands, 2018; ISBN 9780128131480. [Google Scholar]
- Arif, I.; Batool, M.; Schenk, P.M. Plant Microbiome Engineering: Expected Benefits for Improved Crop Growth and Resilience. Trends Biotechnol. 2020, 1936, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Subbarao, G.; Ito, O.; Sahrawat, K.; Berry, W.; Nakahara, K.; Ishikawa, T.; Watanabe, T.; Suenaga, K.; Rondon, M.; Rao, I. Scope and Strategies for Regulation of Nitrification in Agricultural Systems—Challenges and Opportunities. CRC Crit. Rev. Plant Sci. 2006, 25, 303–335. [Google Scholar] [CrossRef]
- Fening, J.O.; Danso, S.K.A. Variation in Symbiotic Effectiveness of Cowpea Bradyrhizobia Indigenous to Ghanaian Soils. Appl. Soil Ecol. 2002, 21, 23–29. [Google Scholar] [CrossRef]
- Rashid, M.I.; Mujawar, L.H.; Shahzad, T.; Almeelbi, T.; Ismail, I.M.I.; Oves, M. Bacteria and Fungi Can Contribute to Nutrients Bioavailability and Aggregate Formation in Degraded Soils. Microbiol. Res. 2016, 183, 26–41. [Google Scholar] [CrossRef]
- Abaidoo, R.C.; Keyser, H.H.; Singleton, P.W.; Dashiell, K.E.; Sanginga, N. Population Size, Distribution, and Symbiotic Characteristics of Indigenous Bradyrhizobium spp. That Nodulate TGx Soybean Genotypes in Africa. Appl. Soil Ecol. 2007, 35, 57–67. [Google Scholar] [CrossRef]
- Arcand, M.M.; Helgason, B.L.; Lemke, R.L. Microbial Crop Residue Decomposition Dynamics in Organic and Conventionally Managed Soils. Appl. Soil Ecol. 2016, 107, 347–359. [Google Scholar] [CrossRef]
- Ibny, F.Y.I.; Jaiswal, S.K.; Mohammed, M.; Dakora, F.D. Symbiotic Effectiveness and Ecologically Adaptive Traits of Native Rhizobial Symbionts of Bambara Groundnut (Vigna subterranea L. Verdc.) in Africa and Their Relationship with Phylogeny. Sci. Rep. 2019, 9, 12666. [Google Scholar] [CrossRef]
- Chibeba, A.M.; Kyei-Boahen, S.; de Fátima Guimarães, M.; Nogueira, M.A.; Hungria, M. Towards Sustainable Yield Improvement: Field Inoculation of Soybean with Bradyrhizobium and Co-Inoculation with Azospirillum in Mozambique. Arch. Microbiol. 2020, 202, 2579–2590. [Google Scholar] [CrossRef]
- Naamala, J.; Smith, D.L. Relevance of Plant Growth Promoting Microorganisms and Their Derived Compounds, in the Face of Climate Change. Agronomy 2020, 10, 1179. [Google Scholar] [CrossRef]
- Norton, J.; Ouyang, Y. Controls and Adaptive Management of Nitrification in Agricultural Soils. Front. Microbiol. 2019, 10, 1931. [Google Scholar] [CrossRef] [PubMed]
- Fageria, N.K.; Baligar, V.C. Enhancing Nitrogen Use Efficiency in Crop Plants. Adv. Agron. 2005, 88, 97–185. [Google Scholar] [CrossRef]
- Dworkin, M. Sergei Winogradsky: A Founder of Modern Microbiology and the First Microbial Ecologist. FEMS Microbiol. Rev. 2012, 36, 364–379. [Google Scholar] [CrossRef]
- Koops, H.-P.; Böttcher, B.; Möller, U.C.; Pommerening-Röser, A.; Stehr, G. Classification of Eight New Species of Ammonia-Oxidizing Bacteria: Nitrosomonas communis sp. Nov., Nitrosomonas ureae sp. Nov., Nitrosomonas aestuarii sp. Nov., Nitrosomonas marina sp. Nova, Nitrosomonas nitrosa sp. Nov., Nitrosomonas eutropha sp. Nov., N.J. Gen. Microbiol. 1991, 137, 1689–1699. [Google Scholar] [CrossRef]
- Sorokin, D.Y.; Muyzer, G.; Brinkhoff, T.; Kuenen, J.G.; Jetten, M.S.M. Isolation and Characterization of a Novel Facultatively Alkaliphilic Nitrobacter Species, N. Alkalicus sp. Nov. Arch. Microbiol. 1998, 170, 345–352. [Google Scholar] [CrossRef] [PubMed]
- Coskun, D.; Britto, D.T.; Shi, W.; Kronzucker, H.J. Nitrogen Transformations in Modern Agriculture and the Role of Biological Nitrification Inhibition. Nat. Plants 2017, 3, 17074. [Google Scholar] [CrossRef]
- Zerulla, W.; Barth, T.; Dressel, J.; Erhardt, K.; Horchler von Locquenghien, K.; Pasda, G.; Rädle, M.; Wissemeier, A. 3,4-Dimethylpyrazole Phosphate (DMPP)—A New Nitrification Inhibitor for Agriculture and Horticulture. An Introduction. Biol. Fertil. Soils 2001, 34, 79–84. [Google Scholar] [CrossRef]
- Menezes-Blackburn, D.; Giles, C.; Darch, T.; George, T.S.; Blackwell, M.; Stutter, M.; Shand, C.; Lumsdon, D.; Cooper, P.; Wendler, R.; et al. Opportunities for Mobilizing Recalcitrant Phosphorus from Agricultural Soils: A Review. Plant Soil 2018, 427, 5–16. [Google Scholar] [CrossRef]
- Yong-Fu, L.; An-cheng, L.; Hassan, M.; Xing-hua, W.E.I. Effect of Phosphorus Deficiency on Leaf Photosynthesis and Carbohydrates Partitioning in Two Rice Genotypes with Contrasting Low Phosphorus Susceptibility. Rice Sci. 2006, 13, 283–290. [Google Scholar]
- Mbah, G.C.; Mohammed, M.; Jaiswal, S.K.; Dakora, F.D. Phylogenetic Relationship, Symbiotic Effectiveness, and Biochemical Traits of Native Rhizobial Symbionts of Cowpea (Vigna unguiculata L. Walp) in South African Soil. J. Soil Sci. Plant Nutr. 2022, 12, 10629. [Google Scholar] [CrossRef]
- Jadhav, R.N. Isolation of Rhizobia from Soybean Cultivated in Latur Area & Study of Its Phosphate Solubilization Activity. Biosci. Discov. 2013, 4, 100–103. [Google Scholar]
- Wekesa, C.S.; Furch, A.C.U.; Oelmüller, R. Isolation and Characterization of High-Efficiency Rhizobia from Western Kenya Nodulating with Common Bean. Front. Microbiol. 2021, 12, 697567. [Google Scholar] [CrossRef] [PubMed]
- Hayat, R.; Ali, S.; Amara, U.; Khalid, R.; Ahmed, I. Soil Beneficial Bacteria and Their Role in Plant Growth Promotion: A Review. Ann. Microbiol. 2010, 60, 579–598. [Google Scholar] [CrossRef]
- Vejan, P.; Abdullah, R.; Khadiran, T.; Ismail, S.; Nasrulhaq Boyce, A. Role of Plant Growth Promoting Rhizobacteria in Agricultural Sustainability-A Review. Molecules 2016, 21, 573. [Google Scholar] [CrossRef]
- Dakora, F.D.; Matiru, V.N.; Kanu, A.S. Rhizosphere Ecology of Lumichrome and Riboflavin, Two Bacterial Signal Molecules Eliciting Developmental Changes in Plants. Front. Plant Sci. 2015, 6, 700. [Google Scholar] [CrossRef]
- Mahmud, K.; Makaju, S.; Ibrahim, R.; Missaoui, A. Current Progress in Nitrogen Fixing Plants and Microbiome Research. Plants 2020, 9, 97. [Google Scholar] [CrossRef] [PubMed]
- Hungria, M.; Vargas, M.A.T.T. Environmental Factors Affecting N2 fixation in Grain Legumes in the Tropics, with an Emphasis on Brazil. F Crop. Res. 2000, 65, 151–164. [Google Scholar] [CrossRef]
- Gyogluu, C.; Mohammed, M.; Jaiswal, S.K.; Kyei-Boahen, S.; Dakora, F.D. Assessing Host Range, Symbiotic Effectiveness, and Photosynthetic Rates Induced by Native Soybean Rhizobia Isolated from Mozambican and South African Soils. Symbiosis 2018, 75, 257–266. [Google Scholar] [CrossRef]
- Santos, M.S.; Nogueira, M.A.; Hungria, M. Microbial Inoculants: Reviewing the Past, Discussing the Present and Previewing an Outstanding Future for the Use of Beneficial Bacteria in Agriculture. AMB Express 2019, 9, 205. [Google Scholar] [CrossRef]
- Jaiswal, S.K.; Maredi, M.P.; Dakora, F.D. Rhizosphere P-Enzyme Activity, Mineral Nutrient Concentrations, and Microbial Community Structure Are Altered by Intra-Hole Cropping of Cowpea with Cereals. Front. Agron. 2021, 3, 666351. [Google Scholar] [CrossRef]
- Jaiswal, S.K.; Mohammed, M.; Dakora, F.D. Microbial Community Structure in the Rhizosphere of the Orphan Legume Kersting’s Groundnut [Macrotyloma geocarpum (Harms) Marechal & Baudet]. Mol. Biol. Rep. 2019, 46, 4471–4481. [Google Scholar] [CrossRef] [PubMed]
- Bonfante, P.; Anca, I.A. Plants, Mycorrhizal Fungi, and Bacteria: A Network of Interactions. Annu. Rev. Microbiol. 2009, 63, 363–383. [Google Scholar] [CrossRef] [PubMed]
- Ahemad, M.; Kibret, M. Mechanisms and Applications of Plant Growth Promoting Rhizobacteria: Current Perspective. J. King Saud Univ. Sci. 2014, 26, 1–20. [Google Scholar] [CrossRef]
- Bhattacharyya, P.N.; Jha, D.K. Plant Growth-Promoting Rhizobacteria (PGPR): Emergence in Agriculture. World J. Microbiol. Biotechnol. 2012, 28, 1327–1350. [Google Scholar] [CrossRef]
- Oldroyd, G.E.D.D.; Murray, J.D.; Poole, P.S.; Downie, J.A. The Rules of Engagement in the Legume-Rhizobial Symbiosis. Annu. Rev. Genet. 2011, 45, 119–144. [Google Scholar] [CrossRef]
- Mus, F.; Crook, M.B.; Garcia, K.; Costas, A.G.; Geddes, B.A.; Kouri, E.D.; Paramasivan, P.; Ryu, M.H.; Oldroyd, G.E.D.; Poole, P.S.; et al. Symbiotic Nitrogen Fixation and the Challenges to Its Extension to Nonlegumes. Appl. Environ. Microbiol. 2016, 82, 3698–3710. [Google Scholar] [CrossRef]
- Andrews, M.; Andrews, M.E. Specificity in Legume-Rhizobia Symbioses. Int. J. Mol. Sci. 2017, 18, 705. [Google Scholar] [CrossRef]
- Ramírez, C.A.; Kloepper, J.W. Plant Growth Promotion by Bacillus amyloliquefaciens FZB45 Depends on Inoculum Rate and P-Related Soil Properties. Biol. Fertil. Soils 2010, 46, 835–844. [Google Scholar] [CrossRef]
- Gibson, D.G.; Glass, J.I.; Lartigue, C.; Noskov, V.N.; Chuang, R.-Y.; Algire, M.A.; Benders, G.A.; Montague, M.G.; Ma, L.; Moodie, M.M.; et al. Creation of a Bacterial Cell Controlled by a Chemically Synthesized Genome. Science 2010, 329, 52–56. [Google Scholar] [CrossRef]
- Palaniappan, P.; Chauhan, P.S.; Saravanan, V.S.; Anandham, R.; Sa, T. Isolation and Characterization of Plant Growth Promoting Endophytic Bacterial Isolates from Root Nodule of Lespedeza sp. Biol. Fertil. Soils 2010, 46, 807–816. [Google Scholar] [CrossRef]
- Dudeja, S.S.; Giri, R.; Saini, R.; Suneja-Madan, P.; Kothe, E. Interaction of Endophytic Microbes with Legumes. J. Basic Microbiol. 2012, 52, 248–260. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Liu, S.; Wang, H.; Hu, Z.; Li, Z.; You, Y. Changes of Soil Microbial Biomass Carbon and Community Composition through Mixing Nitrogen-Fi Xing Species with Eucalyptus Urophylla in Subtropical China. Soil Biol. Biochem. 2014, 73, 42–48. [Google Scholar] [CrossRef]
- Pineda, A.; Dicke, M.; Pieterse, C.M.J.; Pozo, M.J. Beneficial Microbes in a Changing Environment: Are They Always Helping Plants to Deal with Insects? Funct. Ecol. 2013, 27, 574–586. [Google Scholar] [CrossRef]
- Bakker, M.G.; Manter, D.K.; Sheflin, A.M.; Weir, T.L.; Vivanco, J.M. Harnessing the Rhizosphere Microbiome through Plant Breeding and Agricultural Management. Plant Soil 2012, 360, 1–13. [Google Scholar] [CrossRef]
- Yi, H.S.; Yang, J.W.; Ghim, S.Y.; Ryu, C.M. A Cry for Help from Leaf to Root: Aboveground Insect Feeding Leads to the Recruitment of Rhizosphere Microbes for Plant Self-Protection against Subsequent Diverse Attacks. Plant Signal. Behav. 2011, 6, 1192–1194. [Google Scholar] [CrossRef] [PubMed]
- Guerrieri, A.; Dong, L.; Bouwmeester, H.J. Role and Exploitation of Underground Chemical Signaling in Plants. Pest Manag. Sci. 2019, 75, 2455–2463. [Google Scholar] [CrossRef]
- Rolfe, S.A.; Griffiths, J.; Ton, J. Crying out for Help with Root Exudates: Adaptive Mechanisms by Which Stressed Plants Assemble Health-Promoting Soil Microbiomes. Curr. Opin. Microbiol. 2019, 49, 73–82. [Google Scholar] [CrossRef]
- Chepsergon, J.; Moleleki, L.N. Rhizosphere Bacterial Interactions and Impact on Plant Health. Curr. Opin. Microbiol. 2023, 73, 102297. [Google Scholar] [CrossRef]
- Badri, D.V.; Vivanco, J.M. Regulation and Function of Root Exudates. Plant Cell Environ. 2009, 32, 666–681. [Google Scholar] [CrossRef]
- Liu, H.; Brettell, L.E. Plant Defense by VOC-Induced Microbial Priming. Trends Plant Sci. 2019, 24, 187–189. [Google Scholar] [CrossRef]
- Rudrappa, T.; Czymmek, K.J.; Paré, P.W.; Bais, H.P. Root-Secreted Malic Acid Recruits Beneficial Soil Bacteria. Plant Physiol. 2008, 148, 1547–1556. [Google Scholar] [CrossRef] [PubMed]
- Asari, S.; Matzén, S.; Petersen, M.A.; Bejai, S.; Meijer, J. Multiple Effects of Bacillus amyloliquefaciens Volatile Compounds: Plant Growth Promotion and Growth Inhibition of Phytopathogens. FEMS Microbiol. Ecol. 2016, 92, fiw070. [Google Scholar] [CrossRef]
- Vimal, S.R.; Singh, J.S.; Arora, N.K.; Singh, S. Soil-Plant-Microbe Interactions in Stressed Agriculture Management: A Review. Pedosphere 2017, 27, 177–192. [Google Scholar] [CrossRef]
- Gibson, A.; Pagan, J. Nitrate Effects on the Nodulation of Legumes Inoculated with Nitrate-Reductase-Deficient Mutants of Rhizobium. Planta 1977, 134, 17–22. [Google Scholar] [CrossRef]
- Stephens, B.D.; Neyra, C.A. Nitrate and Nitrite Reduction in Relation to Nitrogenase Activity in Soybean Nodules and Rhizobium japonicum Bacteroids. Plant Physiol. 1983, 71, 731–735. [Google Scholar] [CrossRef] [PubMed]
- Dakora, F.; Atkins, C. Diffusion of Oxygen in Relation to Structure and Function in Legume Root Nodules. Aust. J. Plant Physiol. 1989, 16, 131–140. [Google Scholar] [CrossRef]
- Azcón, R.; Ambrosano, E.; Charest, C. Nutrient Acquisition in Mycorrhizal Lettuce Plants under Different Phosphorus and Nitrogen Concentration. Plant Sci. 2003, 165, 1137–1145. [Google Scholar] [CrossRef]
- Cavagnaro, T.R.; Bender, S.F.; Asghari, H.R.; van der Heijden, M.G.A. The Role of Arbuscular Mycorrhizas in Reducing Soil Nutrient Loss. Trends Plant Sci. 2015, 20, 283–290. [Google Scholar] [CrossRef]
- Remigi, P.; Zhu, J.; Young, J.P.W.; Masson-boivin, C. Symbiosis within Symbiosis: Evolving Nitrogen-Fixing Legume Symbionts. Trends Microbiol. 2016, 24, 63–75. [Google Scholar] [CrossRef]
- van Zeijl, A.; Op Den Camp, R.H.M.; Deinum, E.E.; Charnikhova, T.; Franssen, H.; Op Den Camp, H.J.M.; Bouwmeester, H.; Kohlen, W.; Bisseling, T.; Geurts, R. Rhizobium Lipo-Chitooligosaccharide Signaling Triggers Accumulation of Cytokinins in Medicago Truncatula Roots. Mol. Plant 2015, 8, 1213–1226. [Google Scholar] [CrossRef]
- Venturi, V.; Keel, C. Signaling in the Rhizosphere. Trends Plant Sci. 2016, 21, 187–198. [Google Scholar] [CrossRef] [PubMed]
- Damiani, I.; Pauly, N.; Puppo, A.; Brouquisse, R.; Boscari, A. Reactive Oxygen Species and Nitric Oxide Control Early Steps of the Legume—Rhizobium Symbiotic Interaction. Front. Plant Sci. 2016, 7, 454. [Google Scholar] [CrossRef] [PubMed]
- Shumilina, J.; Soboleva, A.; Abakumov, E.; Shtark, O.Y.; Zhukov, V.A.; Frolov, A. Signaling in Legume—Rhizobia Symbiosis. Int. J. Mol. Sci. 2023, 24, 17397. [Google Scholar] [CrossRef] [PubMed]
- Janczarek, M.; Rachwał, K.; Marzec, A.; Grzadziel, J.; Palusińska-Szysz, M. Signal Molecules and Cell-Surface Components Involved in Early Stages of the Legume-Rhizobium Interactions. Appl. Soil Ecol. 2014, 85, 94–113. [Google Scholar] [CrossRef]
- Kinkema, M.; Scott, P.T.; Gresshoff, P.M. Legume Nodulation: Successful Symbiosis through Short- and Long-Distance Signalling. Funct. Plant Biol. 2006, 33, 707–721. [Google Scholar] [CrossRef]
- Ferguson, B.J.; Indrasumunar, A.; Hayashi, S.; Lin, M.-H.; Lin, Y.-H.; Reid, D.E.; Gresshoff, P.M. Molecular Analysis of Legume Nodule Development and Autoregulation. J. Integr. Plant Biol. 2010, 52, 61–76. [Google Scholar] [CrossRef]
- Menna, P.; Pereira, A.A.; Bangel, E.V.; Hungria, M. Rep-PCR of Tropical Rhizobia for Strain Fingerprinting, Biodiversity Appraisal and as a Taxonomic and Phylogen Phylogenetic Tool. Symbiosis 2009, 48, 120–130. [Google Scholar] [CrossRef]
- Peix, A.; Ramírez-Bahena, M.H.; Velázquez, E.; Bedmar, E.J. Bacterial Associations with Legumes. CRC Crit. Rev. Plant Sci. 2015, 34, 17–42. [Google Scholar] [CrossRef]
- Miri, M.; Janakirama, P.; Held, M.; Ross, L.; Szczyglowski, K. Into the Root: How Cytokinin Controls Rhizobial Infection. Trends Plant Sci. 2016, 21, 178–186. [Google Scholar] [CrossRef]
- Deinum, E.E.; Kohlen, W.; Geurts, R. Quantitative Modelling of Legume Root Nodule Primordium Induction by a Diffusive Signal of Epidermal Origin That Inhibits Auxin Efflux. BMC Plant Biol. 2016, 16, 245. [Google Scholar] [CrossRef]
- Hichri, I.; Boscari, A.; Castella, C.; Rovere, M.; Puppo, A.; Brouquisse, R. Nitric Oxide: A Multifaceted Regulator of the Nitrogen-Fixing Symbiosis. J. Exp. Bot. 2015, 66, 2877–2887. [Google Scholar] [CrossRef]
- Laranjo, M.; Alexandre, A.; Oliveira, S. Legume Growth-Promoting Rhizobia: An Overview on the Mesorhizobium Genus. Microbiol. Res. 2014, 169, 2–17. [Google Scholar] [CrossRef] [PubMed]
- Goyal, R.K.; Habtewold, J.Z. Evaluation of Legume–Rhizobial Symbiotic Interactions Beyond Nitrogen Fixation That Help the Host Survival and Diversification in Hostile Environments. Microorganisms 2023, 11, 1454. [Google Scholar] [CrossRef] [PubMed]
- Fahde, S.; Boughribil, S.; Sijilmassi, B.; Amri, A. Rhizobia: A Promising Source of Plant Growth-Promoting Molecules and Their Non-Legume Interactions: Examining Applications and Mechanisms. Agriculture 2023, 13, 1279. [Google Scholar] [CrossRef]
- Gen-Jiménez, A.; Flores-Félix, J.D.; Rincón-Molina, C.I.; Manzano-Gomez, L.A.; Rogel, M.A.; Ruíz-Valdiviezo, V.M.; Rincón-Molina, F.A.; Rincón-Rosales, R. Enhance of Tomato Production and Induction of Changes on the Organic Profile Mediated by Rhizobium Biofortification. Front. Microbiol. 2023, 14, 1235930. [Google Scholar] [CrossRef] [PubMed]
- Dellapenna, D. Biofortification of Plant-Based Food: Enhancing Folate Levels by Metabolic Engineering. Proc. Natl. Acad. Sci. USA 2007, 104, 3675–3676. [Google Scholar] [CrossRef]
- Ku, Y.S.; Rehman, H.M.; Lam, H.M. Possible Roles of Rhizospheric and Endophytic Microbes to Provide a Safe and Affordable Means of Crop Biofortification. Agronomy 2019, 9, 764. [Google Scholar] [CrossRef]
- Kumari, V.V.; Hoekenga, O.; Salini, K.; Sarath Chandran, M.A. Biofortification of Food Crops in India: An Agricultural Perspective. Asian Biotechnol. Dev. Rev. 2014, 16, 21–41. [Google Scholar]
- Chandra, A.K.; Kumar, A.; Bharati, A.; Joshi, R.; Agrawal, A.; Kumar, S. Microbial-Assisted and Genomic-Assisted Breeding: A Two Way Approach for the Improvement of Nutritional Quality Traits in Agricultural Crops. 3 Biotech 2020, 10, 2. [Google Scholar] [CrossRef]
- Kaur, T.; Lata, K.; Kour, D.; Sheikh, I.; Yadav, N. Microbe-Mediated Biofortification for Micronutrients: Present Status and Future Challenges. In Trends of Microbial Biotechnology for Sustainable Agriculture and Biomedicine Systems: Perspectives for Human Health; Rastegari, A., Yadav, A., Yadav, N., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 1–17. ISBN 9780128205280. [Google Scholar]
- Yasin, M.; El-Mehdawi, A.F.; Anwar, A.; Pilon-Smits, E.A.H.; Faisal, M. Microbial-Enhanced Selenium and Iron Biofortification of Wheat (Triticum aestivum L.)—Applications in Phytoremediation and Biofortification. Int. J. Phytoremediat. 2015, 17, 341–347. [Google Scholar] [CrossRef]
- Mbah, G.C.; Dakora, F.D. Nitrate Inhibition of N2 fixation and Its Effect on Micronutrient Accumulation in Shoots of Soybean (Glycine max L. Merr.), Bambara Groundnut (Vigna subterranea L. Vedc) and Kersting’s Groundnut (Macrotyloma geocarpum Harms.). Symbiosis 2017, 2, 205–216. [Google Scholar] [CrossRef] [PubMed]
- Lengwati, D.; Mathews, C.; Dakora, F. Rotation Benefits from N2-Fixing Grain Legumes to Cereals: From Increases in Seed Yield and Quality to Greater Household Cash-Income by a Following Maize Crop. Front. Sustain. Food Syst. 2020, 4, 94. [Google Scholar] [CrossRef]
- Pellegrino, E.; Bedini, S. Enhancing Ecosystem Services in Sustainable Agriculture: Biofertilization and Biofortification of Chickpea (Cicer arietinum L.) by Arbuscular Mycorrhizal Fungi. Soil Biol. Biochem. 2014, 68, 429–439. [Google Scholar] [CrossRef]
- Durán, P.; Acuña, J.J.; Jorquera, M.A.; Azcón, R.; Borie, F.; Cornejo, P.; Mora, M.L. Enhanced Selenium Content in Wheat Grain by Co-Inoculation of Selenobacteria and Arbuscular Mycorrhizal Fungi: A Preliminary Study as a Potential Se Biofortification Strategy. J. Cereal Sci. 2013, 57, 275–280. [Google Scholar] [CrossRef]
- Blagodatskaya, E.; Khomyakov, N.; Myachina, O.; Bogomolova, I.; Blagodatsky, S.; Kuzyakov, Y. Microbial Interactions Affect Sources of Priming Induced by Cellulose. Soil Biol. Biochem. 2014, 74, 39–49. [Google Scholar] [CrossRef]
- Durán, P.; Viscardi, S.; Acuña, J.J.; Cornejo, P.; Azcón, R.; de la Luz Mora, M. Endophytic Selenobacteria and Arbuscular Mycorrhizal Fungus for Selenium Biofortification and Gaeumannomyces Graminis Biocontrol. J. Soil Sci. Plant Nutr. 2018, 18, 1021–1035. [Google Scholar] [CrossRef]
- Hungria, M.; Campo, R.J.; Souza, E.M.; Pedrosa, F.O. Inoculation with Selected Strains of Azospirillum brasilense and A. lipoferum Improves Yields of Maize and Wheat in Brazil. Plant Soil 2010, 331, 413–425. [Google Scholar] [CrossRef]
- Rana, A.; Joshi, M.; Prasanna, R.; Shivay, Y.S.; Nain, L. Biofortification of Wheat through Inoculation of Plant Growth Promoting Rhizobacteria and Cyanobacteria. Eur. J. Soil Biol. 2012, 50, 118–126. [Google Scholar] [CrossRef]
- Bai, B.; Suri, V.K.; Kumar, A.; Choudhary, A.K. Tripartite Symbiosis of Pisum–Glomus–Rhizobium Leads to Enhanced Productivity, Nitrogen and Phosphorus Economy, Quality, and Biofortification in Garden Pea in a Himalayan Acid Alfisol. J. Plant Nutr. 2017, 40, 600–613. [Google Scholar] [CrossRef]
- Wang, Y.; Yang, X.; Zhang, X.; Dong, L.; Zhang, J.; Wei, Y.; Feng, Y.; Lu, L. Improved Plant Growth and Zn Accumulation in Grains of Rice (Oryza sativa L.) by Inoculation of Endophytic Microbes Isolated from a Zn Hyperaccumulator, Sedum Alfredii H. J. Agric. Food Chem. 2014, 62, 1783–1791. [Google Scholar] [CrossRef]
- Adak, A.; Prasanna, R.; Babu, S.; Bidyarani, N.; Verma, S.; Pal, M.; Shivay, Y.S.; Nain, L. Micronutrient Enrichment Mediated by Plant-Microbe Interactions and Rice Cultivation Practices. J. Plant Nutr. 2016, 39, 1216–1232. [Google Scholar] [CrossRef]
- Ulzen, J.; Abaidoo, R.C.; Mensah, N.E.; Masso, C.; Abdel Gadir, A.H. Bradyrhizobium Inoculants Enhance Grain Yields of Soybean and Cowpea in Northern Ghana. Front. Plant Sci. 2016, 7, 1770. [Google Scholar] [CrossRef] [PubMed]
- Mohammed, M.; Jaiswal, S.K.; Sowley, E.N.K.K.; Ahiabor, B.D.K.K.; Dakora, F.D. Symbiotic N2 Fixation and Grain Yield of Endangered Kersting’s Groundnut Landraces in Response to Soil and Plant Associated Bradyrhizobium Inoculation to Promote Ecological Resource-Use Efficiency. Front. Microbiol. 2018, 9, 2105. [Google Scholar] [CrossRef]
- Mohammed, M.; Jaiswal, S.K.; Dakora, F.D. Insights into the Phylogeny, Nodule Function and Biogeographic Distribution of Microsymbionts Nodulating the Orphan Kersting’s Groundnut [Macrotyloma geocarpum (Harms) Marechal & Baudet] in African Soils. Appl. Environ. Microbiol. 2019, 85, e00342-19. [Google Scholar] [CrossRef] [PubMed]
- Boddey, R.M.; Fosu, M.; Atakora, W.K.; Miranda, C.H.B.; Boddey, L.H.; Guimaraes, A.P.; Ahiabor, B.D.K. Cowpea (Vigna unguiculata) Crops in Africa Can Respond to Inoculation with Rhizobium. Exp. Agric. 2017, 53, 578–587. [Google Scholar] [CrossRef]
- Ndakidemi, P.A.; Dakora, F.D.; Nkonya, E.M.; Ringo, D.; Mansoor, H. Yield and Economic Benefits of Common Bean (Phaseolus vulgaris) and Soybean (Glycine max) Inoculation in Northern Tanzania. Aust. J. Exp. Agric. 2006, 46, 571–577. [Google Scholar] [CrossRef]
- Samago, T.Y.; Anniye, E.W.; Dakora, F.D. Grain Yield of Common Bean (Phaseolus vulgaris L.) Varieties Is Markedly Increased by Rhizobial Inoculation and Phosphorus Application in Ethiopia. Symbiosis 2018, 75, 245–255. [Google Scholar] [CrossRef]
- Alves, B.J.R.; Boddey, R.M.; Urquiaga, S. The Success of BNF in Soybean in Brazil. Plant Soil 2003, 252, 1–9. [Google Scholar] [CrossRef]
- de Souza, G.K.; Sampaio, J.; Longoni, L.; Ferreira, S.; Alvarenga, S.; Beneduzi, A. Soybean Inoculants in Brazil: An Overview of Quality Control. Braz. J. Microbiol. 2019, 50, 205–211. [Google Scholar] [CrossRef]
- Hungria, M.; Franchini, J.C.; Campo, R.J.; Crispino, C.C.; Moraes, J.Z.; Sibaldelli, R.N.R.; Mendes, I.C.; Arihara, J. Nitrogen Nutrition of Soybean in Brazil: Contributions of Biological N2 Fixation and N Fertilizer to Grain Yield. Can. J. Plant Sci. 2006, 86, 927–939. [Google Scholar] [CrossRef]
- Steenhoudt, O.; Vanderleyden, J. Azospirillum, a Free-Living Nitrogen-Fixing Bacterium Closely Associated with Grasses: Genetic, Biochemical and Ecological Aspects. FEMS Microbiol. Rev. 2000, 24, 487–506. [Google Scholar] [CrossRef] [PubMed]
- Bashan, Y. Inoculants of Plant Growth-Promoting Bacteria for Use in Agriculture. Biotechnol. Adv. 1998, 16, 729–770. [Google Scholar] [CrossRef]
- Ahmad, E.; Khan, M.S.; Zaidi, A. ACC Deaminase Producing Pseudomonas Putida Strain PSE3 and Rhizobium Leguminosarum Strain RP2 in Synergism Improves Growth, Nodulation and Yield of Pea Grown in Alluvial Soils. Symbiosis 2013, 61, 93–104. [Google Scholar] [CrossRef]
- Hungria, M.; Boddey, L.H.; Santos, M.A.; Vargas, M.A.T. Nitrogen Fixation Capacity and Nodule Occupancy by Bradyrhizobium japonicum and B. Elkanii Strains. Biol. Fertil. Soils 1998, 27, 393–399. [Google Scholar] [CrossRef]
- Ulzen, J.; Abaidoo, R.C.; Ewusi-mensah, N.; Osei, O.; Masso, C.; Opoku, A. Organic Manure Improves Soybean Response to Rhizobia Inoculant and P-Organic Manure Improves Soybean Response to Rhizobia Inoculant and P-Fertilizer in Northern Ghana. Front. Agron. 2020, 2, 9. [Google Scholar] [CrossRef]
- Mohammed, M.; Jaiswal, S.K.; Dakora, F.D. Distribution and Correlation between Phylogeny and Functional Traits of Cowpea (Vigna unguiculata L. Walp.)-Nodulating Microsymbionts from Ghana and South Africa. Sci. Rep. 2018, 8, 18006. [Google Scholar] [CrossRef]
- Pandya, N.D.; Desai, P.V.; Jadhav, H.P.; Sayyed, R.Z. Plant Growth Promoting Potential of Aspergillus sp. NPF7, Isolated from Wheat Rhizosphere in South Gujarat, India. Environ. Sustain. 2018, 1, 245–252. [Google Scholar] [CrossRef]
- Calvente, R.; Cano, C.; Ferrol, N.; Azcón-Aguilar, C.; Barea, J.M. Analysing Natural Diversity of Arbuscular Mycorrhizal Fungi in Olive Tree (Olea europaea L.) Plantations and Assessment of the Effectiveness of Native Fungal Isolates as Inoculants for Commercial Cultivars of Olive Plantlets. Appl. Soil Ecol. 2004, 26, 11–19. [Google Scholar] [CrossRef]
- Faye, A.; Dalpé, Y.; Ndung’u-Magiroi, K.; Jefwa, J.; Ndoye, I.; Diouf, M.; Lesueur, D. Evaluation of Commercial Arbuscular Mycorrhizal Inoculants. Can. J. Plant Sci. 2013, 93, 1201–1208. [Google Scholar] [CrossRef]
- Lovato, P.; Guillemin, J.P.; Gianinazzi, S. Application of Commercial Arbuscular Endomycorrhizal Fungal Inoculants to the Establishment of Micropropagated Grapevine Rootstock and Pineapple Plants. Agronomie 1992, 12, 873–880. [Google Scholar] [CrossRef]
- Tajini, F.; Trabelsi, M.; Drevon, J.J. Combined Inoculation with Glomus Intraradices and Rhizobium Tropici CIAT899 Increases Phosphorus Use Efficiency for Symbiotic Nitrogen Fixation in Common Bean (Phaseolus vulgaris L.). Saudi J. Biol. Sci. 2012, 19, 157–163. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.S.; Zaidi, A. Synergistic Effects of the Inoculation with Plant Growth-Promoting Rhizobacteria and an Arbuscular Mycorrhizal Fungus on the Performance of Wheat. Turk. J. Agric. For. 2007, 31, 355–362. [Google Scholar]
- Beltrano, J.; Ruscitti, M.; Arango, M.C.; Ronco, M. Effects of Arbuscular Mycorrhiza Inoculation on Plant Growth, Biological and Physiological Parameters and Mineral Nutrition in Pepper Grown under Different Salinity and p Levels. J. Soil Sci. Plant Nutr. 2013, 13, 123–141. [Google Scholar] [CrossRef]
- Wang, X.; Pan, Q.; Chen, F.; Yan, X.; Liao, H. Effects of Co-Inoculation with Arbuscular Mycorrhizal Fungi and Rhizobia on Soybean Growth as Related to Root Architecture and Availability of N and P. Mycorrhiza 2011, 21, 173–181. [Google Scholar] [CrossRef]
- Hamayun, M.; Khan, S.A.; Khan, A.L.; Tang, D.S.; Hussain, J.; Ahmad, B.; Anwar, Y.; Lee, I.J. Growth Promotion of Cucumber by Pure Cultures of Gibberellin-Producing Phoma sp. GAH7. World J. Microbiol. Biotechnol. 2010, 26, 889–894. [Google Scholar] [CrossRef]
- Hijri, M. Analysis of a Large Dataset of Mycorrhiza Inoculation Field Trials on Potato Shows Highly Significant Increases in Yield. Mycorrhiza 2016, 26, 209–214. [Google Scholar] [CrossRef]
- Contreras-Cornejo, H.A.; Macías-Rodríguez, L.; Cortés-Penagos, C.; López-Bucio, J. Trichoderma virens, a Plant Beneficial Fungus, Enhances Biomass Production and Promotes Lateral Root Growth through an Auxin-Dependent Mechanism in Arabidopsis. Plant Physiol. 2009, 149, 1579–1592. [Google Scholar] [CrossRef] [PubMed]
- Miteu, G.D.; Emmanuel, A.A.; Addeh, I.; Ojeokun, O.; Olayinka, T.; Godwin, J.S.; Folayan, E.O.; Benneth, E.O. The Application of Microbial Inoculants as a Green Tool towards Achieving Sustainable Agriculture. IPS J. Nutr. Food Sci. 2023, 2, 52–61. [Google Scholar] [CrossRef]
- Shahwar, D.; Mushtaq, Z.; Mushtaq, H.; Alqarawi, A.A.; Park, Y.; Alshahrani, T.S.; Faizan, S. Role of Microbial Inoculants as Bio Fertilizers for Improving Crop Productivity: A Review. Heliyon 2023, 9, e16134. [Google Scholar] [CrossRef]
- Catroux, G.; Hartmann, A.; Revellin, C. Trends in Rhizobial Inoculant Production and Use. Plant Soil 2001, 230, 21–30. [Google Scholar] [CrossRef]
- Zahran, H.H. Rhizobium-Legume Symbiosis and Nitrogen Fixation under Severe Conditions and in an Arid Climate. Microbiol. Mol. Biol. Rev. 1999, 63, 968–989. [Google Scholar] [CrossRef]
- Thomloudi, E.-E.; Tsalgatidou, P.C.; Douka, D.; Spantidos, T.-N.; Dimou, M.; Venieraki, A.; Katinakis, P. Multistrain versus Single-Strain Plant Growth Promoting Microbial Inoculants—The Compatibility Issue. Hell. Plant Prot. J. 2019, 12, 61–77. [Google Scholar] [CrossRef]
- Chandanie, W.A.; Kubota, M.; Hyakumachi, M. Interactions between Plant Growth Promoting Fungi and Arbuscular Mycorrhizal Fungus Glomus Mosseae and Induction of Systemic Resistance to Anthracnose Disease in Cucumber. Plant Soil 2006, 286, 209–217. [Google Scholar] [CrossRef]
- Kokkoris, V.; Li, Y.; Hamel, C.; Hanson, K.; Hart, M. Site Specificity in Establishment of a Commercial Arbuscular Mycorrhizal Fungal Inoculant. Sci. Total Environ. 2019, 660, 1135–1143. [Google Scholar] [CrossRef]
- Lupwayi, N.Z.; Olsen, P.E.; Sande, E.S.; Keyser, H.H.; Collins, M.M.; Singleton, P.W.; Rice, W.A. Inoculant Quality and Its Evaluation. Field Crop. Res. 2000, 65, 259–270. [Google Scholar] [CrossRef]
- Barquero, M.; Pastor-Buies, R.; Urbano, B. Gonzalez-Andres Challenges, Regulations and Future Actions in Biofertilizers in the European Agriculture: From the Lab to the Field. In Microbial Probiotics for Agricultural Systems, Sustainability in Plant and Crop Protection; Zúñiga-Dávila, D., González-Andrés, F., Ormeño-Orrillo, E., Eds.; Springer Nature Switzerland AG: Berlin/Heidelberg, Germany, 2019; pp. 45–70. ISBN 978-3-030-17596-2. [Google Scholar]
- Herridge, D.; Gemell, G.; Hartley, E. Legume Inoculants and Quality Control. In Proceedings of the ACIAR Proceeding 109e, Hanoi, Vietnam, 17–18 February 2001; pp. 105–115. [Google Scholar]
- O’Callaghan, M.; Ballard, R.A.; Wright, D. Soil Microbial Inoculants for Sustainable Agriculture: Limitations and Opportunities. Soil Use Manag. 2022, 38, 1340–1369. [Google Scholar] [CrossRef]
- Gaind, S.; Gaur, A.C. Shelf Life of Phosphate-Solubilizing Inoculants as Influenced by Type of Carrier, High Temperature, and Low Moisture. Can. J. Microbiol. 1990, 36, 846–849. [Google Scholar] [CrossRef]
- Balume, I.; Keya, O.; Karanja, N.; Woomer, P. Shelf-Life of Legume Inoculants in Different Carrier Materials Available in East Africa. Afr. Crop Sci. J. 2015, 23, 379. [Google Scholar] [CrossRef]
- Biradar, B.J.P.; Santhosh, G.P. Cell Protectants, Adjuvants, Surfactant and Preservative and Their Role in Increasing the Shelf Life of Liquid Inoculant Formulations of Pseudomonas fluorescens. Int. J. Pure Appl. Biosci. 2018, 6, 116–122. [Google Scholar] [CrossRef]
- Sehrawat, A.; Yadav, A.; Anand, R.C.; Kukreja, K.; Suneja, S. Enhancement of Shelf Life of Liquid Biofertilizer Containing Rhizobium sp. Infecting Mungbean (Vigna radiata L.). Legum. Res. 2017, 40, 684–690. [Google Scholar] [CrossRef]
- Deaker, R.; Hartley, E.; Gemell, G. Conditions Affecting Shelf-Life of Inoculated Legume Seed. Agriculture 2012, 2, 38–51. [Google Scholar] [CrossRef]
- Rout, M.E.; Chrzanowski, T.H. The Invasive Sorghum Halepense Harbors Endophytic N2-Fixing Bacteria and Alters Soil Biogeochemistry. Plant Soil 2009, 315, 163–172. [Google Scholar] [CrossRef]
- Takada, K.; Tanaka, N.; Kikuno, H.; Babil, P.; Shiwachi, H. Isolation of nitrogen-fixing bacteria from water yam (Dioscorea alata L.). Trop. Agric. Dev. 2019, 68, 198–203. [Google Scholar]
- Yan, X.; Wang, Z.; Mei, Y.; Wang, L.; Wang, X.; Xu, Q.; Peng, S.; Zhou, Y.; Wei, C. Isolation, Diversity, and Growth-Promoting Activities of Endophytic Bacteria from Tea Cultivars of Zijuan and Yunkang-10. Front. Microbiol. 2018, 9, 1848. [Google Scholar] [CrossRef] [PubMed]
- Lin, L.; Wei, C.; Chen, M.; Wang, H.; Li, Y.; Yang, L.; Yang, L.; An, Q. Complete Genome Sequence of Endophytic Nitrogen-Fixing Klebsiella variicola Strain DX120E. Stand. Genom. Sci. 2015, 10, 22. [Google Scholar] [CrossRef]
- Montañez, A.; Abreu, C.; Gill, P.R.; Hardarson, G.; Sicardi, M. Biological Nitrogen Fixation in Maize (Zea mays L.) by 15N Isotope-Dilution and Identification of Associated Culturable Diazotrophs. Biol. Fertil. Soils 2009, 45, 253–263. [Google Scholar] [CrossRef]
- Li, Y.; Li, Y.; Zhang, H.; Wang, M.; Chen, S. Diazotrophic Paenibacillus Beijingensis BJ-18 Provides Nitrogen for Plant and Promotes Plant Growth, Nitrogen Uptake and Metabolism. Front. Microbiol. 2019, 10, 1119. [Google Scholar] [CrossRef]
- Santi, C.; Bogusz, D.; Franche, C.; Perpignan, D.; Domitia, V.; Alduy, A.P.; Rhizogene, E. Biological Nitrogen Fixation in Non-Legume Plants. Ann. Bot. 2013, 111, 743–767. [Google Scholar] [CrossRef]
- Zhang, X.; Tong, J.; Dong, M.; Akhtar, K.; He, B. Isolation, Identification and Characterization of Nitrogen Fixing Endophytic Bacteria and Their Effects on Cassava Production. PeerJ 2022, 10, 7717. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mohammed, M.; Dakora, F.D. Microbes in Agriculture: Prospects and Constraints to Their Wider Adoption and Utilization in Nutrient-Poor Environments. Microorganisms 2024, 12, 2225. https://doi.org/10.3390/microorganisms12112225
Mohammed M, Dakora FD. Microbes in Agriculture: Prospects and Constraints to Their Wider Adoption and Utilization in Nutrient-Poor Environments. Microorganisms. 2024; 12(11):2225. https://doi.org/10.3390/microorganisms12112225
Chicago/Turabian StyleMohammed, Mustapha, and Felix D. Dakora. 2024. "Microbes in Agriculture: Prospects and Constraints to Their Wider Adoption and Utilization in Nutrient-Poor Environments" Microorganisms 12, no. 11: 2225. https://doi.org/10.3390/microorganisms12112225
APA StyleMohammed, M., & Dakora, F. D. (2024). Microbes in Agriculture: Prospects and Constraints to Their Wider Adoption and Utilization in Nutrient-Poor Environments. Microorganisms, 12(11), 2225. https://doi.org/10.3390/microorganisms12112225