Comparison of Carbapenemases and Extended-Spectrum β-Lactamases and Resistance Phenotypes in Hospital- and Community-Acquired Isolates of Klebsiella pneumoniae from Croatia
Abstract
:1. Introduction
2. Materials and Method
2.1. Bacterial Isolates and Patients
2.2. Antimicrobial Susceptibility Testing and Phenotypic Tests for Detection of ESBLs, p-AmpC, and Carbapenemases
2.3. Molecular Detection of Resistance Genes
2.4. Detection of Resistance Genes by the Inter-Array Kit CarbaResist
2.5. Conjugation
2.6. Characterization of Plasmids
2.7. Genotyping of the ISOLATES
2.8. Statistical Analysis
3. Results
3.1. Bacterial Isolates and Patients
3.2. Antimicrobial Susceptibility and Phenotypic Tests for β-Lactamases
3.3. Molecular Detection of Resistance Genes
3.4. Detection of Resistance Genes by Inter-Array Kit CarbaResist
3.5. Transfer of Resistance Determinants
3.6. Plasmid Characterization
3.7. Genotyping
4. Discussion
4.1. Carbapenemases
4.2. Extended-Spectrum β-Lactamases
4.3. Plasmid-Mediated Amp-C β-Lactamases
4.4. Other Resistance Genes
4.5. Antibiotic Susceptibility
4.6. Plasmid Characterization
4.7. Genotyping
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Antoniadou, A.; Kontopidou, F.; Poulakou, G.; Koratzanis, E.; Galani, I.; Papadomichelakis, E.; Kopterides, P.; Souli, M.; Armaganidis, A.; Giamarellou, H. Colistin-resistant isolates of Klebsiella pneumoniae emerging in intensive care unit patients: First report of a multiclonal cluster. J. Antimicrob. Chemother. 2007, 59, 786–790. [Google Scholar] [CrossRef]
- Martin, R.M.; Bachman, M.A. Colonization, Infection, and the Accessory Genome of Klebsiella pneumoniae. Front. Cell Infect. Microbiol. 2018, 8, 4. [Google Scholar] [CrossRef]
- Clegg, S.; Murphy, C.N. Epidemiology and Virulence of Klebsiella pneumoniae. Microbiol. Spectr. 2016, 4, 435–457. [Google Scholar] [CrossRef]
- Yao, B.; Xiao, X.; Zhout, X.; Zhang, I. Clinical and molecular characteristics of multi-clone carbapenem-resistant hypervirulent isolates in tertiary hospital in Bejing, China. Int. J. Infect. Dis. 2015, 37, 107–112. [Google Scholar] [CrossRef]
- Poirel, L.; Pitout, J.D.; Nordmann, P. Carbapenemases: Molecular diversity and clinical consequences. Future Microbiol. 2007, 2, 501–512. [Google Scholar] [CrossRef]
- Pitout, J.D.D.; Peirano, G.; Kock, M.M.; Strydom, K.A.; Matsumura, Y. The Global Ascendency of OXA-48-Type Carbapenemases. Clin. Microbiol. Rev. 2019, 33, 10–1128. [Google Scholar] [CrossRef]
- Albiger, B.; Glasner, C.; Struelens, M.J.; Grundmann, H.; Monnet, D.L. European Survey of Carbapenemase-Producing Enterobacteriaceae (EuSCAPE) working group. Carbapenemase-producing Enterobacteriaceae in Europe: Assessment by national experts from 38 countries. Euro Surveill. 2015, 20, 45. [Google Scholar] [CrossRef]
- This is EARS. Available online: https://www.ecdc.europa.eu/en/publications-data/antimicrobial-resistance-eueea-ears-net-annual-epidemiological-report-2020 (accessed on 15 September 2024).
- Poirel, L.; Heritier, C.; Tolun, V.; Nordmann, P. Emergence of oxacillinases-mediated resistance to imipenem in Klebsiella pneumoniae. Antimicrob. Agents Chemother. 2004, 48, 15–22. [Google Scholar] [CrossRef]
- Nazik, H.; Aydin, S.; Albayrak, R.; Bilgi, E.A.; Yildiz, I.; Kuvat, N.; Kelesoglu, F.M.; Kelesoglu, F.M.; Pakaştiçali, N.; Yilmaz, F.; et al. Detection and spread of OXA-48-producing Klebsiella oxytoca isolates in Istanbul, Turkey. Southeast Asian J. Trop. Med. Public. Health 2014, 5, 123–129. [Google Scholar]
- Carrer, A.; Poirel, L.; Eraksoy, H.; Cagatay, A.; Badur, S.; Nordmann, P. Spread of OXA-48-positive carbapenem-resistant Klebsiella pneumoniae isolates in Istanbul, Turkey. Antimicrob. Agents Chemother. 2008, 52, 2950–2954. [Google Scholar] [CrossRef]
- Cuzon, G.; Quanich, J.; Gondret, R.; Naas, T.; Nordmann, P. Outbreak of OXA-48 positive carbapenem-resistant Klebsiella pneumoniae isolates in France. Antimicrob. Agents Chemother. 2011, 55, 2420–2423. [Google Scholar] [CrossRef] [PubMed]
- Pfeifer, Y.; Schlatterrer, K.; Engelmann, E.; Schiller, R.A.; Frangenberg, H.D.; Holfelder, M.; Witte, W.; Nordmann, P.; Poirel, L. Emergence of OXA-48-type carbapenemase-producing Enterobacteriaceae in German Hospitals. Antimicrob. Agents Chemother. 2012, 56, 2125–2128. [Google Scholar] [CrossRef] [PubMed]
- Lazar, D.S.; Nica, M.M.; Dascalu, A.; Oprisan, C.; Albu, O.; Codreanu, D.R.; Kosa, A.G.; Popescu, C.P.; Florescu, S.A. Carbapenem-Resistant NDM and OXA-48-like Producing, K. pneumoniae: From Menacing Superbug to a Mundane Bacteria; A Retrospective Study in a Romanian Tertiary Hospital. Antibiotics 2024, 12, 435. [Google Scholar] [CrossRef]
- Benulič, K.; Pirš, M.; Couto, N.; Chlebowicz, M.; Rossen, J.W.A.; Zorecm, T.M.; Seme, K.; Poljak, M.; Lejko Zupanc, T.; Ružić-Sabljić, E.; et al. Whole genome sequencing characterization of Slovenian carbapenem-resistant Klebsiella pneumoniae, including OXA-48 and NDM-1 producing outbreak isolates. PLoS ONE 2020, 15, e0231503. [Google Scholar] [CrossRef] [PubMed]
- Dedeić Ljubović, A.; Granov, Đ.; Zahirović, E.; Čamdžić, A.; Muhić, A.; Salimović-Bešić, I. Predominance of OXA-48 carbapenemase-producing Klebsiella pneumoniae strains in tertiary hospital in Sarajevo, Bosnia and Herzegovina. Biomol. Biomed. 2024, 6, 1178–1185. [Google Scholar] [CrossRef]
- Poirel, L.; Naas, T.; Nordmann, P. Diversity, epidemiology, and genetics of class D β-lactamases. Antimicrob. Agents Chemother. 2010, 54, 24–38. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.R.; Lee, J.H.; Park, K.S.; Kim, Y.B.; Jeong, B.C.; Lee, S.H. Global Dissemination of Carbapenemase-Producing Klebsiella pneumoniae: Epidemiology, Genetic Context, Treatment Options, and Detection Methods. Front. Microbiol. 2016, 7, 895. [Google Scholar] [CrossRef]
- Aubert, D.; Naas, T.; Héritier, C.; Poirel, L.; Nordmann, P. Functional characterization of IS1999, an IS4 family element involved in mobilization and expression of β-lactam resistance genes. J. Bacteriol. 2006, 188, 6506–6514. [Google Scholar] [CrossRef]
- Di Pilato, V.; Errico, G.M.; Giani, T.; Del Grosso, M.; Antonelli, A.; David, S.; Lindh, E.; Camilli, R.; Annensen, D.M.; Rossolini, G.M.; et al. AR-ISS Laboratory Study Group on carbapenemase-producing Klebsiella pneumoniae. The changing epidemiology of carbapenemase-producing Klebsiella pneumoniae in Italy: Toward polyclonal evolution with emergence of high-risk lineages. J. Chemother. 2021, 19, 355–361. [Google Scholar] [CrossRef]
- Conte, V.; Monaco, M.; Gian, T.; D’Ancona, F.; Moro, M.L.; Arena, F.; D’Andrea, M.M.; Rossolini, G.M.; Pantosti, A.; AR-ISS Study Group on Carbapenemase-Producing, K. pneumoniae. Molecular epidemiology of KPC-producing Klebsiella pneumoniae from invasive infections in Italy: Increasing diversity with predominance of the ST512 clade II sublineage. J. Antimicrob. Chemother. 2016, 71, 3386–3391. [Google Scholar] [CrossRef]
- Hallal Ferreira Raro, O.; Nordmann, P.; Dominguez Pino, M.; Findlay, J.; Poirel, L. Emergence of Carbapenemase-Producing Hypervirulent Klebsiella pneumoniae in Switzerland. Antimicrob. Agents. Chemother. 2023, 67, e0142-22. [Google Scholar] [CrossRef]
- Tryfinopoulou, K.; Linkevicius, M.; Pappa, O.; Alm, E.; Karadimas, K.; Svartström, O.; Polemis, M.; Mellou, K.; Maragkos, A.; Brolund, A.; et al. Emergence and persistent spread of carbapenemase-producing Klebsiella pneumoniae high-risk clones in Greek hospitals, 2013 to 2022. Euro. Surveill. 2023, 28, 2300571. [Google Scholar] [CrossRef]
- Ramette, A.; Gasser, M.; Nordmann, P.; Zbinden, R.; Schrenzel, J.; Perisa, D.; Kronenberg, A. Temporal and regional incidence of carbapenemase-producing Enterobacterales, Switzerland, 2013 to 2018. Euro. Surveill. 2021, 26, 1900760. [Google Scholar] [CrossRef]
- Papagiannitsis, C.C.; Dolejska, M.; Izdebski, R.; Giakkoupi, P.; Skálová, A.; Chudějová, K.; Dobiasova, H.; Vatopoulos, A.C.; Derde, L.P.; Bonten, M.J.; et al. Characterisation of IncA/C2 plasmids carrying an In416-like integron with the blaVIM-19 gene from Klebsiella pneumoniae ST383 of Greek origin. Int. J. Antimicrob. Agents 2016, 47, 158–162. [Google Scholar] [CrossRef]
- Zarras, C.; Karampatakis, T.; Pappa, S.; Iosifidis, E.; Vagdatli, E.; Roilides, E.; Papa, A. Genetic Characterization of Carbapenem-Resistant Klebsiella pneumoniae Clinical Isolates in a Tertiary Hospital in Greece, 2018–2022. Antibiotics 2023, 28, 976. [Google Scholar] [CrossRef] [PubMed]
- Zarfel, G.; Hoenigl, M.; Würstl, B.; Leitner, E.; Salzer, H.J.; Valentin, T.; Posch, J.; Krause, R.; Grisold, A.J. Emergence of carbapenem-resistant Enterobacteriaceae in Austria, 2001–2010. Clin. Microbiol. Infect. 2011, 17, E5–E8. [Google Scholar] [CrossRef]
- Ludden, C.; Lötsch, F.; Alm, E.; Kumar, N.; Johansson, K.; Albiger, B.; Huang, T.D.; Denis, O.; Hammerum, A.M.; Hasman, H.; et al. Cross-border spread of blaNDM-1- and blaOXA-48-positive Klebsiella pneumoniae: A European collaborative analysis of whole genome sequencing and epidemiological data, 2014 to 2019. Euro. Surveill. 2020, 25, 2000627. [Google Scholar] [CrossRef]
- Cannateli, A.; Giani, T.; D’Andrea, M.M.; Di Pilato, V.; Arena, F.; Conte, V.; Tryfinopoulou, K.; Vatopoulos, A.; Rossolini, G.M.; COLGRIT Study Group. MgrB inactivation is a common mechanism of colistin resistance in KPC-producing Klebsiella pneumoniae of clinical origin. Antimicrob. Agents Chemother. 2014, 58, 5696–5703. [Google Scholar] [CrossRef]
- Liu, Y.Y.; Wang, Y.; Walsh, T.R.; Yi, L.X.; Zhang, R.; Spencer, J.; Tian, G.; Dong, B.; Huang, X.; Yu, L.F.; et al. Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: A microbiological and molecular biological study. Lancet. Infect. Dis. 2016, 16, 161–168. [Google Scholar] [CrossRef]
- Mammina, C.; Bonura, C.; Di Bernardo, F.; Aleo, A.; Fasciana, T.; Sodano, C.; Saporito, M.A.; Verde, M.S.; Tetamo, R.; Palma, D.M. Ongoing spread of colistin-resistant Klebsiella pneumoniae in different wards of an acute general hospital, Italy, June to December 2011. Euro. Surveill. 2012, 16, 20248. [Google Scholar] [CrossRef]
- Daoud, L.; Allam, M.; Collyns, T.; Ghazawi, A.; Saleem, A.; Al-Marzooq, F. Extreme resistance to the novel siderophore-cephalosporin cefiderocol in an extensively drug-resistant Klebsiella pneumoniae strain causing fatal pneumonia with sepsis: Genomic analysis and synergistic combinations for resistance reversal. Eur. J. Clin. Microbiol. Infect. Dis. 2023, 42, 1395–1400. [Google Scholar] [CrossRef] [PubMed]
- Coppi, M.; Antonelli, A.; Niccolai, C.; Bartolini, A.; Bartolini, L.; Grazzini, M.; Mantengoli, E.; Farese, A.; Pieralli, F.; Mechi, M.T.; et al. Nosocomial outbreak by NDM-1-producing Klebsiella pneumoniae highly resistant to cefiderocol, Florence, Italy, August 2021 to June 2022. Euro. Surveill. 2022, 27, 2200795. [Google Scholar] [CrossRef]
- Carattoli, A.; Seiffert, S.N.; Schwendener, S.; Perreten, V.; Endimiani, A. Differentiation of IncL and IncM plasmids associated with the spread of clinically relevant antimicrobial resistance. PLoS ONE 2015, 10, e0123063. [Google Scholar] [CrossRef] [PubMed]
- European Committee for Antimicrobial Susceptibility Testing. Breakpoint Tables for Interpretation of MICs and Zone Diameters. Version 12. 2022. Available online: http://www.eucast.org (accessed on 1 October 2023).
- Clinical Laboratory Standard Institution. Performance Standards for Antimicrobial Susceptibility Testing, 28th ed.; Approved Standard M100-S22; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2018. [Google Scholar]
- Magiorakos, A.P.; Srinivasan, A.; Carey, R.B.; Carmeli, Y.; Falagas, M.E.; Giske, C.G.; Harbarth, S.; Hindler, J.F.; Kahlmeter, G.; Olsson-Liljequist, B.; et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: An international expert proposal for interim standard definitions for acquired resistance. Clin. Microbiol. Infect. 2002, 18, 268–281. [Google Scholar] [CrossRef]
- Jarlier, V.; Nicolas, M.H.; Fournier, G.; Philippon, A. Extended broad-spectrum beta-lactamases conferring transferable resistance to newer beta-lactam agents in Enterobacteriaceae: Hospital prevalence and susceptibility patterns. Rev. Infect. Dis. 1988, 10, 867–878. [Google Scholar] [CrossRef] [PubMed]
- Krilanović, M.; Tomić-Paradžik, M.; Meštrović, T.; Beader, N.; Herljević, Z.; Conzemius, R.; Barišić, I.; Vraneš, J.; Elveđi-Gašparović, V.; Bedenić, B.E. Extended-spectrum β-lactamases and plasmid diversity in urinary isolates of Escherichia coli in Croatia: A nation-wide, multicentric, retrospective study. Folia Microbiol. 2020, 65, 649–667. [Google Scholar] [CrossRef]
- Jacoby, G.A. AmpC β-lactamases. J. Clin. Microbiol. 2009, 22, 161–182. [Google Scholar] [CrossRef]
- Black, J.A.; Moland, E.S.; Thomson, K.S. AmpC disk test for detection of plasmid-mediated AmpC beta-lactamases in Enterobacteriaceae lacking chromosomal AmpC β-lactamases. J. Clin. Microbiol. 2005, 43, 3110–3113. [Google Scholar] [CrossRef]
- Amjad, A.; Mirza, I.; Abbasi, S.; Farwa, U.; Malik, N.; Zia, F. Modified Hodge test: A simple and effective test for detection of carbapenemase production. Iran. J. Microbiol. 2011, 3, 189–193. [Google Scholar]
- Lee, K.; Lim, Y.S.; Yong, D.; Yum, J.H.; Chong, Y. Evaluation of the Hodge test and the imipenem-EDTA-double-disk synergy test for differentiating metallo-β-lactamase-producing isolates of Pseudomonas spp. and Acinetobacter spp. J. Clin. Microbiol. 2003, 41, 4623–4629. [Google Scholar] [CrossRef]
- van der Zwaluw, K.; De Haan, A.; Pluister, G.N.; Bootsma, H.J.; de Neeling, A.J. The Carbapenem Inactivation Method (CIM), a simple and low-cost alternative for the carba NP test to assess phenotypic carbapenemase activity in Gram-negative rods. PLoS ONE 2015, 10, e0123690. [Google Scholar] [CrossRef] [PubMed]
- MacDonald, J.W.; Chibabhai, V. Evaluation of the RESIST-4 O.K.N.V immunochromatographic lateral flow assay for the rapid detection of OXA-48, KPC, NDM and VIM carbapenemases from cultured isolates. Access Microbiol. 2019, 1, e000031. [Google Scholar] [CrossRef] [PubMed]
- Arlet, G.; Brami, G.; Decre, D.; Flippo, A.; Gaillot, O.; Lagrange, P.H.; Philippon, A. Molecular characterization by PCR restriction fragment polymorphism of TEM β-lactamases. FEMS Microbiol. Lett. 1995, 134, 203–208. [Google Scholar] [CrossRef]
- Nüesch-Inderbinen, M.T.; Hächler, H.; Kayser, F.H. Detection of genes coding for extended-spectrum SHV β-lactamases in clinical isolates by a molecular genetic method, and comparison with the E test. Eur. J. Clin. Microbiol. Infect. Dis. 1996, 15, 398–402. [Google Scholar] [CrossRef]
- Woodford, N.; Ward, M.E.; Kaufmann, M.E.; Turton, J.; Fagan, E.J.; James, D.; Johnson, A.P.; Pike, R.; Warner, M.; Cheasty, T.; et al. Community and hospital spread of Escherichia coli producing CTX-M extended-spectrum β-lactamases in the UK. J. Antimicrob. Chemother. 2004, 54, 735–743. [Google Scholar] [CrossRef] [PubMed]
- Robicsek, A.; Jacoby, G.A.; Hooper, D.C. The worldwide emergence of plasmid-mediated quinolone resistance. Lancet. Infect. Dis. 2006, 6, 629–640. [Google Scholar] [CrossRef]
- Woodford, N.; Fagan, E.J.; Ellington, M.J. Multiplex PCR for rapid detection of genes encoding CTX-M extended-spectrum β-lactamases. J. Antimicrob. Chemother. 2006, 57, 154–155. [Google Scholar] [CrossRef]
- Perez-Perez, F.J.; Hanson, N.D. Detection of plasmid-mediated AmpC β-lactamase genes in clinical isolates by using multiplex PCR. J. Clin. Microbiol. 2002, 40, 2153–2162. [Google Scholar] [CrossRef]
- Poirel, L.; Walsh, T.R.; Cuveiller, V.; Nordman, P. Multiplex PCR for detection of acquired carbapenemases genes. Diagn. Microbiol. Infect. Dis. 2011, 70, 119–123. [Google Scholar] [CrossRef]
- Gianni, T.; Conte, V.; Di Pilato, V.; Aschbacher, R.; Weber, C.; Rossolini, G.M. Escherichia coli from Italy producing OXA-48 carbapenemase encoded by a novel Tn1999 Transposon derivative. Antimicro. B Agents Chemother. 2012, 56, 2211–2213. [Google Scholar] [CrossRef]
- Saladin, M.; Cao, V.T.B.; Lambert, T.; Donay, J.L.; Hermann, J.; Ould-Hocine, L. Diversity of CTX-M β-lactamases and their promoter regions from Enterobacteriaceae isolated in three Parisian hospitals. FEMS Microbiol. Lett. 2002, 209, 161–168. [Google Scholar] [CrossRef] [PubMed]
- Elwell, L.P.; Falkow, S. The characterization of R plasmids and the detection of plasmid-specified genes. In Antibiotics in Laboratory Medicine, 2nd ed.; Lorian, V., Ed.; Williams and Wilkins: Baltimore, MD, USA, 1986; pp. 683–721. [Google Scholar]
- Carattoli, A.; Bertini, A.; Villa, L.; Falbo, V.; Hopkins, K.L.; Threfall, E.J. Identification of plasmids by PCR-based replicon typing. J. Microbiol. Methods 2005, 63, 219–228. [Google Scholar] [CrossRef] [PubMed]
- Diancourt, L.; Passet, V.; Verhoef, J.; Grimont, P.A.; Brisse, S. Multilocus sequence typing of Klebsiella pneumoniae nosocomial isolates. J. Clin. Microbiol. 2005, 43, 4178–4182. [Google Scholar] [CrossRef] [PubMed]
- Livermore, D.M.; Walsh, T.R.; Toleman, M.; Woodford, N. Balkan NDM-1: Escape or transplant? Lancet Infect. Dis. 2011, 11, 164. [Google Scholar] [CrossRef]
- D’Achille, G.; Nunzi, I.; Fioriti, S.; Cirioni, O.; Brescini, L.; Giacometti, A.; Teodori, L.; Brenciani, A.; Giovanetti, E.; Mingoia, M.; et al. Clonal dissemination of Klebsiella pneumoniae carrying blaOXA-48 gene in, a central Italy hospital. J. Glob. Antimicrob. Resist. 2024, 38, 339–340. [Google Scholar] [CrossRef]
- Chatzidimitriou, M.; Kavvada, A.; Kavvadas, D.; Kyriazidi, M.A.; Eleftheriadis, K.; Varlamis, S.; Papaliagkas, V.; Mitka, S. Carbapenem-resistant Klebsiella pneumoniae in the Balkans: Clonal distribution and associated resistance determinants. Acta. Microbiol. Immunol. Hung. 2024, 21, 10–24. [Google Scholar] [CrossRef]
- Brkić, S.; Božić, D.D.; Stojanović, N.; Bulbuk, D.; Jovanović, M.; Ćirković, I. Carbapenemase-producing Klebsiella pneumoniae in community settings: A cross-sectional study in Belgrade, Serbia. Future Microbiol. 2023, 18, 389–397. [Google Scholar] [CrossRef]
- Tsai, Y.M.; Wang, S.; Chiu, H.C.; Kao, C.Y.; Wen, L.L. Combination of modified carbapenem inactivation method (mCIM) and EDTA-CIM (eCIM) for phenotypic detection of carbapenemase-producing Enterobacteriaceae. BMC Microbiol. 2020, 17, 315. [Google Scholar] [CrossRef]
- Jelić, M.; Butić, I.; Plečko, V.; Cipriš, I.; Jajić, I.; Bejuk, D.; Koščak, I.; Marinković, S.; Pal, M.P.; Andrašević, A.T. KPC-Producing Klebsiella pneumoniae Isolates in Croatia: A Nationwide Survey. Microb. Drug Resist. 2016, 22, 662–667. [Google Scholar] [CrossRef]
- Baraniak, A.; Izdebski, R.; Herda, M.; Fiett, J.; Hryniewicz, W.; Gniadkowski, M.; Kern-Zdanowicz, I.; Filczak, K.; Łopaciuk, U. Emergence of Klebsiella pneumoniae ST258 with KPC-2 in Poland. Antimicrob. Agents Chemother. 2009, 53, 4565–4567. [Google Scholar] [CrossRef]
- Todorova, B.; Sabtcheva, S.; Ivanov, I.N.; Lesseva, M.; Chalashkanov, T.; Ioneva, M.; Bachvarova, A.; Dobreva, E.; Kantardjiev, T. First clinical cases of NDM-1-producing Klebsiella pneumoniae from two hospitals in Bulgaria. J. Infect. Chemother. 2016, 22, 837–840. [Google Scholar] [CrossRef] [PubMed]
- Seiffert, S.N.; Marschall, J.; Perreten, V.; Carattoli, A.; Furrer, A.; Endimiani, A. Emergence of Klebsiella pneumoniae co-producing NDM-1, OXA-48, CTX-M-15, CMY-16, QnrA and ArmA in Switzerland. Int. J. Antimicrob. Agents 2014, 44, 260–262. [Google Scholar] [CrossRef] [PubMed]
- Tafaj, S.; Gona, F.; Kapisyzi, P.; Cani, A.; Hatibi, A.; Bino, S.; Fico, A.; Koraqi, A.; Kasmi, G.; Cirillo, D. Isolation of the first New Delhi metallo-ß-lactamase-1 (NDM-1)-producing and colistin-resistant Klebsiella pneumoniae sequence type ST15 from a digestive carrier in Albania, 2018. J. Glob. Antimicrob. Resist. 2019, 17, 142–144. [Google Scholar] [CrossRef] [PubMed]
- Unlu, O.; Demirci, M. Detection of carbapenem-resistant Klebsiella pneumoniae strains harboring carbapenemase, β-lactamase and quinolone resistance genes in intensive care unit patients. GMS Hyg. Infect. Control 2020, 30, 15. [Google Scholar] [CrossRef]
- Wang, X.; Wang, Y.; Zhou, L.J.; Yin, W.; Wang, S.; Zhang, S.; Shen, J.; Shen, Z.; Wang, Y. Emergence of a novel mobile colistin resistance gene, mcr-8, in NDM-producing Klebsiella pneumoniae. Emerg. Microbes Infect. 2018, 4, 122. [Google Scholar] [CrossRef]
- Yuan, Y.; Li, Y.; Wang, G.; Li, C.; Chang, Y.F.; Chen, W.; Nian, S.; Mao, Y.; Zhang, J.; Zhong, F.; et al. blaNDM-5 carried by a hypervirulent Klebsiella pneumoniae with sequence type 29. Antimicrob. Resist. Infect. Control. 2019, 1, 140. [Google Scholar] [CrossRef]
- Manohar, P.; Leptihn, S.; Lopes, B.S.; Nachimuthu, R. Dissemination of carbapenem resistance and plasmids encoding carbapenemases in Gram-negative bacteria isolated in India. JAC Antimicrob. Resist. 2021, 24, dlab015. [Google Scholar] [CrossRef]
- Kopotsa, K.; Osei Sekyere, J.; Mbelle, N.M. Plasmid evolution in carbapenemase-producing Enterobacteriaceae: A review. Ann. N. Y. Acad. Sci. 2019, 1457, 61–91. [Google Scholar] [CrossRef]
Characteristics | UHCZ | UHCSM | Community Isolates |
---|---|---|---|
Number of isolates | 37 | 46 | 30 |
Number and % of ESBL-positive isolates | 91.9% (34/37) | 93.5% (43/46) | 83.3% (25/30) |
Number and % of AmpC-positive isolates | 0.0% (0/37) | 0.0% (0/46) | 0.0% (0/30) |
HODGE test | 73.0% (27/37) | 76.1% (35/46) | 100.0% (30/30) |
CIM test | 86.4% (32/37) | 76.1% (35/46) | 100.0% (30/30) |
AMC-R | 100.0% (37/37) | 100.0% (46/46) | 100.0% (30/30) |
TZP-R | 100.0% (37/37) | 67.4% (31/46) | 100.0% (30/30) |
CXM-R | 97.3% (36/37) | 100.0% (46/46) | 86.7% (26/30) |
CAZ-R | 97.3% (36/37) | 100.0% (46/46) | 86.7% (26/30) |
CTX-R | 97.3% (36/37) | 100.0% (46/46) | 86.7% (26/30) |
CRO-R | 97.3% (36/37) | 100.0% (46/46) | 86.7% (26/30) |
FEP-R | 97.3% (36/37) | 100.0% (46/46) | 86.7% (26/30) |
IMP-R | 75.7% (28/37) | 71.7% (33/46) | 53.3% (16/30) |
MEM-R | 78.4% (29/37) | 93.5% (43/46) | 66.7% (20/30) |
ERT-R | 100.0% (37/37) | 100.0% (46/46) | 100.0% (30/30) |
GM-R | 62.1% (23/37) | 89.1% (41/46) | 56.7% (17/30) |
AMI-R | 32.4% (12/37) | 56.5% (26/46) | 16.7% (5/30) |
CIP-R | 94.6% (35/37) | 100.0% (46/46) | 80.0% (24/30) |
COL-R | 8.1% (3/37) | 15.2% (7/46) | 0.0% (0/30) |
CZA-R | 8.1% (3/37) | 17.4% (8/46) | 0.0% (0/30) |
blaCTX-M | 91.9% (34/37) | 93.4% (43/46) | 83.3% (25/30) |
blaTEM | 5.4% (2/37) | 15.2% (7/46) | 0.0% (0/30) |
blaOXA-48 | 91.9% (34/37) | 93.4% (43/46) | 96.7% (29/30) |
blaKPC | 0.0% (0/37) | 2.2% (1/46) | 0.0% (0/30) |
blaNDM | 10.8% (4/37) | 4.3% (2/46) | 3.3% (1/30) |
Inc L plasmid | 48.6% (18/37) | 43.5% (20/46) | 33.3% (10/30) |
IncY plasmid | 2.7% (1/37) | 8.7% (4/46) | 0.0% (0/30) |
IncW plasmid | 5.4% (2/37) | 17.4% (8/46) | 0.0% (0/30) |
IncP plasmid | 0.0% (0/37) | 2.2% (1/46) | 0.0% (0/30) |
Isolate and Protocol Number | Center | β-Lactam | AG | SUL | THR | Efflux |
---|---|---|---|---|---|---|
K. pneumoniae 36 (47168) | UHCSM | blaCTX-M-15 blaSHV blaOXA-1 blaOXA-48 | aac(6′)-Ib | dfrA14 | oqxA, oqxB | |
K. pneumoniae 38 (39118) | UHCSM | blaCTX-M-15 blaSHV bla0XA-48 | aac(6′)-Ib | dfrA14 | oqxA, oqxB | |
K. pneumoniae 39 (23199) | UHCSM | blaCTX-M-15 blaSHV blaOXA-1 blaOXA-48 | aac(6′)-Ib | dfrA14 | oqxA, oqxB | |
K. pneumoniae 40 (152854) | UHCZ | blaCTX-M-15 blaSHV blaOXA-1 blaNDM | aac(6′)-Ib aphA | sul1 | oqxA, |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Car, H.; Dobrić, M.; Pospišil, M.; Nađ, M.; Luxner, J.; Zarfel, G.; Grisold, A.; Nikić-Hecer, A.; Vraneš, J.; Bedenić, B. Comparison of Carbapenemases and Extended-Spectrum β-Lactamases and Resistance Phenotypes in Hospital- and Community-Acquired Isolates of Klebsiella pneumoniae from Croatia. Microorganisms 2024, 12, 2224. https://doi.org/10.3390/microorganisms12112224
Car H, Dobrić M, Pospišil M, Nađ M, Luxner J, Zarfel G, Grisold A, Nikić-Hecer A, Vraneš J, Bedenić B. Comparison of Carbapenemases and Extended-Spectrum β-Lactamases and Resistance Phenotypes in Hospital- and Community-Acquired Isolates of Klebsiella pneumoniae from Croatia. Microorganisms. 2024; 12(11):2224. https://doi.org/10.3390/microorganisms12112224
Chicago/Turabian StyleCar, Haris, Mirela Dobrić, Mladen Pospišil, Marina Nađ, Josefa Luxner, Gernot Zarfel, Andrea Grisold, Ana Nikić-Hecer, Jasmina Vraneš, and Branka Bedenić. 2024. "Comparison of Carbapenemases and Extended-Spectrum β-Lactamases and Resistance Phenotypes in Hospital- and Community-Acquired Isolates of Klebsiella pneumoniae from Croatia" Microorganisms 12, no. 11: 2224. https://doi.org/10.3390/microorganisms12112224
APA StyleCar, H., Dobrić, M., Pospišil, M., Nađ, M., Luxner, J., Zarfel, G., Grisold, A., Nikić-Hecer, A., Vraneš, J., & Bedenić, B. (2024). Comparison of Carbapenemases and Extended-Spectrum β-Lactamases and Resistance Phenotypes in Hospital- and Community-Acquired Isolates of Klebsiella pneumoniae from Croatia. Microorganisms, 12(11), 2224. https://doi.org/10.3390/microorganisms12112224