An In Vitro Artificial Wound Slough–Biofilm Model Developed for Evaluating a Novel Antibiofilm Technology
Abstract
:1. Introduction
2. Materials and Methods
2.1. Wound Treatment Solutions
2.2. Bacterial Culture
2.3. AWS Preparation
2.4. Silver Penetration
2.5. Antibiofilm Efficacy
2.6. Confocal Laser Scanning Microscopy (CLSM)
2.7. Statistical Analysis
3. Results
3.1. Electrochemically Measured MMC and AgNO3 Penetration of AWS
3.2. Antibiofilm Efficacy of MMC and AgNO3 Test Solutions on AWS–Biofilm Model
3.3. Antibiofilm Efficacy Analysis by Confocal Microscopy
4. Discussion
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sen, C.K. Human wound and its burden: Updated 2020 compendium of estimates. Adv. Wound Care 2021, 10, 281–292. [Google Scholar] [CrossRef] [PubMed]
- Järbrink, K.; Ni, G.; Sönnergren, H.; Schmidtchen, A.; Pang, C.; Bajpai, R.; Car, J. The humanistic and economic burden of chronic wounds: A protocol for a systematic review. Syst. Rev. 2017, 6, 15. [Google Scholar] [CrossRef] [PubMed]
- Percival, S.L.; Suleman, L. Slough and biofilm: Removal of barriers to wound healing by desloughing. J. Wound Care 2015, 24, 498–510. [Google Scholar] [CrossRef]
- Townsend, E.C.; Cheong, J.Z.A.; Radzietza, M.; Fritz, B.; Malone, M.; Bjarnsholt, T.; Ousey, K.; Swanson, T.; Schultz, G.; Gibson, A.L.F.; et al. What is slough? Defining the proteomic and microbial composition of slough and its implications for wound healing. Wound Repair. Regen. 2024; Epub ahead of print. [Google Scholar] [CrossRef] [PubMed]
- Zhao, G.; Usui, M.L.; Lippman, S.I.; James, G.A.; Stewart, P.S.; Fleckman, P.; Olerud, J.E. Biofilms and Inflammation in Chronic Wounds. Adv. Wound Care 2013, 2, 389–399. [Google Scholar] [CrossRef]
- Atkin, L. Understanding methods of wound debridement. Br. J. Nurs. 2014, 23, S10–S15. [Google Scholar] [CrossRef] [PubMed]
- Strohal, R.; Dissemond, J.; O’brien, J.J.; Piaggesi, A.; Rimdeika, R.; Young, T.; Apelqvist, J. EWMA document: Debridement. An updated overview and clarification of the principle role of debridement. J. Wound Care 2013, 22, 5. [Google Scholar] [CrossRef]
- Schultz, G.S.; Sibbald, R.G.; Falanga, V.; Ayello, E.A.; Dowsett, C.; Harding, K.; Romanelli, M.; Stacey, M.C.S.; Teot, L.; Vanscheidt, W. Wound bed preparation: A systematic approach to wound management. Wound Repair Regen. 2003, 11 (Suppl. 1), S1–S28. [Google Scholar] [CrossRef]
- McCarty, S.M.; Cochrane, C.A.; Clegg, P.D.; Percival, S.L. The role of endogenous and exogenous enzymes in chronic wounds: A focus on the implications of aberrant levels of both host and bacterial proteases in wound healing. Wound Repair. Regen. 2012, 20, 125–136. [Google Scholar] [CrossRef] [PubMed]
- Choudhary, V.; Choudhary, M.; Pandey, S.; Chauhan, V.D.; Hasnani, J.J. Maggot debridement therapy as primary tool to treat chronic wound of animals. Vet. World 2016, 9, 403–409. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Fairlamb, D.M.; Kelety, B.; Bachert, A.; Scholtissek, A.; Jones, R.D.; Davis, S.C.; Kirsner, R.S. Preliminary evidence supporting a new enzymatic debridement product for use in chronic wounds. Int. Wound J. 2023, 20, 2095–2104. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Shoham, Y.; Krieger, Y.; Tamir, E.; Silberstein, E.; Bogdanov-Berezovsky, A.; Haik, J.; Rosenberg, L. Bromelain-based enzymatic debridement of chronic wounds: A preliminary report. Int. Wound J. 2018, 15, 769–775. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Mayer, D.O.; Tettelbach, W.H.; Ciprandi, G.; Downie, F.; Hampton, J.; Hodgson, H.; Lazaro-Martinez, J.L.; Probst, A.; Schultz, G.; Stürmer, E.K.; et al. Best practice for wound debridement. J. Wound Care 2024, 33 (Suppl. 6b), S1–S32. [Google Scholar] [CrossRef] [PubMed]
- Chen, R.; Salisbury, A.M.; Percival, S.L. A comparative study on the cellular viability and debridement efficiency of antimicrobial-based wound dressings. Int. Wound J. 2020, 17, 73–82. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Goswami, A.G.; Basu, S.; Banerjee, T.; Shukla, V.K. Biofilm and wound healing: From bench to bedside. Eur. J. Med. Res. 2023, 28, 157. [Google Scholar] [CrossRef] [PubMed]
- Campo-Pérez, V.; Alcàcer-Almansa, J.; Julián, E.; Torrents, E. A High-Throughput Microtiter Plate Screening Assay to Quantify and Differentiate Species in Dual-Species Biofilms. Microorganisms 2023, 11, 2244. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Crusz, S.A.; Popat, R.; Rybtke, M.T.; Cámara, M.; Givskov, M.; Tolker-Nielsen, T.; Diggle, S.P.; Williams, P. Bursting the bubble on bacterial biofilms: A flow cell methodology. Biofouling 2012, 28, 835–842. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Pratten, J. Growing oral biofilms in a constant depth film fermentor (CDFF). Curr. Protoc. Microbiol. 2007, 6, 1B.5. [Google Scholar] [CrossRef] [PubMed]
- Lawrence, J.R.; Swerhone, G.D.W.; Neu, T.R. A simple rotating annular reactor for replicated biofilm studies. J. Microbiol. Methods 2000, 42, 215–224. [Google Scholar] [CrossRef]
- Luo, T.L.; Vanek, M.E.; Gonzalez-Cabezas, C.; Marrs, C.F.; Foxman, B.; Rickard, A.H. In vitro model systems for exploring oral biofilms: From single-species populations to complex multi-species communities. J. Appl. Microbiol. 2022, 132, 855–871. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Allison, D.; Maira-Litran, T.; Gilbert, P. Perfused Biofilm Fermenters, Methods in Enzymology; Academic Press: Cambridge, MA, USA, 1999; Volume 310, pp. 232–248. [Google Scholar]
- Swann, M.J.; Freeman, N.J.; Watson, F.; Law, S.J.; Percival, S.L. A Sensor for Monitoring the Antimicrobial Activity of Wound Dressings for Both Surgical Site Infections (SSIs) and Chronic Wounds. Surg. Technol. Int. 2023, 42, sti42-1692. [Google Scholar] [CrossRef]
- Hofmann, E.; Fink, J.; Pignet, A.-L.; Schwarz, A.; Schellnegger, M.; Nischwitz, S.P.; Holzer-Geissler, J.C.J.; Kamolz, L.-P.; Kotzbeck, P. Human In Vitro Skin Models for Wound Healing and Wound Healing Disorders. Biomedicines 2023, 11, 1056. [Google Scholar] [CrossRef] [PubMed]
- Brackman, G.; Coenye, T. In Vitro and In Vivo Biofilm Wound Models and Their Application. Adv. Exp. Med. Biol. 2016, 897, 15–32. [Google Scholar] [CrossRef] [PubMed]
- Niehues, H.; Bouwstra, J.A.; El Ghalbzouri, A.; Brandner, J.M.; Zeeuwen, P.L.J.M.; van den Bogaard, E.H. 3D skin models for 3R research: The potential of 3D reconstructed skin models to study skin barrier function. Exp. Dermatol. 2018, 27, 501–511. [Google Scholar] [CrossRef] [PubMed]
- Wall, I.B.; Moseley, R.; Baird, D.M.; Kipling, D.; Giles, P.; Laffafian, I.; Price, P.E.; Thomas, D.W.; Stephens, P. Fibroblast dysfunction is a key factor in the non-healing of chronic venous leg ulcers. J. Investig. Dermatol. 2008, 128, 2526–2540. [Google Scholar] [CrossRef] [PubMed]
- Pouget, C.; Dunyach-Remy, C.; Bernardi, T.; Provot, C.; Tasse, J.; Sotto, A.; Lavigne, J.P. A Relevant Wound-Like in vitro Media to Study Bacterial Cooperation and Biofilm in Chronic Wounds. Front. Microbiol. 2022, 13, 705479. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Chen, X.; Lorenzen, J.; Xu, Y.; Jonikaite, M.; Thaarup, I.C.; Bjarnsholt, T.; Kirketerp-Møller, K.; Thomsen, T.R. A novel chronic wound biofilm model sustaining coexistence of Pseudomonas aeruginosa and Staphylococcus aureus suitable for testing of antibiofilm effect of antimicrobial solutions and wound dressings. Wound Repair. Regen. 2021, 29, 820–829. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Sweeney, I.R.; Miraftab, M.; Collyer, G. A critical review of modern and emerging absorbent dressings used to treat exuding wounds. Int. Wound J. 2012, 9, 601–612. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
AWS Layer (mm) | MMC Solution | ||||
Silver Concentration (mM) at: | |||||
0 h | 0.5 h | 2.5 h | 6 h | 24 h | |
0.0 | 0.002 ± 0.001 | 8.800 ± 0.392 | 10.540 ± 0.696 | 9.953 ± 0.594 | 10.018 ± 0.650 |
0.5 | 0.016 ± 0.011 | 9.276 ± 0.106 | 10.983 ± 0.133 | 10.255 ± 0.177 | 9.498 ± 0.074 |
1.0 | 0.005 ± 0.003 | 8.328 ± 0.308 | 10.788 ± 0.325 | 10.809 ± 0.197 | 10.162 ± 0.899 |
2.0 | 0.004 ± 0.002 | 0.002 ± 0.001 | 0.151 ± 0.152 | 0.378 ± 0.353 | 0.385 ± 0.409 |
AWS Layer (mm) | AgNO3 Solution | ||||
Silver Concentration (mM) at: | |||||
0 h | 0.5 h | 2.5 h | 6 h | 24 h | |
0.0 | 0.005 ± 0.002 | 7.904 ± 0.164 | 8.713 ± 0.377 | 8.455 ± 0.015 | 7.569 ± 0.158 |
0.5 | 0.008 ± 0.001 | 6.051 ± 1.164 | 6.631 ± 0.444 | 6.636 ± 0.200 | 6.446 ± 0.296 |
1.0 | 0.004 ± 0.001 | 1.806 ± 3.123 | 2.934 ± 3.372 | 2.706 ± 3.100 | 2.649 ± 2.947 |
2.0 | 0.003 ± 0.002 | 0.002 ± 0.001 | 0.007 ± 0.008 | 0.020 ± 0.031 | 0.043 ± 0.071 |
Test Solutions | 0.5 mm AWS | 1.0 mm AWS | 2.0 mm AWS | ||||||
---|---|---|---|---|---|---|---|---|---|
0 h | 2.5 h | 24 h | 0 h | 2.5 h | 24 h | 0 h | 2.5 h | 24 h | |
Control | 9.06 ± 0.02 | 9.19 ± 0.28 | 9.24 ± 0.08 | 8.97 ± 0.04 | 8.91 ± 0.15 | 9.15 ± 0.08 | 8.99 ± 0.07 | 8.09 ± 0.05 | 9.27 ± 0.02 |
AgNO3 | 0.00 ± 0.00 | 0.00 ± 0.00 | 3.19 ± 0.30 | 0.00 ± 0.00 | 5.78 ± 0.16 | 3.18 ± 0.00 | |||
MMC | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.00 ± 0.00 | 3.01 ± 0.21 | 0.00 ± 0.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, R.; Saint Bezard, J.; Swann, M.J.; Watson, F.; Percival, S.L. An In Vitro Artificial Wound Slough–Biofilm Model Developed for Evaluating a Novel Antibiofilm Technology. Microorganisms 2024, 12, 2223. https://doi.org/10.3390/microorganisms12112223
Chen R, Saint Bezard J, Swann MJ, Watson F, Percival SL. An In Vitro Artificial Wound Slough–Biofilm Model Developed for Evaluating a Novel Antibiofilm Technology. Microorganisms. 2024; 12(11):2223. https://doi.org/10.3390/microorganisms12112223
Chicago/Turabian StyleChen, Rui, Jeanne Saint Bezard, Marcus J. Swann, Fergus Watson, and Steven L. Percival. 2024. "An In Vitro Artificial Wound Slough–Biofilm Model Developed for Evaluating a Novel Antibiofilm Technology" Microorganisms 12, no. 11: 2223. https://doi.org/10.3390/microorganisms12112223
APA StyleChen, R., Saint Bezard, J., Swann, M. J., Watson, F., & Percival, S. L. (2024). An In Vitro Artificial Wound Slough–Biofilm Model Developed for Evaluating a Novel Antibiofilm Technology. Microorganisms, 12(11), 2223. https://doi.org/10.3390/microorganisms12112223