Investigating the Potential of L(+)-Lactic Acid as a Green Inhibitor and Eradicator of a Dual-Species Campylobacter spp. Biofilm Formed on Food Processing Model Surfaces
Abstract
:1. Introduction
2. Materials and Methods
2.1. L(+)-Lactic Acid and Preparation of Its Stock Solution
2.2. Preparation of Sterile Chicken Juice (CJ)
2.3. Bacterial Strains and Preparation of Their Working Cultures
2.4. Growth Dynamis of Campylobacter spp. Under Monoculture Planktonic Conditions
2.5. Inhibitory Action of LA Against Mixed-Culture Campylobacter Biofilm Formation
2.5.1. Enumeration of the Planktonic Bacteria
2.5.2. Detachment and Enumeration of the Biofilm Bacteria on PS
2.5.3. Detachment and Enumeration of the Biofilm Bacteria on SS
2.6. Eradicative Action of LA Against Mixed-Culture Campylobacter Biofilms
2.7. Untargeted Metabolic Analysis of the Biofilm-Surrounding Planktonic Media
2.8. Statistics
3. Results
3.1. Campylobacter Monoculture Planktonic Growth Dynamics
3.2. Determination of LA’s Biofilm Inhibitory Action
3.3. Determination of LA’s Biofilm Eradicative Action
3.4. Comparative Metabolomics of the Planktonic Media Between Campylobacter Monocultures and the Mixed Culture
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kaakoush, N.O.; Castaño-Rodríguez, N.; Mitchell, H.M.; Man, S.M. Global Epidemiology of Campylobacter Infection. Clin. Microbiol. Rev. 2015, 28, 687–720. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.; Lee, S.A.; Xue, J.; Riordan, S.M.; Zhang, L. Global epidemiology of campylobacteriosis and the impact of COVID-19. Front. Cell. Infect. Microbiol. 2022, 12, 979055. [Google Scholar] [CrossRef] [PubMed]
- European Food Safety Authority (EFSA); European Centre for Disease Prevention and Control (ECDC). The European Union One Health 2022 Zoonoses Report. EFSA J. 2023, 21, e8442. [Google Scholar] [CrossRef]
- World Health Organization (WHO). The Burden of Foodborne Diseases in the WHO European Region. 2017. Available online: https://who-sandbox.squiz.cloud/en/health-topics/disease-prevention/food-safety/publications/2017/the-burden-of-foodborne-diseases-in-the-who-european-region-2017 (accessed on 11 September 2024).
- U.S. Centers for Disease Control and Prevention (CDC). About Campylobacter infection (Campylobacteriosis). Available online: https://www.cdc.gov/campylobacter/about/ (accessed on 11 September 2024).
- Igwaran, A.; Okoh, A.I. Human campylobacteriosis: A public health concern of global importance. Heliyon 2019, 5, e02814. [Google Scholar] [CrossRef]
- Backert, S.; Tegtmeyer, N.; Cróinín, T.Ó.; Boehm, M.; Heimesaat, M.M. Chapter 1—Human campylobacteriosis. In Campylobacter; Günter, K., Ed.; Academic Press: London, UK, 2017; pp. 1–25. [Google Scholar] [CrossRef]
- Alvarez-Ordóñez, A.; Coughlan, L.M.; Briandet, R.; Cotter, P.D. Biofilms in Food Processing Environments: Challenges and Opportunities. Annu. Rev. Food Sci. Technol. 2019, 10, 173–195. [Google Scholar] [CrossRef]
- Yin, W.; Wang, Y.; Liu, L.; He, J. Biofilms: The Microbial “Protective Clothing” in Extreme Environments. Int. J. Mol. Sci. 2019, 20, 3423. [Google Scholar] [CrossRef] [PubMed]
- Giaouris, E.; Simões, M. Pathogenic biofilm formation in the food industry and alternative control strategies. In Handbook of Food Bioengineering, Foodborne Diseases; Holban, A.M., Grumezescu, A.M., Eds.; Academic Press (Elsevier): Amsterdam, The Netherlands, 2018; Volume 15, Chapter 11; pp. 309–377. [Google Scholar] [CrossRef]
- Giaouris, E.; Nesse, L.L. Attachment of Salmonella spp. to food contact and product surfaces and biofilm formation on them as a stress adaptation and survival strategies. In Salmonella: Prevalence, Risk Factors and Treatment Options; Hackett, C.B., Ed.; Nova Science: New York, NY, USA, 2015; pp. 111–135. ISBN 978-1-63463-651-3. [Google Scholar]
- Bronowski, C.; James, C.E.; Winstanley, C. Role of environmental survival in transmission of Campylobacter jejuni. FEMS Microbiol. Lett. 2014, 356, 8–19. [Google Scholar] [CrossRef]
- Ma, L.; Feng, J.; Zhang, J.; Lu, X. Campylobacter biofilms. Microbiol. Res. 2022, 264, 127149. [Google Scholar] [CrossRef]
- Pokhrel, D.; Thames, H.T.; Zhang, L.; Dinh, T.T.N.; Schilling, W.; White, S.B.; Ramachandran, R.; Theradiyil Sukumaran, A. Roles of Aerotolerance, Biofilm Formation, and Viable but Non-Culturable State in the Survival of Campylobacter jejuni in Poultry Processing Environments. Microorganisms 2022, 10, 2165. [Google Scholar] [CrossRef]
- Lamas, A.; Regal, P.; Vázquez, B.; Miranda, J.M.; Cepeda, A.; Franco, C.M. Salmonella and Campylobacter biofilm formation: A comparative assessment from farm to fork. J. Sci. Food Agric. 2018, 98, 4014–4032. [Google Scholar] [CrossRef]
- Teh, A.H.; Lee, S.M.; Dykes, G.A. Does Campylobacter jejuni form biofilms in food-related environments? Appl. Environ. Microbiol. 2014, 80, 5154–5160. [Google Scholar] [CrossRef] [PubMed]
- Püning, C.; Su, Y.; Lu, X.; Gölz, G. Molecular Mechanisms of Campylobacter Biofilm Formation and Quorum Sensing. Curr. Top. Microbiol. Immunol. 2021, 431, 293–319. [Google Scholar] [CrossRef] [PubMed]
- Giaouris, E.; Heir, E.; Desvaux, M.; Hébraud, M.; Møretrø, T.; Langsrud, S.; Doulgeraki, A.; Nychas, G.J.; Kačániová, M.; Czaczyk, K.; et al. Intra- and inter-species interactions within biofilms of important foodborne bacterial pathogens. Front. Microbiol. 2015, 6, 841. [Google Scholar] [CrossRef] [PubMed]
- Beier, R.C.; Byrd, J.A.; Caldwell, D.; Andrews, K.; Crippen, T.L.; Anderson, R.C.; Nisbet, D.J. Inhibition and Interactions of Campylobacter jejuni from Broiler Chicken Houses with Organic Acids. Microorganisms 2019, 7, 223. [Google Scholar] [CrossRef] [PubMed]
- Peh, E.; Kittler, S.; Reich, F.; Kehrenberg, C. Antimicrobial activity of organic acids against Campylobacter spp. and development of combinations—A synergistic effect? PLoS ONE 2020, 15, e0239312. [Google Scholar] [CrossRef]
- Skånseng, B.; Kaldhusdal, M.; Moen, B.; Gjevre, A.G.; Johannessen, G.S.; Sekelja, M.; Trosvik, P.; Rudi, K. Prevention of intestinal Campylobacter jejuni colonization in broilers by combinations of in-feed organic acids. J. Appl. Microbiol. 2010, 109, 1265–1273. [Google Scholar] [CrossRef]
- Lianou, A.; Koutsoumanis, K.P.; Sofos, J.N. Organic acids and other chemical treatments for microbial decontamination of food. In Microbial Decontamination in the Food Industry: Novel Methods and Applications; Demirci, A., Ngadi, M.O., Eds.; Woodhead Publishing Limited: Cambridge, UK, 2012; pp. 592–664. [Google Scholar] [CrossRef]
- Mani-López, E.; García, H.S.; López-Malo, A. Organic Acids as Antimicrobials to Control Salmonella in Meat and Poultry Products. Food Res. Int. 2012, 45, 713–721. [Google Scholar] [CrossRef]
- Ricke, S.C. Perspectives on the use of organic acids and short chain fatty acids as antimicrobials. Poult. Sci. 2003, 82, 632–639. [Google Scholar] [CrossRef]
- Amrutha, B.; Sundar, K.; Shetty, P.H. Effect of organic acids on biofilm formation and quorum signaling of pathogens from fresh fruits and vegetables. Microb. Pathog. 2017, 111, 156–162. [Google Scholar] [CrossRef]
- Castro, V.S.; Mutz, Y.D.S.; Rosario, D.K.A.; Cunha-Neto, A.; Figueiredo, E.E.S.; Conte-Junior, C.A. Inactivation of Multi-Drug Resistant Non-Typhoidal Salmonella and Wild-Type Escherichia coli STEC Using Organic Acids: A Potential Alternative to the Food Industry. Pathogens 2020, 9, 849. [Google Scholar] [CrossRef]
- Jyung, S.; Kang, J.W.; Kang, D.H. Inactivation of Listeria monocytogenes through the synergistic interaction between plasma-activated water and organic acid. Food Res. Int. 2023, 167, 112687. [Google Scholar] [CrossRef] [PubMed]
- Yadav, B.; Roopesh, M.S. Synergistically enhanced Salmonella Typhimurium reduction by sequential treatment of organic acids and atmospheric cold plasma and the mechanism study. Food Microbiol. 2022, 104, 103976. [Google Scholar] [CrossRef] [PubMed]
- Bai, Y.; Ding, X.; Zhao, Q.; Sun, H.; Li, T.; Li, Z.; Wang, H.; Zhang, L.; Zhang, C.; Xu, S. Development of an organic acid compound disinfectant to control food-borne pathogens and its application in chicken slaughterhouses. Poult. Sci. 2022, 101, 101842. [Google Scholar] [CrossRef]
- Gonzalez-Fandos, E.; Maya, N.; Martínez-Laorden, A.; Perez-Arnedo, I. Efficacy of Lactic Acid and Modified Atmosphere Packaging against Campylobacter jejuni on Chicken during Refrigerated Storage. Foods 2020, 9, 109. [Google Scholar] [CrossRef]
- Greene, G.; Koolman, L.; Whyte, P.; Lynch, H.; Coffey, A.; Lucey, B.; Egan, J.; O’Connor, L.; Bolton, D. The efficacy of organic acid, medium chain fatty acid and essential oil based broiler treatments; in vitro anti-Campylobacter jejuni activity and the effect of these chemical-based treatments on broiler performance. J. Appl. Microbiol. 2022, 132, 687–695. [Google Scholar] [CrossRef]
- Kovanda, L.; Zhang, W.; Wei, X.; Luo, J.; Wu, X.; Atwill, E.R.; Vaessen, S.; Li, X.; Liu, Y. In Vitro Antimicrobial Activities of Organic Acids and Their Derivatives on Several Species of Gram-Negative and Gram-Positive Bacteria. Molecules 2019, 24, 3770, Erratum in Molecules 2020, 25, E2787. [Google Scholar] [CrossRef] [PubMed]
- Coban, H.B. Organic acids as antimicrobial food agents: Applications and microbial productions. Bioprocess Biosyst. Eng. 2020, 43, 569–591. [Google Scholar] [CrossRef]
- Nkosi, D.V.; Bekker, J.L.; Hoffman, L.C. The Use of Organic Acids (Lactic and Acetic) as a Microbial Decontaminant during the Slaughter of Meat Animal Species: A Review. Foods 2021, 10, 2293. [Google Scholar] [CrossRef]
- EFSA Panel on Food Contact Materials, Enzymes and Processing Aids (CEP); Silano, V.; Barat Baviera, J.M.; Bolognesi, C.; Brüschweiler, B.J.; Chesson, A.; Cocconcelli, P.S.; Crebelli, R.; Gott, D.M.; Grob, K.; et al. Evaluation of the safety and efficacy of the organic acids lactic and acetic acids to reduce microbiological surface contamination on pork carcasses and pork cuts. EFSA J. 2018, 16, e05482. [Google Scholar] [CrossRef]
- Dittoe, D.K.; Ricke, S.C.; Kiess, A.S. Organic Acids and Potential for Modifying the Avian Gastrointestinal Tract and Reducing Pathogens and Disease. Front. Vet. Sci. 2018, 5, 216. [Google Scholar] [CrossRef]
- Abdel-Rahman, M.A.; Tashiro, Y.; Sonomoto, K. Recent advances in lactic acid production by microbial fermentation processes. Biotechnol. Adv. 2013, 31, 877–902. [Google Scholar] [CrossRef] [PubMed]
- Augustiniene, E.; Valanciene, E.; Matulis, P.; Syrpas, M.; Jonuskiene, I.; Malys, N. Bioproduction of l- and d-lactic acids: Advances and trends in microbial strain application and engineering. Crit. Rev. Biotechnol. 2022, 42, 342–360. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, A.; Banat, F.; Taher, H. A Review on the Lactic Acid Fermentation from Low-Cost Renewable Materials: Recent De-velopments and Challenges. Environ. Technol. Innov. 2020, 20, 101138. [Google Scholar] [CrossRef]
- Ojo, A.O.; de Smidt, O. Lactic Acid: A Comprehensive Review of Production to Purification. Processes 2023, 11, 688. [Google Scholar] [CrossRef]
- Adeva-Andany, M.; López-Ojén, M.; Funcasta-Calderón, R.; Ameneiros-Rodríguez, E.; Donapetry-García, C.; Vila-Altesor, M.; Rodríguez-Seijas, J. Comprehensive review on lactate metabolism in human health. Mitochondrion 2014, 17, 76–100. [Google Scholar] [CrossRef] [PubMed]
- Ameen, S.M.; Caruso, G. Lactic Acid in the Food Industry; Springer Nature: Cham, Switzerland, 2017. [Google Scholar] [CrossRef]
- Carvalho, D.; Menezes, R.; Chitolina, G.Z.; Kunert-Filho, H.C.; Wilsmann, D.E.; Borges, K.A.; Furian, T.Q.; Salle, C.T.P.; Moraes, H.L.S.; do Nascimento, V.P. Antibiofilm activity of the biosurfactant and organic acids against foodborne pathogens at different temperatures, times of contact, and concentrations. Braz. J. Microbiol. 2022, 53, 1051–1064. [Google Scholar] [CrossRef]
- Kostoglou, D.; Vass, A.; Giaouris, E. Comparative Assessment of the Antibacterial and Antibiofilm Actions of Benzalkonium Chloride, Erythromycin, and L(+)-Lactic Acid against Raw Chicken Meat Campylobacter spp. Isolates. Antibiotics 2024, 13, 201. [Google Scholar] [CrossRef]
- Kostoglou, D.; Simoni, M.; Vafeiadis, G.; Kaftantzis, N.M.; Giaouris, E. Prevalence of Campylobacter spp., Salmonella spp., and Listeria monocytogenes, and Population Levels of Food Safety Indicator Microorganisms in Retail Raw Chicken Meat and Ready-To-Eat Fresh Leafy Greens Salads Sold in Greece. Foods 2023, 12, 4502. [Google Scholar] [CrossRef]
- Stepanović, S.; Vuković, D.; Hola, V.; Di Bonaventura, G.; Djukić, S.; Cirković, I.; Ruzicka, F. Quantification of biofilm in microtiter plates: Overview of testing conditions and practical recommendations for assessment of biofilm production by staphylococci. APMIS 2007, 115, 891–899. [Google Scholar] [CrossRef]
- European Committee on Antimicrobial Susceptibility Testing (EUCAST). Clinical Breakpoints—Breakpoints and Guidance. Available online: https://www.eucast.org/clinical_breakpoints (accessed on 11 September 2024).
- Dunphy, L.J.; Grimes, K.L.; Wase, N.; Kolling, G.L.; Papin, J.A. Untargeted Metabolomics Reveals Species-Specific Metabolite Production and Shared Nutrient Consumption by Pseudomonas aeruginosa and Staphylococcus aureus. mSystems 2021, 6, e0048021. [Google Scholar] [CrossRef]
- Lianou, A.; Koutsoumanis, K.P. Strain variability of the biofilm-forming ability of Salmonella enterica under various environmental conditions. Int. J. Food Microbiol. 2012, 160, 171–178. [Google Scholar] [CrossRef] [PubMed]
- O’Toole, G.; Kaplan, H.B.; Kolter, R. Biofilm formation as microbial development. Annu. Rev. Microbiol. 2000, 54, 49–79. [Google Scholar] [CrossRef] [PubMed]
- Teh, A.H.T.; Lee, S.M.; Dykes, G.A. Association of some Campylobacter jejuni with Pseudomonas aeruginosa biofilms increases attachment under conditions mimicking those in the environment. PLoS ONE 2019, 14, e0215275. [Google Scholar] [CrossRef]
- Wang, H.; Feng, M.; Anwar, T.M.; Chai, W.; Ed-Dra, A.; Kang, X.; Rantsiou, K.; Kehrenberg, C.; Yue, M.; Li, Y. Change in antimicrobial susceptibility of Listeria spp. in response to stress conditions. Front. Sustain. Food Syst. 2023, 7, 1179835. [Google Scholar] [CrossRef]
- Muhvich, K.H.; Park, M.K.; Myers, R.A.; Marzella, L. Hyperoxia and the antimicrobial susceptibility of Escherichia coli and Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 1989, 33, 1526–1530. [Google Scholar] [CrossRef] [PubMed]
- dos Santos, S.G.; Diniz, C.G.; da Silva, V.L.; Souza, N.C.; de Lima, F.L.; Bomfim, M.R.; de Carvalho, M.A.; Farias, L.M. The influence of molecular oxygen exposure on the biology of Prevotella intermedia, with emphasis on its antibiotic susceptibility. J. Appl. Microbiol. 2007, 103, 882–891. [Google Scholar] [CrossRef]
- Field, T.R.; White, A.; Elborn, J.S.; Tunney, M.M. Effect of oxygen limitation on the in vitro antimicrobial susceptibility of clinical isolates of Pseudomonas aeruginosa grown planktonically and as biofilms. Eur. J. Clin. Microbiol. Infect Dis. 2005, 24, 677–687. [Google Scholar] [CrossRef]
- Eini, A.; Sol, A.; Coppenhagen-Glazer, S.; Skvirsky, Y.; Zini, A.; Bachrach, G. Oxygen deprivation affects the antimicrobial action of LL-37 as determined by microplate real-time kinetic measurements under anaerobic conditions. Anaerobe 2013, 22, 20–24. [Google Scholar] [CrossRef]
- Zhang, L.; Ben Said, L.; Diarra, M.S.; Fliss, I. Inhibitory activity of natural synergetic antimicrobial consortia against Salmonella enterica on broiler chicken carcasses. Front. Microbiol. 2021, 12, 656956. [Google Scholar] [CrossRef]
- Bautista, D.A.; Sylvester, N.; Barbut, S.; Griffiths, M.W. The determination of efficacy of antimicrobial rinses on turkey carcasses using response surface designs. Int. J. Food Microbiol. 1997, 34, 279–292. [Google Scholar] [CrossRef]
- Sorrentino, E.; Tremonte, P.; Succi, M.; Iorizzo, M.; Pannella, G.; Lombardi, S.J.; Sturchio, M.; Coppola, R. Detection of antilisterial activity of 3-phenyllactic acid using Listeria innocua as a model. Front. Microbiol. 2018, 9, 1373. [Google Scholar] [CrossRef] [PubMed]
- Oh, D.H.; Marshall, D.L. Antimicrobial activity of ethanol, glycerol monolaurate or lactic acid against Listeria monocytogenes. Int. J. Food Microbiol. 1993, 20, 239–246. [Google Scholar] [CrossRef] [PubMed]
- Gill, C.O.; Badoni, M. Effects of peroxyacetic acid, acidified sodium chlorite or lactic acid solutions on the microflora of chilled beef carcasses. Int. J. Food Microbiol. 2004, 91, 43–50. [Google Scholar] [CrossRef]
- Lianou, A.; Koutsoumanis, K.P. Strain variability of the behavior of foodborne bacterial pathogens: A review. Int. J. Food Microbiol. 2013, 167, 310–321. [Google Scholar] [CrossRef] [PubMed]
- Lianou, A.; Nychas, G.E.; Koutsoumanis, K.P. Strain variability in biofilm formation: A food safety and quality perspective. Food Res. Int. 2020, 137, 109424. [Google Scholar] [CrossRef]
- Hofreuter, D. Defining the metabolic requirements for the growth and colonization capacity of Campylobacter jejuni. Front. Cell. Infect. Microbiol. 2014, 4, 137. [Google Scholar] [CrossRef]
- Li, H.; Xia, X.; Li, X.; Naren, G.; Fu, Q.; Wang, Y.; Wu, C.; Ding, S.; Zhang, S.; Jiang, H.; et al. Untargeted metabolomic profiling of amphenicol-resistant Campylobacter jejuni by ultra-high-performance liquid chromatography-mass spectrometry. J. Proteome Res. 2015, 14, 1060–1068. [Google Scholar] [CrossRef]
- Shayya, N.W.; Bandick, R.; Busmann, L.V.; Mousavi, S.; Bereswill, S.; Heimesaat, M.M. Metabolomic signatures of intestinal colonization resistance against Campylobacter jejuni in mice. Front. Microbiol. 2023, 14, 1331114. [Google Scholar] [CrossRef] [PubMed]
- Howlett, R.M.; Davey, M.P.; Kelly, D.J. Metabolomic analysis of Campylobacter jejuni by direct-injection electrospray ionization mass spectrometry. Methods Mol. Biol. 2017, 1512, 189–197. [Google Scholar] [CrossRef]
- Sampathkumar, B.; Napper, S.; Carrillo, C.D.; Willson, P.; Taboada, E.; Nash, J.H.E.; Potter, A.A.; Babiuk, L.A.; Allan, B.J. Transcriptional and translational expression patterns associated with immobilized growth of Campylobacter jejuni. Microbiology 2006, 152, 567–577. [Google Scholar] [CrossRef]
- Kalmokoff, M.; Lanthier, P.; Tremblay, T.L.; Foss, M.; Lau, P.C.; Sanders, G.; Austin, J.; Kelly, J.; Szymanski, C.M. Proteomic analysis of Campylobacter jejuni 11168 biofilms reveals a role for the motility complex in biofilm formation. J. Bacteriol. 2006, 188, 4312–4320. [Google Scholar] [CrossRef] [PubMed]
- Stintzi, A.; Marlow, D.; Palyada, K.; Naikare, H.; Panciera, R.; Whitworth, L.; Clarke, C. Use of genome-wide expression profiling and mutagenesis to study the intestinal lifestyle of Campylobacter jejuni. Infect. Immun. 2005, 73, 1797–1810. [Google Scholar] [CrossRef] [PubMed]
Strain Code | Species | Biofilm-Forming Ability 1 | MIC LA (μg/mL) 2 | MBIC LA (μg/mL) 3 | Antibiotic Resistance 4 | MDR 5 | Colony Morphotype 6 | Rep-PCR Group 7 | |
---|---|---|---|---|---|---|---|---|---|
Microaerophilic | Aerobic-CO2 Enriched | ||||||||
CAMP_048 | C. jejuni | strong | moderate | 2048 | 1024 | SXT (25 μg), CTX (5 μg), CAZ (10 μg) | - | small translucent | a |
CAMP_083 | C. coli | weak | moderate | 2048 | 2048 | SXT (25 μg), CTX (5 μg), CAZ (10 μg) | - | white | c |
CAMP_130 | C. jejuni | weak | moderate | 2048 | 2048 | TE (30 μg), CIP (5 μg), CAZ (10 μg) | + | gray spread | c |
ATCC 33291 | C. jejuni | zero | zero | ND 8 | ND 8 | - | - | small translucent | b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kostoglou, D.; Apostolopoulou, M.; Lagou, A.; Didos, S.; Argiriou, A.; Giaouris, E. Investigating the Potential of L(+)-Lactic Acid as a Green Inhibitor and Eradicator of a Dual-Species Campylobacter spp. Biofilm Formed on Food Processing Model Surfaces. Microorganisms 2024, 12, 2124. https://doi.org/10.3390/microorganisms12112124
Kostoglou D, Apostolopoulou M, Lagou A, Didos S, Argiriou A, Giaouris E. Investigating the Potential of L(+)-Lactic Acid as a Green Inhibitor and Eradicator of a Dual-Species Campylobacter spp. Biofilm Formed on Food Processing Model Surfaces. Microorganisms. 2024; 12(11):2124. https://doi.org/10.3390/microorganisms12112124
Chicago/Turabian StyleKostoglou, Dimitra, Martha Apostolopoulou, Athina Lagou, Spyros Didos, Anagnostis Argiriou, and Efstathios Giaouris. 2024. "Investigating the Potential of L(+)-Lactic Acid as a Green Inhibitor and Eradicator of a Dual-Species Campylobacter spp. Biofilm Formed on Food Processing Model Surfaces" Microorganisms 12, no. 11: 2124. https://doi.org/10.3390/microorganisms12112124
APA StyleKostoglou, D., Apostolopoulou, M., Lagou, A., Didos, S., Argiriou, A., & Giaouris, E. (2024). Investigating the Potential of L(+)-Lactic Acid as a Green Inhibitor and Eradicator of a Dual-Species Campylobacter spp. Biofilm Formed on Food Processing Model Surfaces. Microorganisms, 12(11), 2124. https://doi.org/10.3390/microorganisms12112124