Organic Farming Enhances Diversity and Recruits Beneficial Soil Fungal Groups in Traditional Banana Plantations
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description and Soil Sampling
2.2. DNA Extraction and ITS Amplicon Sequencing
2.3. Bioinformatics Pipeline
2.4. Data Analysis
3. Results
3.1. Effect of Management Systems on Soil Physicochemical Properties
3.2. Soil Fungal Diversity in OF and CF Management Systems
3.3. Soil Fungal Composition in Study Sites and Management Systems
3.4. Differences in Functional Groups of OF and CF Management Systems
4. Discussion
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- OECD/FAO. Other Products. In OECD-FAO Agricultural Outlook 2023–2032; OECD Publishing: Paris, France, 2023; pp. 248–270. [Google Scholar]
- Nogueira, J.M.F.; Fernandes, P.J.P.; Nascimento, A.M.D. Composition of Volatiles of Banana Cultivars from Madeira Island. Phytochem. Anal. 2003, 14, 87–90. [Google Scholar] [CrossRef] [PubMed]
- GESBA. A Banana da Madeira e as suas Especificidades (Conclusão). Available online: https://dica.madeira.gov.pt/index.php/producao-vegetal/fruticultura/2539-a-banana-da-madeira-e-as-suas-especificidades-conclusao (accessed on 24 June 2024).
- Villaverde, J.J.; Oliveira, L.; Vilela, C.; Domingues, R.M.; Freitas, N.; Cordeiro, N.; Freire, C.S.R.; Silvestre, A.J.D. High Valuable Compounds from the Unripe Peel of Several Musa Species Cultivated in Madeira Island (Portugal). Ind. Crops Prod. 2013, 42, 507–512. [Google Scholar] [CrossRef]
- DREM. Recenseamento Agrícola 2019—Região Autónoma Da Madeira; Direção Regional de Estatística da Madeira: Funchal, Portugal, 2022; ISBN 978-989-8755-80-3. [Google Scholar]
- DREM. Comercialização de Banana Na Madeira. Available online: https://estatistica.madeira.gov.pt/download-now/economica/agricultura-floresta-e-pesca/prod-veg-prd-animal-pesca-pt/prod-vegetal-noticias-pt/noticias-comercializacao-de-banana-pt/4366-25-01-2024-em-2023-a-comercializacao-de-banana-aumentou-10-8-face-ao-ano-anterior.html (accessed on 24 June 2024).
- Jones, D.R. Disease and Pest Constraints to Banana Production. Acta Hortic. 2009, 828, 21–36. [Google Scholar] [CrossRef]
- Camacho, I.; Leça, R.; Sardinha, D.; Fernandez, M.; Camacho, R. Drivers of Fusarium Dispersion in Madeira Archipelago (Portugal). Summa Phytopathol. 2022, 48, 9–16. [Google Scholar] [CrossRef]
- Ghag, S.B.; Shekhawat, U.K.S.; Ganapathi, T.R. Fusarium Wilt of Banana: Biology, Epidemiology and Management. Int. J. Pest Manag. 2015, 61, 250–263. [Google Scholar] [CrossRef]
- Pervaiz, Z.H.; Iqbal, J.; Zhang, Q.; Chen, D.; Wei, H.; Saleem, M. Continuous Cropping Alters Multiple Biotic and Abiotic Indicators of Soil Health. Soil Syst. 2020, 4, 59. [Google Scholar] [CrossRef]
- Hartmann, M.; Six, J. Soil Structure and Microbiome Functions in Agroecosystems. Nat. Rev. Earth Environ. 2023, 4, 4–18. [Google Scholar] [CrossRef]
- Pegg, K.G.; Coates, L.M.; O’Neill, W.T.; Turner, D.W. The Epidemiology of Fusarium Wilt of Banana. Front. Plant Sci. 2019, 10, 1395. [Google Scholar] [CrossRef] [PubMed]
- Mapuranga, J.; Zhang, N.; Zhang, L.; Chang, J.; Yang, W. Infection Strategies and Pathogenicity of Biotrophic Plant Fungal Pathogens. Front. Microbiol. 2022, 13, 799396. [Google Scholar] [CrossRef]
- Liu, C.; Wang, S.; Yan, J.; Huang, Q.; Li, R.; Shen, B.; Shen, Q. Soil Fungal Community Affected by Regional Climate Played an Important Role in the Decomposition of Organic Compost. Environ. Res. 2021, 197, 111076. [Google Scholar] [CrossRef]
- Mayer, M.; Rewald, B.; Matthews, B.; Sandén, H.; Rosinger, C.; Katzensteiner, K.; Gorfer, M.; Berger, H.; Tallian, C.; Berger, T.W.; et al. Soil Fertility Relates to Fungal-Mediated Decomposition and Organic Matter Turnover in a Temperate Mountain Forest. New Phytol. 2021, 231, 777–790. [Google Scholar] [CrossRef] [PubMed]
- Martin, F.M.; van der Heijden, M.G.A. The Mycorrhizal Symbiosis: Research Frontiers in Genomics, Ecology, and Agricultural Application. New Phytol. 2024, 242, 1486–1506. [Google Scholar] [CrossRef] [PubMed]
- Azcón-Aguilar, C.; Barea, J.M. Applying Mycorrhiza Biotechnology to Horticulture: Significance and Potentials. Sci. Hortic. 1997, 68, 1–24. [Google Scholar] [CrossRef]
- López-Bucio, J.; Pelagio-Flores, R.; Herrera-Estrella, A. Trichoderma as Biostimulant: Exploiting the Multilevel Properties of a Plant Beneficial Fungus. Sci. Hortic. 2015, 196, 109–123. [Google Scholar] [CrossRef]
- Carvalhais, L.C.; Dennis, P.G.; Tyson, G.W.; Schenk, P.M. Application of Metatranscriptomics to Soil Environments. J. Microbiol. Methods 2012, 91, 246–251. [Google Scholar] [CrossRef] [PubMed]
- Lahlali, R.; Ibrahim, D.S.S.; Belabess, Z.; Kadir Roni, M.Z.; Radouane, N.; Vicente, C.S.L.; Menéndez, E.; Mokrini, F.; Barka, E.A.; Galvão de Melo e Mota, M.; et al. High-Throughput Molecular Technologies for Unraveling the Mystery of Soil Microbial Community: Challenges and Future Prospects. Heliyon 2021, 7, e08142. [Google Scholar] [CrossRef]
- Meriles, J.M.; Vargas Gil, S.; Conforto, C.; Figoni, G.; Lovera, E.; March, G.J.; Guzmán, C.A. Soil Microbial Communities under Different Soybean Cropping Systems: Characterization of Microbial Population Dynamics, Soil Microbial Activity, Microbial Biomass, and Fatty Acid Profiles. Soil Tillage Res. 2009, 103, 271–281. [Google Scholar] [CrossRef]
- Zhu, S.; Wang, Y.; Xu, X.; Liu, T.; Wu, D.; Zheng, X.; Tang, S.; Dai, Q. Potential Use of High-Throughput Sequencing of Soil Microbial Communities for Estimating the Adverse Effects of Continuous Cropping on Ramie (Boehmeria nivea L. Gaud). PLoS ONE 2018, 13, e0197095. [Google Scholar] [CrossRef]
- Pinheiro de Carvalho, M.Â.A.; de Macedo, F.L.; de Nóbrega, H.G.M.; de Freitas, J.G.R.; Oliveira, M.C.O.; Antunes, G.N.M.; Gouveia, C.S.S.; Ganança, J.F.T. Agrodiversidade, Variedades Regionais da Madeira; Centro ISOPlexis da Universidade da Madeira, ACOESTE-Associação da Costa Oeste: Madeira, Portugal, 2021; ISBN 978-989-33-2868-2. [Google Scholar]
- Jin, X.; Cai, J.; Yang, S.; Li, S.; Shao, X.; Fu, C.; Li, C.; Deng, Y.; Huang, J.; Ruan, Y.; et al. Partial Substitution of Chemical Fertilizer with Organic Fertilizer and Slow-Release Fertilizer Benefits Soil Microbial Diversity and Pineapple Fruit Yield in the Tropics. Appl. Soil Ecol. 2023, 189, 104974. [Google Scholar] [CrossRef]
- Lutz, S.; Thuerig, B.; Oberhaensli, T.; Mayerhofer, J.; Fuchs, J.G.; Widmer, F.; Freimoser, F.M.; Ahrens, C.H. Harnessing the Microbiomes of Suppressive Composts for Plant Protection: From Metagenomes to Beneficial Microorganisms and Reliable Diagnostics. Front. Microbiol. 2020, 11, 1810. [Google Scholar] [CrossRef]
- Silva, J.C.P.; Nunes, T.C.S.; Guimarães, R.A.; Pylro, V.S.; Costa, L.S.A.S.; Zaia, R.; Campos, V.P.; Medeiros, F.H.V. Organic Practices Intensify the Microbiome Assembly and Suppress Root-Knot Nematodes. J. Pest. Sci. 2022, 95, 709–721. [Google Scholar] [CrossRef]
- Bonanomi, G.; Zotti, M.; Idbella, M.; Cesarano, G.; Al-Rowaily, S.L.; Abd-ElGawad, A.M. Mixtures of Organic Amendments and Biochar Promote Beneficial Soil Microbiota and Affect Fusarium oxysporum f. sp. lactucae, Rhizoctonia solani and Sclerotinia minor Disease Suppression. Plant Pathol. 2022, 71, 818–829. [Google Scholar] [CrossRef]
- Khatri, S.; Chaudhary, P.; Shivay, Y.S.; Sharma, S. Role of Fungi in Imparting General Disease Suppressiveness in Soil from Organic Field. Microb. Ecol. 2023, 86, 2047–2059. [Google Scholar] [CrossRef]
- Wahome, C.N.; Maingi, J.M.; Ombori, O.; Njeru, E.M.; Muthini, M.; Kimiti, J.M. Diversity and Abundance of Bacterial and Fungal Communities in Rhizospheric Soil from Smallholder Banana Producing Agroecosystems in Kenya. Front. Hortic. 2023, 2, 1061456. [Google Scholar] [CrossRef]
- Birt, H.W.G.; Pattison, A.B.; Skarshewski, A.; Daniells, J.; Raghavendra, A.; Dennis, P.G. The Core Fungal Microbiome of Banana (Musa spp.). Front. Microbiol. 2023, 14, 1127779. [Google Scholar] [CrossRef]
- Paetz, A.; Wilke, B.-M. Soil Sampling and Storage. In Manual for Soil Analysis: Monitoring and Assessing Soil Bioremediation; Soil Biology; Springer: Berlin, Germany; New York, NY, USA, 2005; ISBN 978-3-540-25346-4. [Google Scholar]
- Ragonezi, C.; Nunes, N.; Oliveira, M.C.O.; de Freitas, J.G.R.; Ganança, J.F.T.; de Carvalho, M.Â.A.P. Sewage Sludge Fertilization—A Case Study of Sweet Potato Yield and Heavy Metal Accumulation. Agronomy 2022, 12, 1902. [Google Scholar] [CrossRef]
- Temminghoff, E.E.; Houba, V.J. Plant Analysis Procedures, 2nd ed.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2004. [Google Scholar]
- Yeates, C.; Gillings, M.R.; Davison, A.D.; Altavilla, N.; Veal, D.A. PCR Amplification of Crude Microbial DNA Extracted from Soil. Lett. Appl. Microbiol. 1997, 25, 303–307. [Google Scholar] [CrossRef]
- White, T.J.; Bruns, T.; Lee, S.; Taylor, J. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In PCR Protocols; Academic Press: San Diego, CA, USA, 1990; pp. 315–322. ISBN 978-0-12-372180-8. [Google Scholar]
- Martin, M. Cutadapt Removes Adapter Sequences from High-Throughput Sequencing Reads. EMBnet. J. 2011, 17, 10–12. [Google Scholar] [CrossRef]
- Magoč, T.; Salzberg, S.L. FLASH: Fast Length Adjustment of Short Reads to Improve Genome Assemblies. Bioinformatics 2011, 27, 2957–2963. [Google Scholar] [CrossRef]
- Chen, S.; Zhou, Y.; Chen, Y.; Gu, J. Fastp: An Ultra-Fast All-in-One FASTQ Preprocessor. Bioinformatics 2018, 34, i884–i890. [Google Scholar] [CrossRef]
- Rognes, T.; Flouri, T.; Nichols, B.; Quince, C.; Mahé, F. VSEARCH: A Versatile Open Source Tool for Metagenomics. PeerJ 2016, 4, e2584. [Google Scholar] [CrossRef] [PubMed]
- Callahan, B.J.; McMurdie, P.J.; Rosen, M.J.; Han, A.W.; Johnson, A.J.A.; Holmes, S.P. DADA2: High-Resolution Sample Inference from Illumina Amplicon Data. Nat. Methods 2016, 13, 581–583. [Google Scholar] [CrossRef]
- Bolyen, E.; Rideout, J.R.; Dillon, M.R.; Bokulich, N.A.; Abnet, C.C.; Al-Ghalith, G.A.; Alexander, H.; Alm, E.J.; Arumugam, M.; Asnicar, F.; et al. Reproducible, Interactive, Scalable and Extensible Microbiome Data Science Using QIIME 2. Nat. Biotechnol. 2019, 37, 852–857. [Google Scholar] [CrossRef]
- Abarenkov, K.; Nilsson, R.H.; Larsson, K.-H.; Taylor, A.F.S.; May, T.W.; Frøslev, T.G.; Pawlowska, J.; Lindahl, B.; Põldmaa, K.; Truong, C.; et al. The UNITE Database for Molecular Identification and Taxonomic Communication of Fungi and Other Eukaryotes: Sequences, Taxa and Classifications Reconsidered. Nucleic Acids Res. 2023, 52, D791–D797. [Google Scholar] [CrossRef] [PubMed]
- Bokulich, N.A.; Kaehler, B.D.; Rideout, J.R.; Dillon, M.; Bolyen, E.; Knight, R.; Huttley, G.A.; Gregory Caporaso, J. Optimizing Taxonomic Classification of Marker-Gene Amplicon Sequences with QIIME 2’s Q2-Feature-Classifier Plugin. Microbiome 2018, 6, 90. [Google Scholar] [CrossRef] [PubMed]
- Oksanen, J.; Simpson, G.L.; Blanchet, F.G.; Kindt, R.; Legendre, P.; Minchin, P.R.; O’Hara, R.B.; Solymos, P.; Stevens, M.H.H.; Szoecs, E.; et al. Vegan: Community Ecology Package 2022. Available online: https://cran.r-project.org/web/packages/vegan/vegan.pdf (accessed on 24 June 2024).
- Wickham, H. Ggplot2: Elegant Graphics for Data Analysis; Springer: New York, NY, USA, 2016; ISBN 978-3-319-24277-4. [Google Scholar]
- Nguyen, N.H.; Song, Z.; Bates, S.T.; Branco, S.; Tedersoo, L.; Menke, J.; Schilling, J.S.; Kennedy, P.G. FUNGuild: An Open Annotation Tool for Parsing Fungal Community Datasets by Ecological Guild. Fungal Ecol. 2016, 20, 241–248. [Google Scholar] [CrossRef]
- Foley, J.A.; Ramankutty, N.; Brauman, K.A.; Cassidy, E.S.; Gerber, J.S.; Johnston, M.; Mueller, N.D.; O’Connell, C.; Ray, D.K.; West, P.C.; et al. Solutions for a Cultivated Planet. Nature 2011, 478, 337–342. [Google Scholar] [CrossRef]
- Zalidis, G.; Stamatiadis, S.; Takavakoglou, V.; Eskridge, K.; Misopolinos, N. Impacts of Agricultural Practices on Soil and Water Quality in the Mediterranean Region and Proposed Assessment Methodology. Agric. Ecosyst. Environ. 2002, 88, 137–146. [Google Scholar] [CrossRef]
- Bai, Z.; Caspari, T.; Gonzalez, M.R.; Batjes, N.H.; Mäder, P.; Bünemann, E.K.; de Goede, R.; Brussaard, L.; Xu, M.; Ferreira, C.S.S.; et al. Effects of Agricultural Management Practices on Soil Quality: A Review of Long-Term Experiments for Europe and China. Agric. Ecosyst. Environ. 2018, 265, 1–7. [Google Scholar] [CrossRef]
- Rigby, D.; Cáceres, D. Organic Farming and the Sustainability of Agricultural Systems. Agric. Syst. 2001, 68, 21–40. [Google Scholar] [CrossRef]
- Fraç, M.; Hannula, S.E.; Bełka, M.; Jędryczka, M. Fungal Biodiversity and Their Role in Soil Health. Front. Microbiol. 2018, 9, 707. [Google Scholar] [CrossRef] [PubMed]
- Pinheiro de Carvalho, M.Â.A.; Ragonezi, C.; Oliveira, M.C.O.; Reis, F.; Macedo, F.L.; de Freitas, J.G.R.; Nóbrega, H.; Ganança, J.F.T. Anticipating the Climate Change Impacts on Madeira’s Agriculture: The Characterization and Monitoring of a Vine Agrosystem. Agronomy 2022, 12, 2201. [Google Scholar] [CrossRef]
- Camacho-Sanchez, M.; Herencia, J.F.; Arroyo, F.T.; Capote, N. Soil Microbial Community Responses to Different Management Strategies in Almond Crop. J. Fungi 2023, 9, 95. [Google Scholar] [CrossRef] [PubMed]
- Beule, L.; Karlovsky, P. Early Response of Soil Fungal Communities to the Conversion of Monoculture Cropland to a Temperate Agroforestry System. PeerJ 2021, 9, e12236. [Google Scholar] [CrossRef]
- Lori, M.; Armengot, L.; Schneider, M.; Schneidewind, U.; Bodenhausen, N.; Mäder, P.; Krause, H.-M. Organic Management Enhances Soil Quality and Drives Microbial Community Diversity in Cocoa Production Systems. Sci. Total Environ. 2022, 834, 155223. [Google Scholar] [CrossRef]
- Zhang, H.; Zheng, X.; Bai, N.; Li, S.; Zhang, J.; Lv, W. Responses of Soil Bacterial and Fungal Communities to Organic and Conventional Farming Systems in East China. J. Microbiol. Biotechnol. 2019, 29, 441–453. [Google Scholar] [CrossRef]
- Li, Z.; Jiao, Y.; Yin, J.; Li, D.; Wang, B.; Zhang, K.; Zheng, X.; Hong, Y.; Zhang, H.; Xie, C.; et al. Productivity and Quality of Banana in Response to Chemical Fertilizer Reduction with Bio-Organic Fertilizer: Insight into Soil Properties and Microbial Ecology. Agric. Ecosyst. Environ. 2021, 322, 107659. [Google Scholar] [CrossRef]
- Durrer, A.; Gumiere, T.; Rumenos Guidetti Zagatto, M.; Petry Feiler, H.; Miranda Silva, A.M.; Henriques Longaresi, R.; Homma, S.K.; Cardoso, E.J.B.N. Organic Farming Practices Change the Soil Bacteria Community, Improving Soil Quality and Maize Crop Yields. PeerJ 2021, 9, e11985. [Google Scholar] [CrossRef]
- Yang, W.; Ji, Z.; Wu, A.; He, D.; Rensing, C.; Chen, Y.; Chen, C.; Wu, H.; Muneer, M.A.; Wu, L. Inconsistent Responses of Soil Bacterial and Fungal Community’s Diversity and Network to Magnesium Fertilization in Tea (Camellia sinensis) Plantation Soils. Appl. Soil Ecol. 2023, 191, 105055. [Google Scholar] [CrossRef]
- Ye, L.; Wang, X.; Wei, S.; Zhu, Q.; He, S.; Zhou, L. Dynamic Analysis of the Microbial Communities and Metabolome of Healthy Banana Rhizosphere Soil during One Growth Cycle. PeerJ 2022, 10, e14404. [Google Scholar] [CrossRef]
- Shen, Z.; Ruan, Y.; Chao, X.; Zhang, J.; Li, R.; Shen, Q. Rhizosphere Microbial Community Manipulated by 2 Years of Consecutive Biofertilizer Application Associated with Banana Fusarium Wilt Disease Suppression. Biol. Fertil. Soils 2015, 51, 553–562. [Google Scholar] [CrossRef]
- Li, F.; Chen, L.; Redmile-Gordon, M.; Zhang, J.; Zhang, C.; Ning, Q.; Li, W. Mortierella Elongata’s Roles in Organic Agriculture and Crop Growth Promotion in a Mineral Soil. Land Degrad. Dev. 2018, 29, 1642–1651. [Google Scholar] [CrossRef]
- Li, F.; Zhang, S.; Wang, Y.; Li, Y.; Li, P.; Chen, L.; Jie, X.; Hu, D.; Feng, B.; Yue, K.; et al. Rare Fungus, Mortierella capitata, Promotes Crop Growth by Stimulating Primary Metabolisms Related Genes and Reshaping Rhizosphere Bacterial Community. Soil Biol. Biochem. 2020, 151, 108017. [Google Scholar] [CrossRef]
- Martino, E.; Perotto, S. Mineral Transformations by Mycorrhizal Fungi. Geomicrobiol. J. 2010, 27, 609–623. [Google Scholar] [CrossRef]
- Dalpé, Y. Mycorrhizal Fungi Biodiversity in Canadian Soils. Can. J. Soil. Sci. 2003, 83, 321–330. [Google Scholar] [CrossRef]
- Gaidashova, S.V.; Van Asten, P.J.A.; Jefwa, J.M.; Delvaux, B.; Declerck, S. Arbuscular Mycorrhizal Fungi in the East African Highland Banana Cropping Systems as Related to Edapho-Climatic Conditions and Management Practices: Case Study of Rwanda. Fungal Ecol. 2010, 3, 225–233. [Google Scholar] [CrossRef]
- Jefwa, J.M.; Kahangi, E.; Losenge, T.; Mung’atu, J.; Ngului, W.; Ichami, S.M.; Sanginga, N.; Vanluawe, B. Arbuscular Mycorrhizal Fungi in the Rhizosphere of Banana and Plantain and the Growth of Tissue Culture Cultivars. Agric. Ecosyst. Environ. 2012, 157, 24–31. [Google Scholar] [CrossRef]
- Zakaria, L.; Aziz, W.N.W. Molecular Identification of Endophytic Fungi from Banana Leaves (Musa spp.). Trop. Life Sci. Res. 2018, 29, 201–211. [Google Scholar] [CrossRef]
- Xu, H.; Zhu, M.; Li, S.; Ruan, W.; Xie, C. Epiphytic Fungi Induced Pathogen Resistance of Invasive Plant Ipomoea Cairica against Colletotrichum Gloeosporioides. PeerJ 2020, 8, e8889. [Google Scholar] [CrossRef]
- Kumar, J.; Singh, D.; Ghosh, P.; Kumar, A. Endophytic and Epiphytic Modes of Microbial Interactions and Benefits. In Plant-Microbe Interactions in Agro-Ecological Perspectives: Volume 1: Fundamental Mechanisms, Methods and Functions; Singh, D.P., Singh, H.B., Prabha, R., Eds.; Springer: Singapore, 2017; pp. 227–253. ISBN 978-981-10-5813-4. [Google Scholar]
- Catambacan, D.G.; Cumagun, C.J.R. Weed-Associated Fungal Endophytes as Biocontrol Agents of Fusarium Oxysporum f. Sp. Cubense TR4 in Cavendish Banana. J. Fungi 2021, 7, 224. [Google Scholar] [CrossRef]
- Rodrigo, S.; García-Latorre, C.; Santamaria, O. Metabolites Produced by Fungi against Fungal Phytopathogens: Review, Implementation and Perspectives. Plants 2022, 11, 81. [Google Scholar] [CrossRef] [PubMed]
Agrosystem ID | Management System | Coordinates | Age of the Agrosystem | Altitude (a.s.l.) |
---|---|---|---|---|
B1 | OF | 32.6678705 −16.9617026 | >50 years; OF certification since 2012 | 152 |
B2 | OF | 32.7114335 −17.1464224 | >50 years; OF certification since 2015 | 217 |
B3 | OF | 32.6466043 −16.8831825 | >20 years; OF certification since 2017 | 90 |
C1 | CF | 32.763168 −17.2333474 | >50 years | 13 |
C2 | CF | 32.6878779 −17.1020215 | >20 years | 214 |
C3 | CF | 32.6983176 −16.7830542 | >50 years | 179 |
Soil Properties | Management System | t-Test | Mann–Whitney U | |
---|---|---|---|---|
OF | CF | |||
pH | 6.57 ± 0.55 | 4.27 ± 0.21 | ** | - |
OM (%) | 3.83 ± 1.32 | 4.56 ± 1.22 | ns | - |
P (ppm) | 1206 ± 503 | 1007 ± 478 | ns | - |
K (ppm) | 1480 ± 250 | 1200 ± 208 | ns | - |
Ca (meq/100 g) | 27.37 ± 13.45 | 8.63 ± 1.36 | ns | - |
Mg (meq/100 g) | 12.77 ± 3.59 | 6.00 ± 1.30 | * | - |
Na (meq/100 g) | 0.70 ± 0.36 | 0.43 ± 0.12 | ns | - |
CEC (meq/100 g) | 56.57 ± 12.07 | 60.10 ± 28.96 | ns | - |
SD (%) | 79.67 ± 35.22 | 34.33 ± 11.55 | - | ns |
NO3-N (ppm) | 35.00 ± 34.64 | 68.33 ± 54.85 | ns | - |
NH4-N (ppm) | 4.13 ± 2.66 | 5.00 ± 1.13 | ns | - |
Cu (ppm) | 5.17 ± 2.75 | 6.67 ± 4.65 | ns | - |
Zn (ppm) | 9.33 ± 2.93 | 7.17 ± 2.93 | ns | - |
Mn (ppm) | 16.50 ± 1.50 | 16.50 ± 0.50 | ns | - |
Fe (ppm) | 50.00 ± 5.00 | 53.33 ± 2.89 | ns | - |
Df | SumOfSqs | R2 | F | Pr(>F) | ||
---|---|---|---|---|---|---|
MS | 1 | 0.108915 | 0.38709 | 10.9904 | 0.0001 | *** |
pH | 1 | 0.011481 | 0.04080 | 1.1585 | 0.3623 | ns |
OM | 1 | 0.022982 | 0.08168 | 2.3190 | 0.0760 | . |
P | 1 | 0.020652 | 0.07340 | 2.0839 | 0.1063 | ns |
K | 1 | 0.057882 | 0.20571 | 5.8408 | 0.0009 | *** |
Residual | 6 | 0.059460 | 0.21132 | |||
Total | 11 | 0.281370 | 1.00000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oliveira, M.C.O.; Alves, A.; Ragonezi, C.; de Freitas, J.G.R.; Pinheiro De Carvalho, M.A.A. Organic Farming Enhances Diversity and Recruits Beneficial Soil Fungal Groups in Traditional Banana Plantations. Microorganisms 2024, 12, 2372. https://doi.org/10.3390/microorganisms12112372
Oliveira MCO, Alves A, Ragonezi C, de Freitas JGR, Pinheiro De Carvalho MAA. Organic Farming Enhances Diversity and Recruits Beneficial Soil Fungal Groups in Traditional Banana Plantations. Microorganisms. 2024; 12(11):2372. https://doi.org/10.3390/microorganisms12112372
Chicago/Turabian StyleOliveira, Maria Cristina O., Artur Alves, Carla Ragonezi, José G. R. de Freitas, and Miguel A. A. Pinheiro De Carvalho. 2024. "Organic Farming Enhances Diversity and Recruits Beneficial Soil Fungal Groups in Traditional Banana Plantations" Microorganisms 12, no. 11: 2372. https://doi.org/10.3390/microorganisms12112372
APA StyleOliveira, M. C. O., Alves, A., Ragonezi, C., de Freitas, J. G. R., & Pinheiro De Carvalho, M. A. A. (2024). Organic Farming Enhances Diversity and Recruits Beneficial Soil Fungal Groups in Traditional Banana Plantations. Microorganisms, 12(11), 2372. https://doi.org/10.3390/microorganisms12112372