FgUbiH Is Essential for Vegetative Development, Energy Metabolism, and Antioxidant Activity in Fusarium graminearum
Abstract
:1. Introduction
2. Materials and Methods
2.1. Strain Culture and Growth Conditions
2.2. Identification of FgUbiH and FgUbiH Mutant Construction
2.3. Pathogenicity and DON Production Analysis
2.4. Transcriptome Sequencing Analysis
2.5. Analysis of Relative Expression of Genes
2.6. Analysis of Antioxidant Function
2.7. Analysis of Influence on Mitochondrial Function
2.8. Statistical Analysis
3. Results
3.1. Phylogenetic Analysis of FgUbiH
3.2. FgUbiH Is Crucial for F. graminearum Vegetative Growth
3.3. FgUbiH Is Essential for Conidiogenesis and Sexual Reproduction in F. graminearum
3.4. FgUbiH Plays a Crucial Role in Both Pathogenicity and the Production of DON
3.5. Transcriptional Profiling in Wild-Type and ∆FgUbiH Strains
3.6. FgUbiH Regulates the Production of Pigment
3.7. FgUbiH Is Involved in the Antioxidant Function of F. graminearum
3.8. FgUbiH Influences Mitochondrial Function
3.9. FgUbiH Participates in CoQ Synthesis and Regulates Acetaldehyde Dehydrogenase Activity
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Goswami, R.S.; Kistler, H.C. Heading for disaster: Fusarium graminearum on cereal crops. Mol. Plant Pathol. 2004, 5, 515–525. [Google Scholar] [CrossRef] [PubMed]
- Bentinger, M.; Brismar, K.; Dallner, G. The antioxidant role of coenzyme Q. Mitochondrion 2007, 7, S41–S50. [Google Scholar] [CrossRef] [PubMed]
- Nolfi-Donegan, D.; Braganza, A.; Shiva, S. Mitochondrial electron transport chain: Oxidative phosphorylation, oxidant production, and methods of measurement. Redox Biol. 2020, 37, 2213–2217. [Google Scholar] [CrossRef] [PubMed]
- Sharma, P.; Teixeira de Mattos, M.J.; Hellingwerf, K.J.; Bekker, M. On the function of the various quinone species in Escherichia coli. FEBS J. 2012, 279, 3364–3373. [Google Scholar] [CrossRef]
- Villalba, J.M.; Navas, P. Regulation of coenzyme Q biosynthesis pathway in eukaryotes. Free Radic. Biol. Med. 2021, 165, 312–323. [Google Scholar] [CrossRef]
- Ozeir, M.; Pelosi, L.; Ismail, A.; Mellot-Draznieks, C.; Fontecave, M.; Pierrel, F. Coq6 is responsible for the C4-deamination reaction in Coenzyme Q biosynthesis in Saccharomyces cerevisiae. J. Biol. Chem. 2015, 290, 24140–24151. [Google Scholar] [CrossRef]
- Loiseau, L.; Fyfe, C.; Aussel, L.; Hajj Chehade, M.; Hernández, S.B.; Faivre, B.; Hamdane, D.; Mellot-Draznieks, C.; Rascalou, B.; Pelosi, L.; et al. The UbiK protein is an accessory factor necessary for bacterial ubiquinone (UQ) biosynthesis and forms a complex with the UQ biogenesis factor UbiJ. J. Biol. Chem. 2017, 292, 11937–11950. [Google Scholar] [CrossRef]
- Pelosi, L.; Ducluzeau, A.-L.; Loiseau, L.; Barras, F.; Schneider, D.; Junier, I.; Pierrel, F.; Dorrestein, P.C. Evolution of Ubiquinone biosynthesis: Multiple proteo bacterial enzymes with various regioselectivities to catalyze three contiguous aromatic hydroxylation reactions. mSystems 2016, 1, e00091-16. [Google Scholar] [CrossRef]
- Hajj Chehade, M.; Loiseau, L.; Lombard, M.; Pecqueur, L.; Ismail, A.; Smadja, M.; Golinelli-Pimpaneau, B.; Mellot-Draznieks, C.; Hamelin, O.; Aussel, L.; et al. UbiI, a new gene in Escherichia coli Coenzyme Q biosynthesis, is involved in aerobic C5-hydroxylation. J. Biol. Chem. 2013, 288, 20085–20092. [Google Scholar] [CrossRef]
- Huijbers, M.M.E.; Montersino, S.; Westphal, A.H.; Tischler, D.; van Berkel, W.J.H. Flavin dependent monooxygenases. Arch. Biochem. Biophys. 2014, 544, 2–17. [Google Scholar] [CrossRef]
- Ozeir, M.; Mühlenhoff, U.; Webert, H.; Lill, R.; Fontecave, M.; Pierrel, F. Coenzyme Q biosynthesis: Coq6 is required for the C5-hydroxylation reaction and substrate analogs rescue Coq6 deficiency. Chem. Biol. 2011, 18, 1134–1142. [Google Scholar] [CrossRef] [PubMed]
- Stenmark, P.; Grünler, J.; Mattsson, J.; Sindelar, P.J.; Nordlund, P.; Berthold, D.A. A new member of the family of Di-iron carboxylate proteins. J. Biol. Chem. 2001, 276, 33297–33300. [Google Scholar] [CrossRef] [PubMed]
- Nakahigkgsi, K.; Miyamoto, K.; Nishimura, K.; Inokuchi, H. Isolation and characterization of a light-sensitive mutant of Escherichia coli K-12 with a mutation in a gene that Is required for the biosynthesis of Ubiquinone. J. Bacteriol. 1992, 174, 7352–7359. [Google Scholar] [CrossRef]
- Kouzminova, E.A.; Rotman, E.; Macomber, L.; Zhang, J.; Kuzminov, A. RecA-dependent mutants in Escherichia coli reveal strategies to avoid chromosomal fragmentation. Proc. Natl. Acad. Sci. USA 2004, 101, 16262–16267. [Google Scholar] [CrossRef]
- Baisa, G.; Stabo, N.J.; Welch, R.A. Characterization of Escherichia coli d-Cycloserine transport and resistant mutants. J. Bacteriol. 2013, 195, 1389–1399. [Google Scholar] [CrossRef]
- Gupta, S.; Mat-Jan, F.; Lati¢, M.; Clark, D.P. Acetaldehyde dehydrogenase activity of the AdhE protein of Escherichia coli is inhibited by intermediates in ubiquinone synthesis. FEMS Microbiol. Lett. 2000, 182, 51–55. [Google Scholar] [CrossRef]
- Kwon, O.; Kotsakis, A.; Meganathan, R. Ubiquinone (coenzyme Q) biosynthesis in Escherichia coli: Identification of the ubiF gene. FEMS Microbiol. Lett. 2000, 186, 157–161. [Google Scholar] [CrossRef]
- Ma, C.; Sim, S.; Shi, W.; Du, L.; Xing, D.; Zhang, Y. Energy production genes sucB and ubiF are involved in persister survival and tolerance to multiple antibiotics and stresses in Escherichia coli. FEMS Microbiol. Lett. 2010, 303, 33–40. [Google Scholar] [CrossRef]
- Tang, L.; Zhai, H.; Zhang, S.; Lv, Y.; Li, Y.; Wei, S.; Ma, P.; Wei, S.; Hu, Y.; Cai, J. Functional characterization of aldehyde dehydrogenase in Fusarium graminearum. Microorganisms 2023, 11, 2875. [Google Scholar] [CrossRef] [PubMed]
- Zheng, H.; Zheng, W.; Wu, C.; Yang, J.; Xi, Y.; Xie, Q.; Zhao, X.; Deng, X.; Lu, G.; Li, G.; et al. Rab GTPases are essential for membrane trafficking-dependent growth and pathogenicity in Fusarium graminearum. Environ. Microbiol. 2015, 17, 4580–4599. [Google Scholar] [CrossRef]
- Tang, G.; Xia, H.; Liang, J.; Ma, Z.; Liu, W. Spermidine is critical for growth, development, environmental adaptation, and vvirulence in Fusarium graminearum. Front. Microbiol. 2021, 12, 765398. [Google Scholar] [CrossRef] [PubMed]
- Tamura, K.; Stecher, G.; Peterson, D.; Filipski, A.; Kumar, S. MEGA6: Molecular Evolutionary Genetics Analysis Version 6.0. Mol. Biol. Evol. 2013, 30, 2725–2729. [Google Scholar] [CrossRef] [PubMed]
- Catlett, N.L.; Lee, B.-N.; Yoder, O.C.; Turgeon, B.G. Split-marker recombination for efficient targeted deletion of fungal genes. Fungal Genet. Rep. 2003, 50, 9–11. [Google Scholar] [CrossRef]
- Hou, Z.; Xue, C.; Peng, Y.; Katan, T.; Kistler, H.C.; Xu1, J.-R. A mitogen-activated protein kinase gene (MGV1) in Fusarium graminearum is required for female fertility, heterokaryon formation, and plant infection. Mol. Plant-Microbe Interact. 2002, 15, 1119–1127. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Chen, D.; Luo, S.; Zhu, Y.; Jia, X.; Duan, Y.; Zhou, M. Intron-mediated regulation of β-tubulin genes expression affects the sensitivity to carbendazim in Fusarium graminearum. Curr. Genet. 2019, 65, 1057–1069. [Google Scholar] [CrossRef]
- Jiang, C.; Zhang, C.; Wu, C.; Sun, P.; Hou, R.; Liu, H.; Wang, C.; Xu, J.R. TRI6 and TRI10 play different roles in the regulation of deoxynivalenol (DON) production by cAMP signalling in Fusarium graminearum. Environ. Microbiol. 2016, 18, 3689–3701. [Google Scholar] [CrossRef]
- Liu, J.; Li, J.; Gao, N.; Zhang, X.; Zhao, G.; Song, X. Identification and characterization of a protein Bro1 essential for sophorolipids synthesis in Starmerella bombicola. J. Ind. Microbiol. Biotechnol. 2020, 47, 437–448. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
- Sun, S.; Wang, M.; Liu, C.; Tao, Y.; Wang, T.; Liang, Y.; Zhang, L.; Yu, J. FgLEU1 is involved in leucine biosynthesis, sexual reproduction, and full virulence in Fusarium graminearum. J. Fungi 2022, 8, 1090. [Google Scholar] [CrossRef]
- Zhang, W.; Lv, Y.; Lv, A.; Wei, S.; Zhang, S.; Li, C.; Hu, Y. Sub3 inhibits Aspergillus flavus growth by disrupting mitochondrial energy metabolism, and has potential biocontrol during peanut storage. J. Sci. Food Agric. 2020, 101, 486–496. [Google Scholar] [CrossRef]
- Lei, J.-D.; Li, Q.; Zhang, S.-B.; Lv, Y.-Y.; Zhai, H.-C.; Wei, S.; Ma, P.-A.; Hu, Y.-S. Transcriptomic and biochemical analyses revealed antifungal mechanism of trans-anethole on Aspergillus flavus growth. Appl. Microbiol. Biotechnol. 2023, 107, 7213–7230. [Google Scholar] [CrossRef] [PubMed]
- Lenaz, G.; Fato, R.; Formiggini, G.; Genova, M.L. The role of Coenzyme Q in mitochondrial electron transport. Mitochondrion 2007, 7, S8–S33. [Google Scholar] [CrossRef] [PubMed]
- Banerjee, R.; Purhonen, J.; Kallijärvi, J. The mitochondrial coenzyme Q junction and complex III: Biochemistry and pathophysiology. FEBS J. 2021, 289, 6936–6958. [Google Scholar] [CrossRef] [PubMed]
- Staiano, C.; García-Corzo, L.; Mantle, D.; Turton, N.; Millichap, L.E.; Brea-Calvo, G.; Hargreaves, I. Biosynthesis, deficiency, and supplementation of Coenzyme Q. Antioxidants 2023, 12, 1469. [Google Scholar] [CrossRef]
- Tasaki, E.; Yamamoto, Y.; Iuchi, Y. Higher levels of the lipophilic antioxidants coenzyme Q10 and vitamin E in long-lived termite queens than in short-lived workers. Insect Sci. 2023, 31, 201–210. [Google Scholar] [CrossRef] [PubMed]
- Pelosi, L.; Morbiato, L.; Burgardt, A.; Tonello, F.; Bartlett, A.K.; Guerra, R.M.; Ferizhendi, K.K.; Desbats, M.A.; Rascalou, B.; Marchi, M.; et al. COQ4 is required for the oxidative decarboxylation of the C1 carbon of coenzyme Q in eukaryotic cells. Mol. Cell 2024, 84, 981–989. [Google Scholar] [CrossRef]
- Jiang, H.-X.; Wang, J.; Zhou, L.; Jin, Z.-J.; Cao, X.-Q.; Liu, H.; Chen, H.-F.; He, Y.-W. Coenzyme Q biosynthesis in the biopesticide Shenqinmycin-producing Pseudomonas aeruginosa strain M18. J. Ind. Microbiol. Biotechnol. 2019, 46, 1025–1038. [Google Scholar] [CrossRef]
- Kazemzadeh, K.; Hajj Chehade, M.; Hourdoir, G.; Brunet, C.D.; Caspar, Y.; Loiseau, L.; Barras, F.; Pierrel, F.; Pelosi, L.; Galperin, M.Y. The biosynthetic pathway of Ubiquinone contributes to pathogenicity of francisella novicida. J. Bacteriol. 2021, 203, e00400-21. [Google Scholar] [CrossRef]
- Cao, J.; Lv, J.; Zhang, L.; Li, H.; Ma, H.; Zhao, Y.; Huang, J. The Non-Histone Protein FgNhp6 is involved in the regulation of the development, DON biosynthesis, and virulence of Fusarium graminearum. Pathogens 2024, 13, 592. [Google Scholar] [CrossRef]
- Liu, X.; Wang, L.; Choera, T.; Fang, X.; Wang, G.; Chen, W.; Lee, Y.-W.; Mohamed, S.R.; Dawood, D.H.; Shi, J.; et al. Paralogous FgIDO genes with differential roles in tryptophan catabolism, fungal development and virulence in Fusarium graminearum. Microbiol. Res. 2023, 272, 127382. [Google Scholar] [CrossRef]
- Covarrubias, A.J.; Perrone, R.; Grozio, A.; Verdin, E. NAD+ metabolism and its roles in cellular processes during ageing. Nat. Rev. Mol. Cell Biol. 2020, 22, 119–141. [Google Scholar] [CrossRef] [PubMed]
- Malz, S.; Grell, M.N.; Thrane, C.; Maier, F.J.; Rosager, P.; Felk, A.; Albertsen, K.S.; Salomon, S.; Bohn, L.; Schäfer, W.; et al. Identification of a gene cluster responsible for the biosynthesis of aurofusarin in the Fusarium graminearum species complex. Fungal Genet. Biol. 2005, 42, 420–433. [Google Scholar] [CrossRef] [PubMed]
- Westphal, K.; Wollenberg, R.; Herbst, F.-A.; Sørensen, J.; Sondergaard, T.; Wimmer, R. Enhancing the production of the fungal pigment aurofusarin in Fusarium graminearum. Toxins 2018, 10, 485. [Google Scholar] [CrossRef] [PubMed]
- Addabbo, F.; Montagnani, M.; Goligorsky, M.S. Mitochondria and reactive oxygen species. Hypertension 2009, 53, 885–892. [Google Scholar] [CrossRef] [PubMed]
- Hong, Y.; Boiti, A.; Vallone, D.; Foulkes, N.S. Reactive oxygen species signaling and oxidative stress: Transcriptional regulation and evolution. Antioxidants 2024, 13, 312. [Google Scholar] [CrossRef]
- Srinivas, U.S.; Tan, B.W.Q.; Vellayappan, B.A.; Jeyasekharan, A.D. ROS and the DNA damage response in cancer. Redox Biol. 2019, 25, 101084. [Google Scholar] [CrossRef]
- Heller, J.; Tudzynski, P. Reactive oxygen species in phytopathogenic fungi: Signaling, development, and disease. Annu. Rev. Phytopathol. 2011, 49, 369–390. [Google Scholar] [CrossRef]
- Stefely, J.A.; Pagliarini, D.J. Biochemistry of mitochondrial Coenzyme Q biosynthesis. Trends Biochem. Sci. 2017, 42, 824–843. [Google Scholar] [CrossRef]
- Zhou, R.-Z.; JIang, S.; Zhang, L.; Yu, Z.-B. Mitochondrial electron transport chain, ROS generation and uncoupling (Review). Int. J. Mol. Med. 2019, 44, 3–15. [Google Scholar] [CrossRef]
- Acosta, M.J.; Vazquez Fonseca, L.; Desbats, M.A.; Cerqua, C.; Zordan, R.; Trevisson, E.; Salviati, L. Coenzyme Q biosynthesis in health and disease. Biochim. Biophys. Acta (BBA)-Bioenerg. 2016, 1857, 1079–1085. [Google Scholar] [CrossRef]
- Awad, A.M.; Bradley, M.C.; Fernández-del-Río, L.; Nag, A.; Tsui, H.S.; Clarke, C.F. Coenzyme Q10 deficiencies: Pathways in yeast and humans. Essays Biochem. 2018, 62, 361–376. [Google Scholar] [CrossRef] [PubMed]
- Andreu, A.L.; Quinzii, C.M.; Tadesse, S.; Naini, A.; Hirano, M. Effects of inhibiting CoQ10 biosynthesis with 4-nitrobenzoate in human fibroblasts. PLoS ONE 2012, 7, e30606. [Google Scholar] [CrossRef]
- Quinzii, C.M.; Lopez, L.C.; Gilkerson, R.W.; Dorado, B.; Coku, J.; Naini, A.B.; Lagier-Tourenne, C.; Schuelke, M.; Salviati, L.; Carrozzo, R.; et al. Reactive oxygen species, oxidative stress, and cell death correlate with level of CoQ1 deficiency. FASEB J. 2010, 24, 3733–3743. [Google Scholar] [CrossRef] [PubMed]
- Quinzii, C.M.; Garone, C.; Emmanuele, V.; Tadesse, S.; Krishna, S.; Dorado, B.; Hirano, M. Tissue-specific oxidative stress and loss of mitochondria in CoQ-deficient Pdss2 mutant mice. FASEB J. 2012, 27, 612–621. [Google Scholar] [CrossRef]
- Adam-Vizi, V.; Tretter, L. The role of mitochondrial dehydrogenases in the generation of oxidative stress. Neurochem. Int. 2013, 62, 757–763. [Google Scholar] [CrossRef]
- Rasheed, M.R.H.A.; Tarjan, G. Succinate dehydrogenase complex: An updated review. Arch. Pathol. Lab. Med. 2018, 142, 1564–1570. [Google Scholar] [CrossRef]
- Tsujimoto, Y.; Shimizu, S. Role of the mitochondrial membrane permeability transition in cell death. Apoptosis 2006, 12, 835–840. [Google Scholar] [CrossRef]
- Kainou, T.; Okada, K.; Suzuki, K.; Nakagawa, T.; Matsuda, H.; Kawamukai, M. Dimer formation of octaprenyl-diphosphate synthase (IspB) is essential for chain length determination of Ubiquinone. J. Biol. Chem. 2001, 276, 7876–7883. [Google Scholar] [CrossRef]
- Huang, B.; Guo, J.; Sun, L.; Chen, W. ERG9 and COQ1 disruption reveals isoprenoids biosynthesis is closely related to mitochondrial function in Saccharomyces cerevisiae. Integr. Biol. 2013, 5, 1282–1296. [Google Scholar] [CrossRef]
Gene Category | Function | Log2 (fc) | p-Value |
---|---|---|---|
Terpenoid backbone biosynthesis | |||
FGSG_01256 | Putative undecaprenyl diphosphate synthase | −1.1187 | 5.59 × 10−12 |
FGSG_10097 | Polyprenyl synthetase | −1.8095 | 3.74 × 10−12 |
Tryptophan metabolism | |||
FGSG_02657 | Indoleamine 2,3-dioxygenase, FgIDOA | −1.4644 | 1.04 × 10−13 |
FGSG_04828 | Indoleamine 2,3-dioxygenase, FgIDOB | −3.8635 | 2.03 × 10−4 |
FGSG_09040 | Indoleamine 2,3-dioxygenase, FgIDOC | −7.2504 | 1.49 × 10−17 |
FGSG_01972 | Sulfite reductase, Cytochrome P450 | 3.0176 | 6.96 × 10−59 |
FGSG_02287 | Acyl-CoAoxidase | −1.3839 | 1.10 × 10−10 |
FGSG_02392 | Aldehyde dehydrogenase family | −2.0948 | 2.26 × 10−8 |
FGSG_05087 | Acetyl-CoA acetyltransferase | −3.0119 | 4.88 × 10−51 |
FGSG_07596 | cytochrome P450 | −1.2069 | 7.96 × 10−4 |
FGSG_11484 | Acyl-CoA dehydrogenase | −3.7165 | 6.94 × 10−7 |
FGSG_13111 | Enoyl-CoA hydratase, carnithine racemase | −1.3012 | 9.73 × 10−9 |
FGSG_04131 | kynureninase | 2.1986 | 1.76 × 10−13 |
FGSG_04829 | kynureninase | −3.4876 | 1.54 × 10−24 |
Antioxidase genes | |||
FGSG_00308 | peroxidase | −1.0632 | 2.00 × 10−6 |
FGSG_00407 | peroxidase | −1.1287 | 4.94 × 10−5 |
FGSG_05685 | catalase | 1.1916 | 2.12 × 10−2 |
Energy metabolism | |||
FGSG_00429 | ATP synthase E chain | −1.1627 | 8.34 × 10−11 |
FGSG_05266 | ATP synthase subunit K | −1.0777 | 4.18 × 10−9 |
FGSG_05470 | V-type proton ATPase 16 kDa proteolipid subunit | −2.1763 | 1.61 × 10−14 |
FGSG_09430 | ATP synthase j chain | −1.0394 | 2.08 × 10−9 |
FGSG_00743 | CybS, succinate dehydrogenase cytochrome B small subunit | −1.3506 | 4.10 × 10−12 |
Pigment synthesis genes | |||
FGSG_02322 | Major Facilitator Superfamily, AurT | 2.1693 | 3.98 × 10−11 |
FGSG_02323 | Fungal specific transcription | 1.5124 | 1.49 × 10−10 |
FGSG_02324 | PKS12 Beta-ketoacyl synthase | −2.6789 | 1.70 × 10−2 |
FGSG_02749 | ABC transporter | −2.7065 | 1.02 × 10−32 |
Aldehyde dehydrogenase genes | |||
FGSG_00490 | Aldehyde dehydrogenase family | −2.0255 | 2.40 × 10−23 |
FGSG_05831 | Aldehyde dehydrogenase family | −1.3580 | 2.92 × 10−9 |
FGSG_02296 | Aldehyde dehydrogenase family | −8.0955 | 1.91 × 10−12 |
FGSG_02392 | Aldehyde dehydrogenase family | −2.0948 | 2.26 × 10−8 |
Cytochrome c oxidase | |||
FGSG_06268 | Cytochrome c oxidase subunit VIb | −1.4264 | 1.31 × 10−2 |
Cell growth | |||
FGSG_04584 | Glycosyl hydrolase family 76 | −7.5134 | 2.62 × 10−7 |
FGSG_05524 | PalH/RIM21 | −1.2573 | 8.38 × 10−13 |
FGSG_01351 | Beta-glucosidase | −1.4356 | 5.59 × 10−16 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ge, J.; Zhai, H.; Tang, L.; Zhang, S.; Lv, Y.; Ma, P.; Wei, S.; Zhou, Y.; Wu, X.; Lei, Y.; et al. FgUbiH Is Essential for Vegetative Development, Energy Metabolism, and Antioxidant Activity in Fusarium graminearum. Microorganisms 2024, 12, 2093. https://doi.org/10.3390/microorganisms12102093
Ge J, Zhai H, Tang L, Zhang S, Lv Y, Ma P, Wei S, Zhou Y, Wu X, Lei Y, et al. FgUbiH Is Essential for Vegetative Development, Energy Metabolism, and Antioxidant Activity in Fusarium graminearum. Microorganisms. 2024; 12(10):2093. https://doi.org/10.3390/microorganisms12102093
Chicago/Turabian StyleGe, Jinwen, Huanchen Zhai, Lei Tang, Shuaibing Zhang, Yangyong Lv, Pingan Ma, Shan Wei, Yu Zhou, Xiaofu Wu, Yang Lei, and et al. 2024. "FgUbiH Is Essential for Vegetative Development, Energy Metabolism, and Antioxidant Activity in Fusarium graminearum" Microorganisms 12, no. 10: 2093. https://doi.org/10.3390/microorganisms12102093
APA StyleGe, J., Zhai, H., Tang, L., Zhang, S., Lv, Y., Ma, P., Wei, S., Zhou, Y., Wu, X., Lei, Y., Zhao, F., & Hu, Y. (2024). FgUbiH Is Essential for Vegetative Development, Energy Metabolism, and Antioxidant Activity in Fusarium graminearum. Microorganisms, 12(10), 2093. https://doi.org/10.3390/microorganisms12102093