Taxonomic Diversity, Predicted Metabolic Pathway, and Interaction Pattern of Bacterial Community in Sea Urchin Anthocidaris crassispina
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection
2.2. DNA Extraction and High-Throughput Sequencing
2.3. Sequences Analysis and Taxonomic Annotation
2.4. Statistical Analysis
3. Results
3.1. Diversity of Bacterial Community in Sea Urchin
3.2. Bacterial Taxonomic Classification and Community Composition
3.3. LefSe Analysis
3.4. Bacterial Gene Function Predictions of Sea Urchin
3.5. Network Pattern of Bacterial Interaction
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Littlewood, D.T.J.; Smith, A.B. A Combined Morphological and Molecular Phylogeny for Sea Urchins (Echinoidea: Echinodermata). Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 1995, 347, 213–234. [Google Scholar]
- Hernández-Zulueta, J.; Rubio-Bueno, S.; Zamora-Tavares, M.D.P.; Vargas-Ponce, O.; Rodríguez-Troncoso, A.P.; Rodríguez-Zaragoza, F.A. Metabarcoding the Bacterial Assemblages Associated with Toxopneustes Roseus in the Mexican Central Pacific. Microorganisms 2024, 12, 1195. [Google Scholar] [CrossRef] [PubMed]
- Di Bernardo, M.; Di Carlo, M. The Sea Urchin Embryo: A Model for Studying Molecular Mechanisms Involved in Human Diseases and for Testing Bioactive Compounds. In Sea Urchin—From Environment to Aquaculture and Biomedicine; IntechOpen: London, UK, 2017; pp. 119–144. [Google Scholar]
- Adonin, L.; Drozdov, A.; Barlev, N.A. Sea Urchin as a Universal Model for Studies of Gene Networks. Front. Genet. 2021, 11, 627259. [Google Scholar] [CrossRef] [PubMed]
- Buñuel, X.; Alcoverro, T.; Boada, J.; Zinkunegi, L.; Smith, T.M.; Barrera, A.; Casas, M.; Farina, S.; Pérez, M.; Romero, J.; et al. Indirect Grazing-Induced Mechanisms Contribute to the Resilience of Mediterranean Seagrass Meadows to Sea Urchin Herbivory. Oikos 2023, 2023, e09520. [Google Scholar] [CrossRef]
- Suckling, C.C.; Zavell, M.D.; Byczynski, A.L.; Takeda, B.T. Assessing the Potential of the Unexploited Atlantic Purple Sea Urchin, Arbacia punctulata, for the Edible Market. Front. Mar. Sci. 2022, 9, 895061. [Google Scholar] [CrossRef]
- Pagliara, P.; De Benedetto, G.E.; Francavilla, M.; Barca, A.; Caroppo, C. Bioactive Potential of Two Marine Picocyanobacteria Belonging to Cyanobium and Synechococcus Genera. Microorganisms 2021, 9, 2048. [Google Scholar] [CrossRef]
- Cirino, P.; Brunet, C.; Ciaravolo, M.; Galasso, C.; Musco, L.; Vega Fernández, T.; Sansone, C.; Toscano, A. The Sea Urchin Arbacia Lixula: A Novel Natural Source of Astaxanthin. Mar. Drugs 2017, 15, 187. [Google Scholar] [CrossRef]
- Guo, Z.K.; Wang, R.; Chen, F.X.; Liu, T.M.; Yang, M.Q. Bioactive Aromatic Metabolites from the Sea Urchin-Derived Actinomycete Streptomyces spectabilis Strain HDa1. Phytochem. Lett. 2018, 25, 132–135. [Google Scholar] [CrossRef]
- Salas-Rojas, M.; Galvez-Romero, G.; Anton-Palma, B.; Acevedo, R.; Blanco-Favela, F.; Aguilar-Setién, A. The Coelomic Fluid of the Sea Urchin Tripneustes Depressus Shows Antiviral Activity against Suid Herpesvirus Type 1 (SHV-1) and Rabies Virus (RV). Fish Shellfish Immunol. 2014, 36, 158–163. [Google Scholar] [CrossRef]
- Soleimani, S.; Mashjoor, S.; Mitra, S.; Yousefzadi, M.; Rezadoost, H. Coelomic Fluid of Echinometra Mathaei: The New Prospects for Medicinal Antioxidants. Fish Shellfish Immunol. 2021, 117, 311–319. [Google Scholar] [CrossRef]
- Jiao, H.; Shang, X.; Dong, Q.; Wang, S.; Liu, X.; Zheng, H.; Lu, X. Polysaccharide Constituents of Three Types of Sea Urchin Shells and Their Anti-Inflammatory Activities. Mar. Drugs 2015, 13, 5882–5900. [Google Scholar] [CrossRef]
- Takami, H.; Won, N.; Kawamura, T. Impacts of the 2011 Mega-Earthquake and Tsunami on Abalone Haliotis discus hannai and Sea Urchin Strongylocentrotus nudus Populations at Oshika Peninsula, Miyagi, Japan. Fish. Oceanogr. 2013, 22, 113–120. [Google Scholar] [CrossRef]
- Macke, E.; Tasiemski, A.; Massol, F.; Callens, M.; Decaestecker, E. Life History and Eco-Evolutionary Dynamics in Light of the Gut Microbiota. Oikos 2017, 126, 508–531. [Google Scholar] [CrossRef]
- Li, J.; Chen, S.; Wu, P.; Zhu, C.; Hu, R.; Li, T.; Guo, Y. Insights into the Relationship between Intestinal Microbiota of the Aquaculture Worm Sipunculus Nudus and Surrounding Sediments. Fishes 2023, 8, 32. [Google Scholar] [CrossRef]
- Mohan, K.; Ravichandran, S.; Muralisankar, T.; Uthayakumar, V.; Chandirasekar, R.; Seedevi, P.; Rajan, D.K. Potential Uses of Fungal Polysaccharides as Immunostimulants in Fish and Shrimp Aquaculture: A Review. Aquaculture 2019, 500, 250–263. [Google Scholar] [CrossRef]
- Hakim, J.A.; Schram, J.B.; Galloway, A.W.E.; Morrow, C.D.; Crowley, M.R.; Watts, S.A.; Bej, A.K. The Purple Sea Urchin Strongylocentrotus purpuratus Demonstrates a Compartmentalization of Gut Bacterial Microbiota, Predictive Functional Attributes, and Taxonomic Co-Occurrence. Microorganisms 2019, 7, 35. [Google Scholar] [CrossRef]
- Sauchyn, L.K.; Scheibling, R.E. Degradation of Sea Urchin Feces in a Rocky Subtidal Ecosystem: Implications for Nutrient Cycling and Energy Flow. Aquat. Biol. 2009, 6, 99–108. [Google Scholar] [CrossRef]
- Hagstrom, G.I.; Levin, S.A. Marine Ecosystems as Complex Adaptive Systems: Emergent Patterns, Critical Transitions, and Public Goods. Ecosystems 2017, 20, 458–476. [Google Scholar] [CrossRef]
- Schwob, G.; Cabrol, L.; Poulin, E.; Orlando, J. Characterization of the Gut Microbiota of the Antarctic Heart Urchin (Spatangoida) Abatus agassizii. Front. Microbiol. 2020, 11, 308. [Google Scholar] [CrossRef]
- Hakim, J.A.; Koo, H.; Kumar, R.; Lefkowitz, E.J.; Morrow, C.D.; Powell, M.L.; Watts, S.A.; Bej, A.K. The Gut Microbiome of the Sea Urchin, Lytechinus variegatus, from Its Natural Habitat Demonstrates Selective Attributes of Microbial Taxa and Predictive Metabolic Profiles. Fems Microbiol. Ecol. 2016, 92, fiw146. [Google Scholar] [CrossRef]
- Yao, Q.; Yu, K.; Liang, J.; Wang, Y.; Hu, B.; Huang, X.; Chen, B.; Qin, Z. The Composition, Diversity and Predictive Metabolic Profiles of Bacteria Associated With the Gut Digesta of Five Sea Urchins in Luhuitou Fringing Reef (Northern South China Sea). Front. Microbiol. 2019, 10, 1168. [Google Scholar] [CrossRef]
- Hollertz, K. Feeding Biology and Carbon Budget of the Sediment-Burrowing Heart Urchin Brissopsis lyrifera (Echinoidea: Spatangoida). Mar. Biol. 2002, 140, 959–969. [Google Scholar]
- Thompson, B.A.; Riddle, M.J. Bioturbation Behaviour of the Spatangoid Urchin Abatus Ingens in Antarctic Marine Sediments. Mar. Ecol. Prog. Ser. 2005, 290, 135–143. [Google Scholar] [CrossRef]
- Rodríguez-Barreras, R.; Dominicci-Maura, A.; Tosado-Rodríguez, E.L.; Godoy-Vitorino, F. The Epibiotic Microbiota of Wild Caribbean Sea Urchin Spines Is Species Specific. Microorganisms 2023, 11, 391. [Google Scholar] [CrossRef]
- Brothers, C.J.; Van Der Pol, W.J.; Morrow, C.D.; Hakim, J.A.; Koo, H.; McClintock, J.B. Ocean Warming Alters Predicted Microbiome Functionality in a Common Sea Urchin. Proc. R. Soc. B 2018, 285, 20180340. [Google Scholar] [CrossRef]
- Masasa, M.; Kushmaro, A.; Kramarsky-Winter, E.; Shpigel, M.; Barkan, R.; Golberg, A.; Kribus, A.; Shashar, N.; Guttman, L. Mono-Specific Algal Diets Shape Microbial Networking in the Gut of the Sea Urchin Tripneustes gratilla elatensis. Anim. Microbiome 2021, 3, 79. [Google Scholar] [CrossRef]
- Park, J.-Y.; Jo, J.-W.; An, Y.-J.; Lee, J.-J.; Kim, B.-S. Alterations in Sea Urchin (Mesocentrotus nudus) Microbiota and Their Potential Contributions to Host According to Barren Severity. NPJ Biofilms Microbiomes 2023, 9, 83. [Google Scholar] [CrossRef]
- Federico, S.; Glaviano, F.; Esposito, R.; Tentoni, E.; Santoro, P.; Caramiello, D.; Costantini, M.; Zupo, V. The “Bald Disease” of the Sea Urchin Paracentrotus lividus: Pathogenicity, Molecular Identification of the Causative Agent and Therapeutic Approach. Microorganisms 2023, 11, 763. [Google Scholar] [CrossRef]
- Li, R.; Dang, H.; Huang, Y.; Quan, Z.; Jiang, H.; Zhang, W.; Ding, J. Vibrio Coralliilyticus as an Agent of Red Spotting Disease in the Sea Urchin Strongylocentrotus intermedius. Aquac. Rep. 2020, 16, 100244. [Google Scholar] [CrossRef]
- Shaw, C.G.; Pavloudi, C.; Crow, R.S.; Saw, J.H.; Smith, L.C. Spotting Disease Disrupts the Microbiome of Infected Purple Sea Urchins, Strongylocentrotus purpuratus. BMC Microbiol. 2024, 24, 11. [Google Scholar] [CrossRef]
- Rodríguez-Barreras, R.; Tosado-Rodríguez, E.L.; Godoy-Vitorino, F. Trophic Niches Reflect Compositional Differences in Microbiota among Caribbean Sea Urchins. Peerj 2021, 9, e12084. [Google Scholar] [CrossRef]
- Brink, M.; Rhode, C.; Macey, B.M.; Christison, K.W.; Roodt-Wilding, R. Metagenomic Assessment of Body Surface Bacterial Communities of the Sea Urchin, Tripneustes gratilla. Mar. Genom. 2019, 47, 100675. [Google Scholar] [CrossRef]
- Ding, J.; Chang, Y.; Wang, C.; Cao, X. Evaluation of the Growth and Heterosis of Hybrids among Three Commercially Important Sea Urchins in China: Strongylocentrotus nudus, S. intermedius and Anthocidaris crassispina. Aquaculture 2007, 272, 273–280. [Google Scholar] [CrossRef]
- Chen, X.; Wang, Y.; Hou, Q.; Liao, X.; Zheng, X.; Dong, W.; Wang, J.; Zhang, X. Significant Correlations between Heavy Metals and Prokaryotes in the Okinawa Trough Hydrothermal Sediments. J. Hazard. Mater. 2024, 479, 135657. [Google Scholar] [CrossRef]
- Bolyen, E.; Rideout, J.R.; Dillon, M.R.; Bokulich, N.A.; Abnet, C.C.; Al-Ghalith, G.A.; Alexander, H.; Alm, E.J.; Arumugam, M.; Asnicar, F. Reproducible, Interactive, Scalable and Extensible Microbiome Data Science Using QIIME 2. Nat. Biotechnol. 2019, 37, 852–857. [Google Scholar] [CrossRef]
- Callahan, B.J.; McMurdie, P.J.; Rosen, M.J.; Han, A.W.; Johnson, A.J.A.; Holmes, S.P. DADA2: High-Resolution Sample Inference from Illumina Amplicon Data. Nat. Methods 2016, 13, 581–583. [Google Scholar] [CrossRef]
- Chen, X.; Liao, X.; Chang, S.; Chen, Z.; Yang, Q.; Peng, J.; Hu, W.; Zhang, X. Comprehensive Insights into the Differences of Fungal Communities at Taxonomic and Functional Levels in Stony Coral Acropora intermedia under a Natural Bleaching Event. Mar. Environ. Res. 2024, 196, 106419. [Google Scholar] [CrossRef]
- Katoh, K.; Misawa, K.; Kuma, K.; Miyata, T. MAFFT: A Novel Method for Rapid Multiple Sequence Alignment Based on Fast Fourier Transform. Nucleic Acids Res. 2002, 30, 3059–3066. [Google Scholar] [CrossRef]
- Price, M.N.; Dehal, P.S.; Arkin, A.P. FastTree 2–Approximately Maximum-Likelihood Trees for Large Alignments. PLoS ONE 2010, 5, e9490. [Google Scholar] [CrossRef]
- Bokulich, N.A.; Kaehler, B.D.; Rideout, J.R.; Dillon, M.; Bolyen, E.; Knight, R.; Huttley, G.A.; Gregory Caporaso, J. Optimizing Taxonomic Classification of Marker-Gene Amplicon Sequences with QIIME 2’s Q2-Feature-Classifier Plugin. Microbiome 2018, 6, 90. [Google Scholar] [CrossRef]
- McDonald, D.; Price, M.N.; Goodrich, J.; Nawrocki, E.P.; DeSantis, T.Z.; Probst, A.; Andersen, G.L.; Knight, R.; Hugenholtz, P. An Improved Greengenes Taxonomy with Explicit Ranks for Ecological and Evolutionary Analyses of Bacteria and Archaea. ISME J. 2012, 6, 610–618. [Google Scholar] [CrossRef]
- Yang, C.; Mai, J.; Cao, X.; Burberry, A.; Cominelli, F.; Zhang, L. Ggpicrust2: An R Package for PICRUSt2 Predicted Functional Profile Analysis and Visualization. Bioinformatics 2023, 39, btad470. [Google Scholar] [CrossRef]
- Oksanen, J.; Kindt, R.; Legendre, P.; O’Hara, B.; Stevens, M.H.H.; Oksanen, M.J.; Suggests, M. The Vegan Package. Community Ecol. Package 2007, 10, 719. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2013. [Google Scholar]
- Wickham, H. Ggplot2. Wiley Interdiscip. Rev. Comput. Stat. 2011, 3, 180–185. [Google Scholar] [CrossRef]
- Gu, Z.; Gu, L.; Eils, R.; Schlesner, M.; Brors, B. “Circlize” Implements and Enhances Circular Visualization in R. Bioinformatics 2014, 30, 2811–2812. [Google Scholar] [CrossRef]
- Kolde, R.; Kolde, M.R. Package ‘Pheatmap’. R Package 2015, 1, 790. [Google Scholar]
- Bastian, M.; Heymann, S.; Jacomy, M. Gephi: An Open Source Software for Exploring and Manipulating Networks. In Proceedings of the International AAAI Conference on Web and Social Media, San Jose, CA, USA, 17–20 May 2009; Volume 3, pp. 361–362. [Google Scholar]
- Zhou, Z.; Tran, P.Q.; Kieft, K.; Anantharaman, K. Genome Diversification in Globally Distributed Novel Marine Proteobacteria Is Linked to Environmental Adaptation. ISME J. 2020, 14, 2060–2077. [Google Scholar] [CrossRef]
- Masasa, M.; Kushmaro, A.; Nguyen, D.; Chernova, H.; Shashar, N.; Guttman, L. Spatial Succession Underlies Microbial Contribution to Food Digestion in the Gut of an Algivorous Sea Urchin. Microbiol. Spectr. 2023, 11, e0051423. [Google Scholar] [CrossRef]
- Flint, H.J.; Bayer, E.A.; Rincon, M.T.; Lamed, R.; White, B.A. Polysaccharide Utilization by Gut Bacteria: Potential for New Insights from Genomic Analysis. Nat. Rev. Microbiol. 2008, 6, 121–131. [Google Scholar] [CrossRef]
- Thomas, F.; Hehemann, J.-H.; Rebuffet, E.; Czjzek, M.; Michel, G. Environmental and Gut Bacteroidetes: The Food Connection. Front. Microbiol. 2011, 2, 93. [Google Scholar] [CrossRef]
- Carnell, P.E.; Ierodiaconou, D.; Atwood, T.B.; Macreadie, P.I. Overgrazing of Seagrass by Sea Urchins Diminishes Blue Carbon Stocks. Ecosystems 2020, 23, 1437–1448. [Google Scholar] [CrossRef]
- Lawrence, J.M.; Lawrence, A.L.; Watts, S.A. Chapter 9—Feeding, Digestion and Digestibility of Sea Urchins. In Developments in Aquaculture and Fisheries Science; Sea Urchins: Biology and Ecology; Lawrence, J.M., Ed.; Elsevier: Amsterdam, The Netherlands, 2013; Volume 38, pp. 135–154. [Google Scholar]
- Becker, P.T.; Samadi, S.; Zbinden, M.; Hoyoux, C.; Compère, P.; De Ridder, C. First Insights into the Gut Microflora Associated with an Echinoid from Wood Falls Environments. Cah. Biol. Mar. 2009, 50, 343. [Google Scholar]
- Singh, R.P.; Reddy, C.R.K. Seaweed–Microbial Interactions: Key Functions of Seaweed-Associated Bacteria. FEMS Microbiol. Ecol. 2014, 88, 213–230. [Google Scholar] [CrossRef] [PubMed]
- Fournier, B.; Philpott, D.J. Recognition of Staphylococcus Aureus by the Innate Immune System. Clin. Microbiol. Rev. 2005, 18, 521–540. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; He, B.; Chang, Y.; Ding, J. Characterization of the Bacterial Community Associated with Red Spotting Disease of the Echinoid Strongylocentroyus intermedius. Aquaculture 2020, 529, 735606. [Google Scholar] [CrossRef]
- Glover, J.S.; Browning, B.D.; Ticer, T.D.; Engevik, A.C.; Engevik, M.A. Acinetobacter Calcoaceticus Is Well Adapted to Withstand Intestinal Stressors and Modulate the Gut Epithelium. Front. Physiol. 2022, 13, 880024. [Google Scholar] [CrossRef]
- Yang, H.-L.; Sun, Y.-Z.; Ma, R.-L.; Li, J.-S.; Huang, K.-P. Probiotic Psychrobacter sp. Improved the Autochthonous Microbial Diversity along the Gastrointestinal Tract of Grouper Epinephelus coioides. J Aquac Res Dev. 2011, S1, 10-4172. [Google Scholar] [CrossRef]
- Huggett, M.J.; Crocetti, G.R.; Kjelleberg, S.; Steinberg, P.D. Recruitment of the Sea Urchin Heliocidaris Erythrogramma and the Distribution and Abundance of Inducing Bacteria in the Field. Aquat. Microb. Ecol. 2008, 53, 161–171. [Google Scholar] [CrossRef]
- Peng, L.-H.; Liang, X.; Xu, J.-K.; Dobretsov, S.; Yang, J.-L. Monospecific Biofilms of Pseudoalteromonas Promote Larval Settlement and Metamorphosis of Mytilus coruscus. Sci. Rep. 2020, 10, 2577. [Google Scholar] [CrossRef]
- Doll, P.C.; Caballes, C.F.; Hoey, A.S.; Uthicke, S.; Ling, S.D.; Pratchett, M.S. Larval Settlement in Echinoderms: A Review of Processes and Patterns. Oceanogr. Mar. Biol. 2022, 433–494. [Google Scholar]
- Green, G.B.H.; Hakim, J.A.; Chen, J.-W.; Koo, H.; Morrow, C.D.; Watts, S.A.; Bej, A.K. The Gut Microbiota of Naturally Occurring and Laboratory Aquaculture Lytechinus variegatus Revealed Differences in the Community Composition, Taxonomic Co-Occurrence, and Predicted Functional Attributes. Appl. Microbiol. 2021, 1, 201–224. [Google Scholar] [CrossRef]
- Mckenzie, J.D.; Grigolava, I.V. The Echinoderm Surface and Its Role in Preventing Microfouling. Biofouling 1996, 10, 261–272. [Google Scholar] [CrossRef] [PubMed]
- Reisky, L.; Préchoux, A.; Zühlke, M.-K.; Bäumgen, M.; Robb, C.S.; Gerlach, N.; Roret, T.; Stanetty, C.; Larocque, R.; Michel, G.; et al. A Marine Bacterial Enzymatic Cascade Degrades the Algal Polysaccharide Ulvan. Nat. Chem. Biol. 2019, 15, 803–812. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.-H.; Pun, M.D.; Wise, C.E.; Streit, B.R.; Mus, F.; Berim, A.; Kincannon, W.M.; Islam, A.; Partovi, S.E.; Gang, D.R. The Pathway for Coenzyme M Biosynthesis in Bacteria. Proc. Natl. Acad. Sci. USA 2022, 119, e2207190119. [Google Scholar] [CrossRef]
- Perez-Gil, J.; Rodriguez-Concepcion, M. Metabolic Plasticity for Isoprenoid Biosynthesis in Bacteria. Biochem. J. 2013, 452, 19–25. [Google Scholar] [CrossRef]
- Haditomo, A.H.C.; Yonezawa, M.; Yu, J.; Mino, S.; Sakai, Y.; Sawabe, T. The Structure and Function of Gut Microbiomes of Two Species of Sea Urchins, Mesocentrotus nudus and Strongylocentrotus intermedius, in Japan. Front. Mar. Sci. 2021, 8, 802754. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, X.; Mo, L.; Zhang, L.; Huang, L.; Gao, Z.; Peng, J.; Yu, Z.; Zhang, X. Taxonomic Diversity, Predicted Metabolic Pathway, and Interaction Pattern of Bacterial Community in Sea Urchin Anthocidaris crassispina. Microorganisms 2024, 12, 2094. https://doi.org/10.3390/microorganisms12102094
Chen X, Mo L, Zhang L, Huang L, Gao Z, Peng J, Yu Z, Zhang X. Taxonomic Diversity, Predicted Metabolic Pathway, and Interaction Pattern of Bacterial Community in Sea Urchin Anthocidaris crassispina. Microorganisms. 2024; 12(10):2094. https://doi.org/10.3390/microorganisms12102094
Chicago/Turabian StyleChen, Xinye, Li Mo, Lin Zhang, Liyu Huang, Ziqing Gao, Jingjing Peng, Zonghe Yu, and Xiaoyong Zhang. 2024. "Taxonomic Diversity, Predicted Metabolic Pathway, and Interaction Pattern of Bacterial Community in Sea Urchin Anthocidaris crassispina" Microorganisms 12, no. 10: 2094. https://doi.org/10.3390/microorganisms12102094
APA StyleChen, X., Mo, L., Zhang, L., Huang, L., Gao, Z., Peng, J., Yu, Z., & Zhang, X. (2024). Taxonomic Diversity, Predicted Metabolic Pathway, and Interaction Pattern of Bacterial Community in Sea Urchin Anthocidaris crassispina. Microorganisms, 12(10), 2094. https://doi.org/10.3390/microorganisms12102094