Comparative Genomic Analysis of a Novel Vibrio sp. Isolated from an Ulcer Disease Event in Atlantic Salmon (Salmo salar)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Phenotypic Characterization
2.1.1. Isolation
2.1.2. Biochemical, Enzymatic and Physiological Characterization
2.1.3. Antibiogram
2.1.4. Siderophore Synthesis
2.2. Infection Trials
2.2.1. Fish Origin and Holding Conditions
2.2.2. Bacterial Inoculum Preparation
2.2.3. Koch’s Postulates
2.3. Vibrio sp. J383 Genomics
2.3.1. Vibrio sp. J383 DNA Extraction and Sequencing
2.3.2. Genome Assembly, Annotation and Data Submission
2.3.3. Comparative Genomics Analysis
2.3.4. Genomic Islands
2.4. Statistical Analysis
3. Results
3.1. Phenotypic Characterization
3.2. Antibiogram
3.3. Infection Trials in Atlantic Salmon
3.4. Vibrio sp. J383 Genomics
3.5. Genomic Islands (GIS)
3.6. Comparative Genomic Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lunder, T. Vintersir [Winter ulcer]. In Fisk. [Fish Health]; Poppe, T.T., Ed.; John Grieg Forlag: Bergen, Norway, 1990; pp. 304–305. [Google Scholar]
- Benediktsdóttir, E.; Verdonck, L.; Spröer, C.; Helgason, S.; Swings, J. Characterization of Vibrio viscosus and Vibrio wodanis isolated at different geographical locations: A proposal for reclassification of Vibrio viscosus as Moritella viscosa comb. nov. Int. J. Syst. Evol. Microbiol. 2000, 50, 479–488. [Google Scholar] [CrossRef] [PubMed]
- Løvoll, M.; Wiik-Nielsen, C.; Tunsjø, H.S.; Colquhoun, D.; Lunder, T.; Sørum, H.; Grove, S. Atlantic salmon bath challenged with Moritella viscosa–pathogen invasion and host response. Fish Shellfish Immunol. 2009, 26, 877–884. [Google Scholar] [CrossRef] [PubMed]
- Benediktsdottir, E.; Helgason, S.; Sigurjónsdóttir, H. Vibrio spp. isolated from salmonids with shallow skin lesions and reared at low temperature. J. Fish Dis. 1998, 21, 19–28. [Google Scholar] [CrossRef] [Green Version]
- Olsen, A.B.; Nilsen, H.; Sandlund, N.; Mikkelsen, H.; Sørum, H.; Colquhoun, D. Tenacibaculum sp. associated with winter ulcers in sea-reared Atlantic salmon Salmo salar. Dis. Aquat. Org. 2011, 94, 189–199. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hjerde, E.; Karlsen, C.; Sørum, H.; Parkhill, J.; Willassen, N.P.; Thomson, N.R. Co-cultivation and transcriptome sequencing of two co-existing fish pathogens Moritella viscosa and Aliivibrio wodanis. BMC Genom. 2015, 16, 447. [Google Scholar] [CrossRef] [Green Version]
- Karlsen, C.; Vanberg, C.; Mikkelsen, H.; Sørum, H. Co-infection of Atlantic salmon (Salmo salar), by Moritella viscosa and Aliivibrio wodanis, development of disease and host colonization. Vet. Microbiol. 2014, 171, 112–121. [Google Scholar] [CrossRef]
- Whitman, K.; Backman, S.; Benediktsdottir, E.; Coles, M.; Johnson, G.R. Isolation and characterization of a new Vibrio spp.(Vibrio wodanis) associated with ‘winter ulcer disease’ in sea water raised Atlantic salmon (Salmo salar L.) in New Brunswick. In Aquaculture Canada 2000; Aquaculture Association of Canada: Moncton, NB, Canada, 2001; Volume 4, pp. 115–117. [Google Scholar]
- Lunder, T.; Evensen, Ø.; Holstad, G.; Håstein, T. ‘Winter ulcer’ in the Atlantic salmon Salmo salar. Pathological and bacteriological investigations and transmission experiments. Dis. Aquat. Org. 1995, 23, 39–49. [Google Scholar] [CrossRef] [Green Version]
- Furevik, A.; Tunheim, S.H.; Heen, V.; Klevan, A.; Knutsen, L.E.; Tandberg, J.I.; Tingbo, M.G. New vaccination strategies are required for effective control of winter ulcer disease caused by emerging variant strains of Moritella viscosa in Atlantic salmon. Fish Shellfish Immunol. 2023, 137, 108784. [Google Scholar] [CrossRef]
- Karlsen, C.; Thorarinsson, R.; Wallace, C.; Salonius, K.; Midtlyng, P.J. Atlantic salmon winter-ulcer disease: Combining mortality and skin ulcer development as clinical efficacy criteria against Moritella viscosa infection. Aquaculture 2017, 473, 538–544. [Google Scholar] [CrossRef]
- Tunsjø, H.S.; Paulsen, S.M.; Mikkelsen, H.; L’Abée-Lund, T.M.; Skjerve, E.; Sørum, H. Adaptive response to environmental changes in the fish pathogen Moritella viscosa. Res. Microbiol. 2007, 158, 244–250. [Google Scholar] [CrossRef]
- MacKinnon, B.; Jones, P.; Hawkins, L.; Dohoo, I.; Stryhn, H.; Vanderstichel, R.; St-Hilaire, S. The epidemiology of skin ulcers in saltwater reared Atlantic salmon (Salmo salar) in Atlantic Canada. Aquaculture 2019, 501, 230–238. [Google Scholar] [CrossRef]
- MacKinnon, B.; Groman, D.; Fast, M.D.; Manning, A.J.; Jones, P.; St-Hilaire, S. Atlantic salmon challenged with extracellular products from Moritella viscosa. Dis. Aquat. Org. 2019, 133, 119–125. [Google Scholar] [CrossRef] [PubMed]
- Vasquez, I.; Cao, T.; Chakraborty, S.; Gnanagobal, H.; O’Brien, N.; Monk, J.; Boyce, D.; Westcott, J.D.; Santander, J. Comparative Genomics Analysis of Vibrio anguillarum Isolated from Lumpfish (Cyclopterus lumpus) in Newfoundland Reveal Novel Chromosomal Organizations. Microorganisms 2020, 8, 1666. [Google Scholar] [CrossRef] [PubMed]
- Leboffe, M.J.; Pierce, B.E. Microbiology: Laboratory Theory and Application; Morton Publishing Company: Englewood, CO, USA, 2015. [Google Scholar]
- Soto-Dávila, M.; Hossain, A.; Chakraborty, S.; Rise, M.L.; Santander, J. Aeromonas salmonicida subsp. salmonicida early infection and immune response of Atlantic cod (Gadus morhua L.) primary macrophages. Front. Immunol. 2019, 10, 1237. [Google Scholar] [CrossRef] [Green Version]
- Connors, E.; Soto-Dávila, M.; Hossain, A.; Vasquez, I.; Gnanagobal, H.; Santander, J. Identification and validation of reliable Aeromonas salmonicida subspecies salmonicida reference genes for differential gene expression analyses. Infect. Genet. Evol. 2019, 73, 314–321. [Google Scholar] [CrossRef]
- Myhr, E.; Larsen, J.L.; Lillehaug, A.; Gudding, R.; Heum, M.; Håstein, T. Characterization of Vibrio anguillarum and closely related species isolated from farmed fish in Norway. Appl. Environ. Microbiol. 1991, 57, 2750–2757. [Google Scholar] [CrossRef] [Green Version]
- Wood, E. Molecular Cloning: A Laboratory Manual; Maniatis, T., Fritsch, E.F., Sambrook, J., Eds.; Cold Spring Harbor Laboratory: New York, NY, USA, 1982; p. 545. ISBN 0-87969-136-0. [Google Scholar]
- Hitchcock, P.J.; Brown, T. Morphological heterogeneity among Salmonella lipopolysaccharide chemotypes in silver-stained polyacrylamide gels. J. Bacteriol. 1983, 154, 269–277. [Google Scholar] [CrossRef] [Green Version]
- Santander, J.; Martin, T.; Loh, A.; Pohlenz, C.; Gatlin, D.M., III; Curtiss, R., III. Mechanisms of intrinsic resistance to antimicrobial peptides of Edwardsiella ictaluri and its influence on fish gut inflammation and virulence. Microbiology 2013, 159, 1471. [Google Scholar] [CrossRef] [Green Version]
- Ramasam, P.; Sujatha Ran, J.; Gunasekaran, D.R. Assessment of antibiotic sensitivity and pathogenicity of Vibrio spp. and Aeromonas spp. from aquaculture environment. MOJ Eco. Environ. Sci. 2018, 3, 128–136. [Google Scholar]
- Louden, B.C.; Haarmann, D.; Lynne, A.M. Use of blue agar CAS assay for siderophore detection. J. Microbiol. Biol. Educ. 2011, 12, 51–53. [Google Scholar] [CrossRef] [Green Version]
- Vasquez, I.; Cao, T.; Hossain, A.; Valderrama, K.; Gnanagobal, H.; Dang, M.; Leeuwis, R.H.; Ness, M.; Campbell, B.; Gendron, R. Aeromonas salmonicida infection kinetics and protective immune response to vaccination in sablefish (Anoplopoma fimbria). Fish Shellfish Immunol. 2020, 104, 557–566. [Google Scholar] [CrossRef]
- Umasuthan, N.; Valderrama, K.; Vasquez, I.; Segovia, C.; Hossain, A.; Cao, T.; Gnanagobal, H.; Monk, J.; Boyce, D.; Santander, J. A novel marine pathogen isolated from wild cunners (Tautogolabrus adspersus): Comparative genomics and transcriptome profiling of Pseudomonas sp. strain J380. Microorganisms 2021, 9, 812. [Google Scholar] [CrossRef] [PubMed]
- Koch, R. Ueber den augenblicklichen Stand der bakteriologischen Choleradiagnose. Z. Hyg. Infekt. 1893, 14, 319–338. [Google Scholar] [CrossRef] [Green Version]
- Chakraborty, S.; Cao, T.; Hossain, A.; Gnanagobal, H.; Vasquez, I.; Boyce, D.; Santander, J. Vibrogen-2 vaccine trial in lumpfish (Cyclopterus lumpus) against Vibrio anguillarum. J. Fish Dis. 2019, 42, 1057–1064. [Google Scholar] [CrossRef]
- Sambrook, J.; Russell, D. Molecular Cloning: A Laboratory Manual, 3rd ed.; Cold Spring Harbor Lab. Press: Plainview, NY, USA, 2001. [Google Scholar]
- Aziz, R.K.; Bartels, D.; Best, A.A.; DeJongh, M.; Disz, T.; Edwards, R.A.; Formsma, K.; Gerdes, S.; Glass, E.M.; Kubal, M. The RAST Server: Rapid annotations using subsystems technology. BMC Genom. 2008, 9, 75. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Overbeek, R.; Olson, R.; Pusch, G.D.; Olsen, G.J.; Davis, J.J.; Disz, T.; Edwards, R.A.; Gerdes, S.; Parrello, B.; Shukla, M. The SEED and the Rapid Annotation of microbial genomes using Subsystems Technology (RAST). Nucleic Acids Res. 2014, 42, D206–D214. [Google Scholar] [CrossRef] [PubMed]
- Davis, J.J.; Wattam, A.R.; Aziz, R.K.; Brettin, T.; Butler, R.; Butler, R.M.; Chlenski, P.; Conrad, N.; Dickerman, A.; Dietrich, E.M. The PATRIC Bioinformatics Resource Center: Expanding data and analysis capabilities. Nucleic Acids Res. 2020, 48, D606–D612. [Google Scholar] [CrossRef] [Green Version]
- Tamura, K.; Stecher, G.; Kumar, S. MEGA11: Molecular evolutionary genetics analysis version 11. Mol. Biol. Evol. 2021, 38, 3022–3027. [Google Scholar] [CrossRef]
- Saitou, N.; Nei, M. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 1987, 4, 406–425. [Google Scholar]
- Jukes, T.H.; Cantor, C.R. Evolution of protein molecules. Mamm. Protein Metab. 1969, 3, 21–132. [Google Scholar]
- Teru, Y.; Hikima, J.-I.; Kono, T.; Sakai, M.; Takano, T.; Hawke, J.P.; Takeyama, H.; Aoki, T. Whole-genome sequence of Photobacterium damselae subsp. piscicida strain 91-197, isolated from hybrid striped bass (Morone sp.) in the United States. Genome Announc. 2017, 5, e00600–e00617. [Google Scholar] [CrossRef] [Green Version]
- Bertelli, C.; Laird, M.R.; Williams, K.P.; Simon Fraser University Research Computing Group; Lau, B.Y.; Hoad, G.; Winsor, G.L.; Brinkman, F.S. IslandViewer 4: Expanded prediction of genomic islands for larger-scale datasets. Nucleic Acids Res. 2017, 45, W30–W35. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Yao, Y.; Xu, H.H.; Hao, L.; Deng, Z.; Rajakumar, K.; Ou, H.Y. SecReT6: A web-based resource for type VI secretion systems found in bacteria. Environ. Microbiol. 2015, 17, 2196–2202. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Guan, J.; Wang, M.; Li, G.; Djordjevic, M.; Tai, C.; Wang, H.; Deng, Z.; Chen, Z.; Ou, H.-Y. SecReT6 update: A comprehensive resource of bacterial Type VI Secretion Systems. Sci. China Life Sci. 2023, 66, 626–634. [Google Scholar] [CrossRef] [PubMed]
- Machimbirike, V.I.; Vasquez, I.; Cao, T.; Chukwu-Osazuwa, J.; Onireti, O.; Segovia, C.; Khunrae, P.; Rattanarojpong, T.; Booman, M.; Jones, S. Comparative Genomic Analysis of Virulent Vibrio (Listonella) anguillarum Serotypes Revealed Genetic Diversity and Genomic Signatures in the O-Antigen Biosynthesis Gene Cluster. Microorganisms 2023, 11, 792. [Google Scholar] [CrossRef]
- Jumper, J.; Evans, R.; Pritzel, A.; Green, T.; Figurnov, M.; Ronneberger, O.; Tunyasuvunakool, K.; Bates, R.; Žídek, A.; Potapenko, A. Highly accurate protein structure prediction with AlphaFold. Nature 2021, 596, 583–589. [Google Scholar] [CrossRef]
- Guillemette, R.; Ushijima, B.; Jalan, M.; Häse, C.C.; Azam, F. Insight into the resilience and susceptibility of marine bacteria to T6SS attack by Vibrio cholerae and Vibrio coralliilyticus. PLoS ONE 2020, 15, e0227864. [Google Scholar] [CrossRef]
- Darling, A.C.; Mau, B.; Blattner, F.R.; Perna, N.T. Mauve: Multiple alignment of conserved genomic sequence with rearrangements. Genome Res. 2004, 14, 1394–1403. [Google Scholar] [CrossRef] [Green Version]
- Miethke, M.; Marahiel, M.A. Siderophore-based iron acquisition and pathogen control. Microbiol. Mol. Biol. Rev. 2007, 71, 413–451. [Google Scholar] [CrossRef] [Green Version]
- Alsina, M.; Blanch, A.R. A set of keys for biochemical identification of environmental Vibrio species. J. Appl. Bacteriol. 1994, 76, 79–85. [Google Scholar] [CrossRef]
- Sadok, K.; Mejdi, S.; Nourhen, S.; Amina, B. Phenotypic characterization and RAPD fingerprinting of Vibrio parahaemolyticus and Vibrio alginolyticus isolated during Tunisian fish farm outbreaks. Folia Microbiol. 2013, 58, 17–26. [Google Scholar] [CrossRef] [PubMed]
- Johnson, C.N. Fitness factors in vibrios: A mini-review. Microb. Ecol. 2013, 65, 826–851. [Google Scholar] [CrossRef] [PubMed]
- Hirono, I.; Masuda, T.; Aoki, T. Cloning and detection of the hemolysin gene of Vibrio anguillarum. Microb. Pathog. 1996, 21, 173–182. [Google Scholar] [CrossRef]
- Rock, J.L.; Nelson, D.R. Identification and characterization of a hemolysin gene cluster in Vibrio anguillarum. Infect. Immun. 2006, 74, 2777–2786. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lunder, T.; Sørum, H.; Holstad, G.; Steigerwalt, A.G.; Mowinckel, P.; Brenner, D.J. Phenotypic and genotypic characterization of Vibrio viscosus sp. nov. and Vibrio wodanis sp. nov. isolated from Atlantic salmon (Salmo salar) with ‘winter ulcer’. Int. J. Syst. Evol. Microbiol. 2000, 50, 427–450. [Google Scholar] [CrossRef] [PubMed]
- Frans, I.; Michiels, C.W.; Bossier, P.; Willems, K.; Lievens, B.; Rediers, H. Vibrio anguillarum as a fish pathogen: Virulence factors, diagnosis and prevention. J. Fish Dis. 2011, 34, 643–661. [Google Scholar] [CrossRef]
- Park, J.W.; Lee, S.-E.; Shin, W.-S.; Kim, K.J.; Kim, Y.U. Draft genome sequences of Vibrio splendidus KCTC 11899BP, which produces hyaluronate lyase in the presence of hyaluronic acid. Korean J. Microbiol. 2018, 54, 302–304. [Google Scholar]
- Phadtare, S. Recent developments in bacterial cold-shock response. Curr. Issues Mol. Biol. 2004, 6, 125–136. [Google Scholar]
- Schmid, B.; Klumpp, J.; Raimann, E.; Loessner, M.J.; Stephan, R.; Tasara, T. Role of cold shock proteins in growth of Listeria monocytogenes under cold and osmotic stress conditions. Appl. Environ. Microbiol. 2009, 75, 1621–1627. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Wang, S.; Wu, Q. Cold shock protein A plays an important role in the stress adaptation and virulence of Brucella melitensis. FEMS Microbiol. Lett. 2014, 354, 27–36. [Google Scholar] [CrossRef] [Green Version]
- Derman, Y.; Söderholm, H.; Lindström, M.; Korkeala, H. Role of csp genes in NaCl, pH, and ethanol stress response and motility in Clostridium botulinum ATCC 3502. Food Microbiol. 2015, 46, 463–470. [Google Scholar] [CrossRef] [PubMed]
- Ermolenko, D.; Makhatadze, G. Bacterial cold-shock proteins. Cell. Mol. Life Sci. CMLS 2002, 59, 1902–1913. [Google Scholar] [CrossRef] [PubMed]
- Haiko, J.; Westerlund-Wikström, B. The role of the bacterial flagellum in adhesion and virulence. Biology 2013, 2, 1242–1267. [Google Scholar] [CrossRef] [Green Version]
- Colin, R.; Ni, B.; Laganenka, L.; Sourjik, V. Multiple functions of flagellar motility and chemotaxis in bacterial physiology. FEMS Microbiol. Rev. 2021, 45, fuab038. [Google Scholar] [CrossRef]
- Jurėnas, D.; Fraikin, N.; Goormaghtigh, F.; Van Melderen, L. Biology and evolution of bacterial toxin–antitoxin systems. Nat. Rev. Microbiol. 2022, 20, 335–350. [Google Scholar] [CrossRef] [PubMed]
- Laporte, D.; Olate, E.; Salinas, P.; Salazar, M.; Jordana, X.; Holuigue, L. Glutaredoxin GRXS13 plays a key role in protection against photooxidative stress in Arabidopsis. J. Exp. Bot. 2012, 63, 503–515. [Google Scholar] [CrossRef] [Green Version]
- Detweiler, C.S.; Monack, D.M.; Brodsky, I.E.; Mathew, H.; Falkow, S. virK, somA and rcsC are important for systemic Salmonella enterica serovar Typhimurium infection and cationic peptide resistance. Mol. Microbiol. 2003, 48, 385–400. [Google Scholar] [CrossRef]
- Song, J.; Hou, H.-M.; Wu, H.-Y.; Li, K.-X.; Wang, Y.; Zhou, Q.-Q.; Zhang, G.-L. Transcriptomic analysis of Vibrio parahaemolyticus reveals different virulence gene expression in response to benzyl isothiocyanate. Molecules 2019, 24, 761. [Google Scholar] [CrossRef] [Green Version]
- Tapia-Pastrana, G.; Chavez-Dueñas, L.; Lanz-Mendoza, H.; Teter, K.; Navarro-Garcia, F. VirK is a periplasmic protein required for efficient secretion of plasmid-encoded toxin from enteroaggregative Escherichia coli. Infect. Immun. 2012, 80, 2276–2285. [Google Scholar] [CrossRef] [Green Version]
- Pérez-Reytor, D.; Pavón, A.; Lopez-Joven, C.; Ramírez-Araya, S.; Peña-Varas, C.; Plaza, N.; Alegría-Arcos, M.; Corsini, G.; Jaña, V.; Pavez, L. Analysis of the Zonula occludens Toxin Found in the Genome of the Chilean Non-toxigenic Vibrio parahaemolyticus Strain PMC53. 7. Front. Cell. Infect. Microbiol. 2020, 10, 482. [Google Scholar] [CrossRef]
- Castillo, D.; Pérez-Reytor, D.; Plaza, N.; Ramírez-Araya, S.; Blondel, C.J.; Corsini, G.; Bastías, R.; Loyola, D.E.; Jaña, V.; Pavez, L. Exploring the genomic traits of non-toxigenic Vibrio parahaemolyticus strains isolated in southern Chile. Front. Microbiol. 2018, 9, 161. [Google Scholar] [CrossRef] [Green Version]
- Schmidt, E.; Kelly, S.; Van Der Walle, C. Tight junction modulation and biochemical characterisation of the zonula occludens toxin C-and N-termini. FEBS Lett. 2007, 581, 2974–2980. [Google Scholar] [CrossRef] [Green Version]
- Fasano, A.; Baudry, B.; Pumplin, D.W.; Wasserman, S.S.; Tall, B.D.; Ketley, J.M.; Kaper, J. Vibrio cholerae produces a second enterotoxin, which affects intestinal tight junctions. Proc. Natl. Acad. Sci. USA 1991, 88, 5242–5246. [Google Scholar] [CrossRef]
- Suzuki, T. Regulation of intestinal epithelial permeability by tight junctions. Cell. Mol. Life Sci. 2013, 70, 631–659. [Google Scholar] [CrossRef] [PubMed]
- Russell, A.B.; Hood, R.D.; Bui, N.K.; LeRoux, M.; Vollmer, W.; Mougous, J.D. Type VI secretion delivers bacteriolytic effectors to target cells. Nature 2011, 475, 343–347. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Russell, A.B.; Peterson, S.B.; Mougous, J.D. Type VI secretion system effectors: Poisons with a purpose. Nat. Rev. Microbiol. 2014, 12, 137–148. [Google Scholar] [CrossRef] [Green Version]
- Crisan, C.V.; Hammer, B.K. The Vibrio cholerae type VI secretion system: Toxins, regulators and consequences. Environ. Microbiol. 2020, 22, 4112–4122. [Google Scholar] [CrossRef] [Green Version]
- Zong, B.; Zhang, Y.; Wang, X.; Liu, M.; Zhang, T.; Zhu, Y.; Zheng, Y.; Hu, L.; Li, P.; Chen, H. Characterization of multiple type-VI secretion system (T6SS) VgrG proteins in the pathogenicity and antibacterial activity of porcine extra-intestinal pathogenic Escherichia coli. Virulence 2019, 10, 118–132. [Google Scholar] [CrossRef] [Green Version]
- Hachani, A.; Lossi, N.S.; Hamilton, A.; Jones, C.; Bleves, S.; Albesa-Jové, D.; Filloux, A. Type VI secretion system in Pseudomonas aeruginosa: Secretion and multimerization of VgrG proteins. J. Biol. Chem. 2011, 286, 12317–12327. [Google Scholar] [CrossRef] [Green Version]
- Bingle, L.E.; Bailey, C.M.; Pallen, M.J. Type VI secretion: A beginner’s guide. Curr. Opin. Microbiol. 2008, 11, 3–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boyer, F.; Fichant, G.; Berthod, J.; Vandenbrouck, Y.; Attree, I. Dissecting the bacterial type VI secretion system by a genome wide in silico analysis: What can be learned from available microbial genomic resources? BMC Genom. 2009, 10, 104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cherrak, Y.; Flaugnatti, N.; Durand, E.; Journet, L.; Cascales, E. Structure and activity of the type VI secretion system. Microbiol. Spectr. 2019. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cascales, E. The type VI secretion toolkit. EMBO Rep. 2008, 9, 735–741. [Google Scholar] [CrossRef] [Green Version]
- Aschtgen, M.S.; Gavioli, M.; Dessen, A.; Lloubès, R.; Cascales, E. The SciZ protein anchors the enteroaggregative Escherichia coli Type VI secretion system to the cell wall. Mol. Microbiol. 2010, 75, 886–899. [Google Scholar] [CrossRef] [PubMed]
- Cherrak, Y.; Rapisarda, C.; Pellarin, R.; Bouvier, G.; Bardiaux, B.; Allain, F.; Malosse, C.; Rey, M.; Chamot-Rooke, J.; Cascales, E. Biogenesis and structure of a type VI secretion baseplate. Nat. Microbiol. 2018, 3, 1404–1416. [Google Scholar] [CrossRef] [Green Version]
- Taylor, N.M.; Prokhorov, N.S.; Guerrero-Ferreira, R.C.; Shneider, M.M.; Browning, C.; Goldie, K.N.; Stahlberg, H.; Leiman, P.G. Structure of the T4 baseplate and its function in triggering sheath contraction. Nature 2016, 533, 346–352. [Google Scholar] [CrossRef] [PubMed]
- Bönemann, G.; Pietrosiuk, A.; Mogk, A. Tubules and donuts: A type VI secretion story. Mol. Microbiol. 2010, 76, 815–821. [Google Scholar] [CrossRef]
- Basler, Á.; Pilhofer, Á.; Henderson, G.; Jensen, G.; Mekalanos, J. Type VI secretion requires a dynamic contractile phage tail-like structure. Nature 2012, 483, 182–186. [Google Scholar] [CrossRef] [Green Version]
- Zoued, A.; Durand, E.; Santin, Y.G.; Journet, L.; Roussel, A.; Cambillau, C.; Cascales, E. TssA: The cap protein of the type VI secretion system tail. Bioessays 2017, 39, 1600262. [Google Scholar] [CrossRef] [Green Version]
- Alteri, C.J.; Mobley, H.L. The versatile type VI secretion system. Microbiol. Spectr. 2016, 4. [Google Scholar] [CrossRef] [Green Version]
- Gevers, D.; Vandepoele, K.; Simillion, C.; Van de Peer, Y. Gene duplication and biased functional retention of paralogs in bacterial genomes. Trends Microbiol. 2004, 12, 148–154. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Zou, Y.; Kronfl, A.A.; Wu, Y. Type VI secretion system of Pseudomonas aeruginosa is associated with biofilm formation but not environmental adaptation. Microbiologyopen 2020, 9, e991. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, K.-W.; Xue, P.; Fu, Y.; Yang, L. T6SS mediated stress responses for bacterial environmental survival and host adaptation. Int. J. Mol. Sci. 2021, 22, 478. [Google Scholar] [CrossRef]
- Masum, M.M.I.; Yang, Y.; Li, B.; Olaitan, O.S.; Chen, J.; Zhang, Y.; Fang, Y.; Qiu, W.; Wang, Y.; Sun, G. Role of the genes of type VI secretion system in virulence of rice bacterial brown stripe pathogen Acidovorax avenae subsp. avenae strain RS-2. Int. J. Mol. Sci. 2017, 18, 2024. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramisetty, B.C.M.; Natarajan, B.; Santhosh, R.S. mazEF-mediated programmed cell death in bacteria:“what is this?”. Crit. Rev. Microbiol. 2015, 41, 89–100. [Google Scholar] [CrossRef]
- Amitai, S.; Kolodkin-Gal, I.; Hananya-Meltabashi, M.; Sacher, A.; Engelberg-Kulka, H. Escherichia coli MazF leads to the simultaneous selective synthesis of both “death proteins” and “survival proteins”. PLoS Genet. 2009, 5, e1000390. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Engelberg-Kulka, H.; Yelin, I.; Kolodkin–Gal, I. Ativation of a built-in bacterial programmed cell death system as a novel mechanism of action of some antibiotics. Commun. Integr. Biol. 2009, 2, 211–212. [Google Scholar] [CrossRef] [Green Version]
Characteristics (Growth at) | Vibrio J383 |
---|---|
Gram Stain | Gram-Negative |
Capsule stain | + |
Hemolysin in Salmon blood agar(15 °C) | + |
Hemolysin in Sheep blood agar (15 °C) | + |
Hemolysin in Salmon blood agar(28 °C) | − |
Hemolysin in Sheep blood agar (28 °C) | − |
Type 1 fimbria | − |
Growing in LB 0% NaCl (15 °C) | − |
Growing in LB 0.5% NaCl (15 °C) | − |
Growing in TSB 2% NaCl (4 °C) | + |
Growing in TSB 2% NaCl (15 °C) | + |
Growing in TSB 2% NaCl (28 °C) | + |
Growing in TSB 2% NaCl (37 °C) | − |
Motility Test | + |
Catalase | + |
Oxidase | + |
Biofilm | + |
Antibiogram using sensi-disk of: | Halo diameter (mm) |
Vibriostatic agent (O-129) | 25 (Susceptible) |
Tetracycline (10 μg) | 30 (Susceptible) |
Oxytetracycline (30 μg) | 30 (Susceptible) |
Ampicillin (10 μg) | 23 (Susceptible) |
Sulfamethoxazole (25 μg) | 25 (Susceptible) |
Chloramphenicol (30 μg) | 30 (Susceptible) |
Colistin sulphate (10 μg) | 0 (Resistant) |
Oxalinic acid (2 μg) | 24 (Susceptible) |
Positive Samples for Vibrio spp. J383 (Total Positive/6 Fish) | ||||||
---|---|---|---|---|---|---|
Temperature | 10 °C | 12 °C | 16 °C | |||
Dose | 2 wpi | 4 wpi | 6 wpi | 8 wpi | 10 wpi | 12 wpi |
106 | 0/6 | 0/6 | 0/6 | 0/6 | 0/6 | 0/6 |
107 | 0/6 | 0/6 | 1/6 | 0/6 | 1/6 | 0/6 |
108 | 0/6 | 3/6 | 4/6 | 3/6 | 2/6 | 0/6 |
Characteristics | Chromosome-1 | Chromosome-2 | Plasmid |
---|---|---|---|
Genome size (bp) | 3,633,265 | 2,068,312 | 201,166 |
G + C content (%) | 44.3 | 44.1 | 43.4 |
Number of subsystems | 309 | 101 | 8 |
Number of coding sequences | 3235 | 1866 | 237 |
Number of RNAs | 163 | 21 | 0 |
Attribute | Data Provider |
---|---|
Annotation Pipeline | NCBI prokaryotic Genome Annotation pipeline |
Annotation Method | Best-placed reference protein set; GeneMarkS-2+ |
Genes (total) | 5288 |
CDSs (total) | 5099 |
Genes (coding) | 5031 |
CDSs (with protein) | 5031 |
Genes (RNA) | 189 |
rRNAs | 16, 15, 15 (5S, 16S, 23S) |
Complete rRNAs | 16, 15, 15 (5S, 16S, 23S) |
tRNAs | 138 |
ncRNAs | 5 |
Pseudo Genes (total) | 68 |
CDSs (without protein) | 68 |
Pseudo Genes (ambiguous residues) | 0 of 68 |
Pseudo Genes (frameshifted) | 29 of 68 |
Pseudo Genes (incomplete) | 33 of 68 |
Pseudo Genes (internal stop) | 21 of 68 |
Pseudo Genes (multiple problems) | 13 of 68 |
Gene | Locus Tag | Chromosome/GI | Location(nt) | Putative Function | |
---|---|---|---|---|---|
vgrG | M4S28_RS10440 | 1/12 | 2,282,509 | 2,284,491 | Tip of the T6SS apparatus |
M4S28_RS10445 | 1/12 | 2,284,552 | 2,285,112 | Unknown | |
M4S28_RS10450 | 1/12 | 2,285,122 | 2,285,421 | Unknown | |
tssA | M4S28_RS10455 | 1/12 | 2,285,641 | 2,287,107 | Cap of the T6SS sheath |
hcp | M4S28_RS10460 | 1/12 | 2,287,140 | 2,287,661 | Inner tube of the T6SS |
tssB | M4S28_RS10465 | 1/12 | 2,287,681 | 2,288,184 | T6SS sheath |
tssC | M4S28_RS10470 | 1/12 | 2,288,184 | 2,289,662 | T6SS sheath |
tssC | M4S28_RS10475 | 1/12 | 2,289,701 | 2,291,095 | T6SS sheath |
tssE | M4S28_RS10480 | 1/12 | 2,291,095 | 2,291,517 | T6SS baseplate |
tssF | M4S28_RS10485 | 1/12 | 2,291,510 | 2,293,261 | T6SS baseplate |
tssG | M4S28_RS10490 | 1/12 | 2,293,326 | 2,294,258 | T6SS baseplate |
tssH | M4S28_RS10495 | 1/12 | 2,294,306 | 2,296,918 | Disassembly of the T6SS apparatus |
M4S28_RS10500 | 1/12 | 2,296,928 | 2,299,495 | MFS transporter | |
M4S28_RS10505 | 1/12 | 2,299,492 | 2,300,490 | ABC transporter protein | |
M4S28_RS10510 | 1/12 | 2,300,477 | 2,301,205 | Transporter protein | |
M4S28_RS10515 | 1/12 | 2,301,209 | 2,302,159 | FHA domain-containing protein | |
tssJ | M4S28_RS10520 | 1/12 | 2,302,156 | 2,302,644 | T6SS membrane complex |
tssK | M4S28_RS10525 | 1/12 | 2,302,686 | 2,304,017 | T6SS baseplate |
tssL | M4S28_RS10530 | 1/12 | 2,304,023 | 2,305,219 | T6SS membrane complex |
tssM | M4S28_RS10535 | 1/12 | 2,305,222 | 2,308,614 | T6SS membrane complex |
M4S28_RS10540 | 1/12 | 2,308,694 | 2,309,347 | AarF/UbiB family protein | |
tssH | M4S28_RS22540 | 2/21 | 1,384,843 | 1,387,536 | Disassembly of the T6SS apparatus |
hcp | M4S28_RS22545 | 2/21 | 1,387,991 | 1,388,509 | Inner tube of the T6SS |
vgrG | M4S28_RS22550 | 2/21 | 1,388,584 | 1,390,662 | Tip of the T6SS apparatus |
vgrG | M4S28_RS22555 | 2/21 | 1,390,662 | 1,391,147 | Tip of the T6SS apparatus |
M4S28_RS22560 | 2/21 | 1,391,173 | 1,392,492 | Unknown | |
M4S28_RS22565 | 2/21 | 1,392,473 | 1,393,465 | Unknown | |
M4S28_RS22570 | 2/21 | 1,393,458 | 1,394,411 | Unknown | |
M4S28_RS22575 | 2/21 | 1,394,912 | 1,396,903 | Unknown | |
tssA | M4S28_RS22580 | 2/21 | 1,396,905 | 1,398,479 | Cap of the T6SS sheath |
tssB | M4S28_RS22585 | 2/21 | 1,398,497 | 1,399,003 | T6SS sheath |
tssC | M4S28_RS22590 | 2/21 | 1,399,012 | 1,400,487 | T6SS sheath |
tssE | M4S28_RS22595 | 2/21 | 1,400,548 | 1,400,958 | T6SS baseplate |
tssF | M4S28_RS22600 | 2/21 | 1,400,969 | 1,402,717 | T6SS baseplate |
tssG | M4S28_RS22605 | 2/21 | 1,402,714 | 1,403,712 | T6SS baseplate |
M4S28_RS22610 | 2/21 | 1,403,742 | 1,404,194 | Lrp/AsnC transcriptional regulator | |
tssM | M4S28_RS22615 | 2/21 | 1,404,255 | 1,407,647 | T6SS membrane complex |
tssA | M4S28_RS22620 | 2/21 | 1,407,701 | 1,409,011 | Cap of the T6SS sheath |
M4S28_RS22625 | 2/21 | 1,409,679 | 1,410,284 | Unknown | |
tagH | M4S28_RS22630 | 2/21 | 1,410,294 | 1,411,790 | Regulatory |
tssJ | M4S28_RS22635 | 2/21 | 1,411,783 | 1,412,283 | T6SS membrane complex |
tssK | M4S28_RS22640 | 2/21 | 1,412,295 | 1,413,620 | T6SS baseplate |
tssL | M4S28_RS22645 | 2/21 | 1,413,617 | 1,414,408 | T6SS membrane complex |
M4S28_RS22650 | 2/21 | 1,414,557 | 1,416,014 | Unknown | |
vgrG | M4S28_RS22655 | 2/21 | 1,416,026 | 1,418,182 | Tip of the T6SS apparatus |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ghasemieshkaftaki, M.; Vasquez, I.; Eshraghi, A.; Gamperl, A.K.; Santander, J. Comparative Genomic Analysis of a Novel Vibrio sp. Isolated from an Ulcer Disease Event in Atlantic Salmon (Salmo salar). Microorganisms 2023, 11, 1736. https://doi.org/10.3390/microorganisms11071736
Ghasemieshkaftaki M, Vasquez I, Eshraghi A, Gamperl AK, Santander J. Comparative Genomic Analysis of a Novel Vibrio sp. Isolated from an Ulcer Disease Event in Atlantic Salmon (Salmo salar). Microorganisms. 2023; 11(7):1736. https://doi.org/10.3390/microorganisms11071736
Chicago/Turabian StyleGhasemieshkaftaki, Maryam, Ignacio Vasquez, Aria Eshraghi, Anthony Kurt Gamperl, and Javier Santander. 2023. "Comparative Genomic Analysis of a Novel Vibrio sp. Isolated from an Ulcer Disease Event in Atlantic Salmon (Salmo salar)" Microorganisms 11, no. 7: 1736. https://doi.org/10.3390/microorganisms11071736
APA StyleGhasemieshkaftaki, M., Vasquez, I., Eshraghi, A., Gamperl, A. K., & Santander, J. (2023). Comparative Genomic Analysis of a Novel Vibrio sp. Isolated from an Ulcer Disease Event in Atlantic Salmon (Salmo salar). Microorganisms, 11(7), 1736. https://doi.org/10.3390/microorganisms11071736