Aging-Induced Changes in Cutibacterium acnes and Their Effects on Skin Elasticity and Wrinkle Formation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subject Recruitment and Sample Collection
2.2. Measurement of Skin Biomechanical Characteristics
2.3. DNA Extraction and Metagenomic Sequencing
2.4. Taxonomic and Functional Profiling
2.5. Statistical Analysis
3. Results
3.1. Study Population
3.2. Age-Related Decline in C. acnes Dominance and Its Impact on Skin Bacterial Diversity
3.3. Correlation Analysis Between Group-Specific Biomarker Bacterial Taxa and Skin Biomechanical Characteristics
3.4. Correlation Analysis Between Group-Specific Bacterial Taxa and Potential Functions
3.5. Network Analysis of Ecological Relationships Between C. acnes and Metabolic Characteristics
4. Discussion
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Byrd, A.L.; Belkaid, Y.; Segre, J.A. The Human Skin Microbiome. Nat. Rev. Microbiol. 2018, 16, 143–155. [Google Scholar] [CrossRef] [PubMed]
- Foulongne, V.; Sauvage, V.; Hebert, C.; Dereure, O.; Cheval, J.; Gouilh, M.A.; Pariente, K.; Segondy, M.; Burguière, A.; Manuguerra, J.C.; et al. Human Skin Microbiota: High Diversity of DNA Viruses Identified on the Human Skin by High Throughput Sequencing. PLoS ONE 2012, 7, e38499. [Google Scholar] [CrossRef] [PubMed]
- Probst, A.J.; Auerbach, A.K.; Moissl-Eichinger, C. Archaea on Human Skin. PLoS ONE 2013, 8, e65388. [Google Scholar] [CrossRef]
- Chen, Y.; Knight, R.; Gallo, R.L. Evolving Approaches to Profiling the Microbiome in Skin Disease. Front. Immunol. 2023, 14, 1151527. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Bai, X.; Peng, T.; Yi, X.; Luo, L.; Yang, J.; Liu, J.; Wang, Y.; He, T.; Wang, X.; et al. New Insights Into the Skin Microbial Communities and Skin Aging. Front. Microbiol. 2020, 11, 565549. [Google Scholar] [CrossRef]
- Kong, H.H.; Oh, J.; Deming, C.; Conlan, S.; Grice, E.A.; Beatson, M.A.; Nomicos, E.; Polley, E.C.; Komarow, H.D.; NISC Comparative Sequence Program; et al. Temporal Shifts in the Skin Microbiome Associated With Disease Flares and Treatment in Children With Atopic Dermatitis. Genome Res. 2012, 22, 850–859. [Google Scholar] [CrossRef]
- Wang, L.; Clavaud, C.; Bar-Hen, A.; Cui, M.; Gao, J.; Liu, Y.; Liu, C.; Shibagaki, N.; Guéniche, A.; Jourdain, R.; et al. Characterization of the Major Bacterial–Fungal Populations Colonizing Dandruff Scalps in Shanghai, China, Shows Microbial Disequilibrium. Exp. Dermatol. 2015, 24, 398–400. [Google Scholar] [CrossRef]
- Xu, Z.; Wang, Z.; Yuan, C.; Liu, X.; Yang, F.; Wang, T.; Wang, J.; Manabe, K.; Qin, O.; Wang, X.; et al. Dandruff Is Associated With the Conjoined Interactions Between Host and Microorganisms. Sci. Rep. 2016, 6, 24877. [Google Scholar] [CrossRef]
- Ganju, P.; Nagpal, S.; Mohammed, M.H.; Nishal Kumar, P.; Pandey, R.; Natarajan, V.T.; Mande, S.S.; Gokhale, R.S. Microbial Community Profiling Shows Dysbiosis in the Lesional Skin of Vitiligo Subjects. Sci. Rep. 2016, 6, 18761. [Google Scholar] [CrossRef]
- Grice, E.A.; Segre, J.A. The Skin Microbiome. Nat. Rev. Microbiol. 2011, 9, 244–253. [Google Scholar] [CrossRef]
- Ratanapokasatit, Y.; Laisuan, W.; Rattananukrom, T.; Petchlorlian, A.; Thaipisuttikul, I.; Sompornrattanaphan, M. How Microbiomes Affect Skin Aging: The Updated Evidence and Current Perspectives. Life 2022, 12, 936. [Google Scholar] [CrossRef]
- Russo, E.; Di Gloria, L.; Cerboneschi, M.; Smeazzetto, S.; Baruzzi, G.P.; Romano, F.; Ramazzotti, M.; Amedei, A. Facial Skin Microbiome: Aging-Related Changes and Exploratory Functional Associations With Host Genetic Factors, a Pilot Study. Biomedicines 2023, 11, 684. [Google Scholar] [CrossRef] [PubMed]
- Shibagaki, N.; Suda, W.; Clavaud, C.; Bastien, P.; Takayasu, L.; Iioka, E.; Kurokawa, R.; Yamashita, N.; Hattori, Y.; Shindo, C.; et al. Aging-Related Changes in the Diversity of Women’s Skin Microbiomes Associated With Oral Bacteria. Sci. Rep. 2017, 7, 10567. [Google Scholar] [CrossRef] [PubMed]
- Howard, B.; Bascom, C.C.; Hu, P.; Binder, R.L.; Fadayel, G.; Huggins, T.G.; Jarrold, B.B.; Osborne, R.; Rocchetta, H.L.; Swift, D.; et al. Aging-Associated Changes in the Adult Human Skin Microbiome and the Host Factors That Affect Skin Microbiome Composition. J. Investig. Dermatol. 2022, 142, 1934–1946.e21. [Google Scholar] [CrossRef] [PubMed]
- Min, M.; Egli, C.; Sivamani, R.K. The Gut and Skin Microbiome and Its Association with Aging Clocks. Int. J. Mol. Sci. 2024, 25, 7471. [Google Scholar] [CrossRef]
- Si, J.; Lee, S.; Park, J.M.; Sung, J.; Ko, G. Genetic Associations and Shared Environmental Effects on the Skin Microbiome of Korean Twins. BMC Genomics. 2015, 16, 992. [Google Scholar] [CrossRef]
- Patra, V.; Gallais Sérézal, I.; Wolf, P. Potential of Skin Microbiome, Pro-And/or Pre-Biotics to Affect Local Cutaneous Responses to UV Exposure. Nutrients 2020, 12, 1795. [Google Scholar] [CrossRef]
- Gilchrest, B.A. Skin Aging and Photoaging: An Overview. J. Am. Acad. Dermatol. 1989, 21, 610–613. [Google Scholar] [CrossRef]
- Wang, L.; Xu, Y.N.; Chu, C.C.; Jing, Z.; Chen, Y.; Zhang, J.; Pu, M.; Mi, T.; Du, Y.; Liang, Z.; et al. Facial Skin Microbiota-Mediated Host Response to Pollution Stress Revealed by Microbiome Networks of Individual. mSystems 2021, 6, e0031921. [Google Scholar] [CrossRef]
- Kim, H.J.; Oh, H.N.; Park, T.; Kim, H.; Lee, H.G.; An, S.; Sul, W.J. Aged Related Human Skin Microbiome and Mycobiome in Korean Women. Sci. Rep. 2022, 12, 2351. [Google Scholar] [CrossRef]
- Larson, P.J.; Zhou, W.; Santiago, A.; Driscoll, S.; Fleming, E.; Voigt, A.Y.; Chun, O.K.; Grady, J.J.; Kuchel, G.A.; Robison, J.T.; et al. Associations of the Skin, Oral and Gut Microbiome With Aging; Frailty and Infection Risk Reservoirs in Older Adults. Nat. Aging. 2022, 2, 941–955. [Google Scholar] [CrossRef] [PubMed]
- Bolla, B.S.; Erdei, L.; Urbán, E.; Burián, K.; Kemény, L.; Szabó, K. Cutibacterium Acnes Regulates the Epidermal Barrier Properties of HPV-KER Human Immortalized Keratinocyte Cultures. Sci. Rep. 2020, 10, 12815. [Google Scholar] [CrossRef] [PubMed]
- Chekanov, K.; Danko, D.; Tlyachev, T.; Kiselev, K.; Hagens, R.; Georgievskaya, A. State-of-the-Art in Skin Fluorescent Photography for Cosmetic and Skincare Research: From Molecular Spectra to AI Image Analysis. Life 2024, 14, 1271. [Google Scholar] [CrossRef]
- Garlet, A.; Andre-Frei, V.; Del Bene, N.; Cameron, H.J.; Samuga, A.; Rawat, V.; Ternes, P.; Leoty-Okombi, S. Facial Skin Microbiome Composition and Functional Shift With Aging. Microorganisms 2024, 12, 1021. [Google Scholar] [CrossRef]
- Myers, T.; Bouslimani, A.; Huang, S.; Hansen, S.T.; Clavaud, C.; Azouaoui, A.; Ott, A.; Gueniche, A.; Bouez, C.; Zheng, Q.; et al. A Multi-study Analysis Enables Identification of Potential Microbial Features Associated With Skin Aging Signs. Front. Aging. 2023, 4, 1304705. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.H.; Son, S.M.; Park, H.; Kim, B.K.; Choi, I.S.; Kim, H.; Huh, C.S. Taxonomic Profiling of Skin Microbiome and Correlation With Clinical Skin Parameters in Healthy Koreans. Sci. Rep. 2021, 11, 16269. [Google Scholar] [CrossRef]
- Dimitriu, P.A.; Iker, B.; Malik, K.; Leung, H.; Mohn, W.W.; Hillebrand, G.G. New Insights Into the Intrinsic and Extrinsic Factors That Shape the Human Skin Microbiome. mBio 2019, 10, e00839-19. [Google Scholar] [CrossRef] [PubMed]
- Jugé, R.; Rouaud-Tinguely, P.; Breugnot, J.; Servaes, K.; Grimaldi, C.; Roth, M.P.; Coppin, H.; Closs, B. Shift in Skin Microbiota of Western European Women Across Aging. J. Appl. Microbiol. 2018, 125, 907–916. [Google Scholar] [CrossRef]
- Ranjan, R.; Rani, A.; Metwally, A.; McGee, H.S.; Perkins, D.L. Analysis of the Microbiome: Advantages of Whole Genome Shotgun Versus 16S Amplicon Sequencing. Biochem. Biophys. Res. Commun. 2016, 469, 967–977. [Google Scholar] [CrossRef]
- Matchado, M.S.; Rühlemann, M.; Reitmeier, S.; Kacprowski, T.; Frost, F.; Haller, D.; Baumbach, J.; List, M. On the Limits of 16S RRNA Gene-Based Metagenome Prediction and Functional Profiling. Microb. Genom. 2024, 10, 001203. [Google Scholar] [CrossRef]
- Xia, J.; Li, Z.; Zhong, Q.; Wei, Q.; Jiang, L.; Duan, C.; Jia, H.; Tan, Y.; Han, L.; Wang, J.; et al. Integration of Skin Phenome and Microbiome Reveals the Key Role of Bacteria in Human Skin Aging. ResearchSquare, 2023; Preprint. [Google Scholar] [CrossRef]
- Zhou, W.; Fleming, E.; Legendre, G.; Roux, L.; Latreille, J.; Gendronneau, G.; Forestier, S.; Oh, J. Skin Microbiome Attributes Associate With Biophysical Skin Ageing. Exp. Dermatol. 2023, 32, 1546–1556. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.J.; Tagele, S.B.; Jo, H.; Kim, M.C.; Jung, Y.; Park, Y.J.; So, J.H.; Kim, H.J.; Kim, H.J.; Lee, D.G.; et al. Effect of a Bioconverted Product of Lotus corniculatus Seed on the Axillary Microbiome and Body Odor. Sci. Rep. 2021, 11, 10138. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Lee, G.; Han, S.; Kim, M.J.; Shin, J.H.; Lee, S. Microbial Communities in Aerosol Generated From Cyanobacterial Bloom-Affected Freshwater Bodies: An Exploratory Study in Nakdong River, South Korea. Front. Microbiol. 2023, 14, 1203317. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Chen, Y.; Shi, C.; Huang, Z.; Zhang, Y.; Li, S.; Li, Y.; Ye, J.; Yu, C.; Li, Z.; et al. SOAPnuke: A MapReduce Acceleration-Supported Software for Integrated Quality Control and Preprocessing of High-Throughput Sequencing Data. GigaScience 2018, 7, gix120. [Google Scholar] [CrossRef]
- Langmead, B.; Salzberg, S.L. Fast Gapped-Read Alignment With Bowtie 2. Nat. Methods. 2012, 9, 357–359. [Google Scholar] [CrossRef]
- Wood, D.E.; Lu, J.; Langmead, B. Improved Metagenomic Analysis With Kraken 2. Genome Biol. 2019, 20, 257. [Google Scholar] [CrossRef]
- Lu, J.; Breitwieser, F.P.; Thielen, P.; Salzberg, S.L. Bracken: Estimating Species Abundance in Metagenomics Data. PeerJ Comput. Sci. 2017, 3, e104. [Google Scholar] [CrossRef]
- Beghini, F.; McIver, L.J.; Blanco-Míguez, A.; Dubois, L.; Asnicar, F.; Maharjan, S.; Mailyan, A.; Manghi, P.; Scholz, M.; Thomas, A.M.; et al. Integrating Taxonomic, Functional, and Strain-Level Profiling of Diverse Microbial Communities With bioBakery 3. eLife 2021, 10, e65088. [Google Scholar] [CrossRef]
- Liu, C.; Cui, Y.; Li, X.; Yao, M. Microeco: An R Package for Data Mining in Microbial Community Ecology. FEMS Microbiol. Ecol. 2021, 97, fiaa255. [Google Scholar] [CrossRef]
- Bray, J.R.; Curtis, J.T. An Ordination of the Upland Forest Communities of Southern Wisconsin. Ecol. Monogr. 1957, 27, 325–349. [Google Scholar] [CrossRef]
- Kassambara, A. Ggpubr: ‘Ggplot2’ Based Publication Ready Plots. R Package Version 0.6.0, 2018. Available online: https://cir.nii.ac.jp/crid/1370861707141778052 (accessed on 3 June 2024).
- Wei, T.; Simko, V.; Levy, M.; Xie, Y.; Jin, Y.; Zemla, J. Package ‘Corrplot’. Statistician 2017, 56, 316–324. [Google Scholar]
- Oksanen, J.; Blanchet, F.G.; Kindt, R.; Legendre, P.; Minchin, P.; O’Hara, B.; Simpson, G.L.; Solymos, P.; Stevens, M.H.H.; Wagner, H.H. Vegan: Community Ecology Package. R Package Version 2.2-1, 2015. Available online: http://CRAN.Rproject.org/package=vegan (accessed on 3 June 2024).
- Csardi, M.G. Package ‘Igraph’, 2013. Available online: https://igraph.org/r/pdf/1.2.6/igraph.pdf (accessed on 3 June 2024).
- Zeeuwen, P.L.; Kleerebezem, M.; Timmerman, H.M.; Schalkwijk, J. Microbiome and Skin Diseases. Curr. Opin. Allergy Clin. Immunol. 2013, 13, 514–520. [Google Scholar] [CrossRef]
- Claesen, J.; Spagnolo, J.B.; Ramos, S.F.; Kurita, K.L.; Byrd, A.L.; Aksenov, A.A.; Melnik, A.V.; Wong, W.R.; Wang, S.; Hernandez, R.D.; et al. A Cutibacterium Acnes Antibiotic Modulates Human Skin Microbiota Composition in Hair Follicles. Sci. Transl. Med. 2020, 12, eaay5445. [Google Scholar] [CrossRef]
- Nakamura, K.; O’Neill, A.M.; Williams, M.R.; Cau, L.; Nakatsuji, T.; Horswill, A.R.; Gallo, R.L. Short Chain Fatty Acids Produced by Cutibacterium Acnes Inhibit Biofilm Formation by Staphylococcus epidermidis. Sci. Rep. 2020, 10, 21237. [Google Scholar] [CrossRef] [PubMed]
- Almoughrabie, S.; Cau, L.; Cavagnero, K.; O’Neill, A.M.; Li, F.; Roso-Mares, A.; Mainzer, C.; Closs, B.; Kolar, M.J.; Williams, K.J.; et al. Commensal Cutibacterium Acnes Induce Epidermal Lipid Synthesis Important for Skin Barrier Function. Sci. Adv. 2023, 9, eadg6262. [Google Scholar] [CrossRef] [PubMed]
- Holland, C.; Mak, T.N.; Zimny-Arndt, U.; Schmid, M.; Meyer, T.F.; Jungblut, P.R.; Brüggemann, H. Proteomic Identification of Secreted Proteins of Propionibacterium acnes. BMC Microbiol. 2010, 10, 230. [Google Scholar] [CrossRef]
- Allhorn, M.; Arve, S.; Brüggemann, H.; Lood, R. A Novel Enzyme With Antioxidant Capacity Produced by the Ubiquitous Skin Colonizer Propionibacterium acnes. Sci. Rep. 2016, 6, 36412. [Google Scholar] [CrossRef]
- Yang, M.; Zhou, M.; Song, L. A Review of Fatty Acids Influencing Skin Condition. J. Cosmet. Dermatol. 2020, 19, 3199–3204. [Google Scholar] [CrossRef]
- Rozas, M.; de Ruijter, A.H.; Fabrega, M.; Zorgani, A.; Guell, M.; Paetzold, B.; Brillet, F. From dysbiosis to healthy skin: Major contributions of Cutibacterium acnes to skin homeostasis. Microorganisms 2021, 9, 628. [Google Scholar] [CrossRef]
- Hameed, A.; Akhtar, N.; Khan, H.M.S.; Asrar, M. Skin sebum and skin elasticity: Major influencing factors for facial pores. J. Cosmet. Dermatol. 2019, 18, 1968–1974. [Google Scholar] [CrossRef] [PubMed]
- Williams, M.R.; Nakatsuji, T.; Sanford, J.A.; Vrbanac, A.F.; Gallo, R.L. Staphylococcus aureus Induces Increased Serine Protease Activity in Keratinocytes. J. Investig. Dermatol. 2017, 137, 377–384. [Google Scholar] [CrossRef] [PubMed]
- Lehman, M.K.; Nuxoll, A.S.; Yamada, K.J.; Kielian, T.; Carson, S.D.; Fey, P.D. Protease-Mediated Growth of Staphylococcus aureus on Host Proteins Is opp3 Dependent. mBio 2019, 10, e02553-18. [Google Scholar] [CrossRef] [PubMed]
- Bojar, R.A.; Holland, K.T. The Human Cutaneous Microflora and Factors Controlling Colonization. World J. Microbiol. Biotechnol. 2002, 18, 889–903. [Google Scholar] [CrossRef]
- Kwaszewska, A.; Sobiś-Glinkowska, M.; Szewczyk, E.M. Cohabitation—Relationships of Corynebacteria and Staphylococci on Human Skin. Folia Microbiol. 2014, 59, 495–502. [Google Scholar] [CrossRef]
- Rattan, S.I.; Sodagam, L. Gerontomodulatory and Youth-Preserving Effects of Zeatin on Human Skin Fibroblasts Undergoing Aging In Vitro. Rejuvenation Res. 2005, 8, 46–57. [Google Scholar] [CrossRef]
- Kannan, S.; Balakrishnan, J.; Nagarajan, P. Vitamin B7 (Biotin) and Its Role in Hair, Skin and Nail Health. Hydrophilic Vitamins in Health and Disease Advances in Biochemistry in Health and Disease; Springer: Berlin/Heidelberg, Germany, 2024; pp. 233–252. [Google Scholar] [CrossRef]
- Dattola, A.; Silvestri, M.; Bennardo, L.; Passante, M.; Scali, E.; Patruno, C.; Nisticò, S.P. Role of Vitamins in Skin Health: A Systematic Review. Curr. Nutr. Rep. 2020, 9, 226–235. [Google Scholar] [CrossRef]
- Layeghifard, M.; Hwang, D.M.; Guttman, D.S. Disentangling Interactions in the Microbiome: A Network Perspective. Trends Microbiol. 2017, 25, 217–228. [Google Scholar] [CrossRef]
- Pietkiewicz, P.; Navarrete-Dechent, C.; Togawa, Y.; Szlązak, P.; Salwowska, N.; Marghoob, A.A.; Marghoob, A.A.; Leszczyńska-Pietkiewicz, A.; Errichetti, E. Applications of ultraviolet and sub-ultraviolet dermatoscopy in neoplastic and non-neoplastic dermatoses: A Systematic Review. Dermatol. Ther. 2024, 14, 361–390. [Google Scholar] [CrossRef]
Variables | Group | p-Value | ||
---|---|---|---|---|
Older (n = 30) | Younger (n = 30) | |||
Age, years | 64.53 ± 4.51 | 24.83 ± 3.22 | <0.001 | |
Sex | Male | 15 (50.00%) | 15 (50.00%) | >0.999 |
Female | 15 (50.00%) | 15 (50.00%) | ||
TEWL, g/m2/h | 17.35 ± 4.25 | 15.31 ± 2.78 | 0.032 | |
pH | 5.30 ± 0.65 | 5.39 ±.075 | 0.630 | |
Sebum, μg sebum/cm2 | 53.80 ± 34.31 | 75.47 ± 50.87 | 0.058 | |
Melanin, AU | 159.00 ± 47.18 | 178.20 ± 37.10 | 0.085 | |
Erythema, AU | 261.20 ± 78.73 | 284.20 ± 66.41 | 0.227 | |
Average depth of wrinkles, mm | 240.50 ± 60.86 | 153.70 ± 34.34 | <0.001 | |
Average length of wrinkles, mm | 1.54 ± 0.30 | 0.92 ± 0.24 | <0.001 | |
Average area of wrinkles, mm | 0.46 ± 0.25 | 0.11 ± 0.08 | <0.001 | |
Final distensibility (R0), mm | 0.11 ± 0.03 | 0.13 ± 0.03 | 0.013 | |
Gross elasticity (R2), % | 49.30 ± 7.85 | 67.85 ± 6.13 | <0.001 | |
Net elasticity (R5), % | 33.44 ± 7.82 | 52.48 ± 10.57 | <0.001 | |
Viscoelasticity (R6), % | 12.55 ± 7.23 | 8.16 ± 5.67 | 0.011 | |
Biological elasticity (R7), % | 29.61 ± 6.20 | 48.60 ± 9.75 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jung, Y.; Kim, I.; Jung, D.-R.; Ha, J.H.; Lee, E.K.; Kim, J.M.; Kim, J.Y.; Jang, J.-H.; Bae, J.-T.; Shin, J.-H.; et al. Aging-Induced Changes in Cutibacterium acnes and Their Effects on Skin Elasticity and Wrinkle Formation. Microorganisms 2024, 12, 2179. https://doi.org/10.3390/microorganisms12112179
Jung Y, Kim I, Jung D-R, Ha JH, Lee EK, Kim JM, Kim JY, Jang J-H, Bae J-T, Shin J-H, et al. Aging-Induced Changes in Cutibacterium acnes and Their Effects on Skin Elasticity and Wrinkle Formation. Microorganisms. 2024; 12(11):2179. https://doi.org/10.3390/microorganisms12112179
Chicago/Turabian StyleJung, YeonGyun, Ikwhan Kim, Da-Ryung Jung, Ji Hoon Ha, Eun Kyung Lee, Jin Mo Kim, Jin Young Kim, Jun-Hwan Jang, Jun-Tae Bae, Jae-Ho Shin, and et al. 2024. "Aging-Induced Changes in Cutibacterium acnes and Their Effects on Skin Elasticity and Wrinkle Formation" Microorganisms 12, no. 11: 2179. https://doi.org/10.3390/microorganisms12112179
APA StyleJung, Y., Kim, I., Jung, D. -R., Ha, J. H., Lee, E. K., Kim, J. M., Kim, J. Y., Jang, J. -H., Bae, J. -T., Shin, J. -H., & Cho, Y. S. (2024). Aging-Induced Changes in Cutibacterium acnes and Their Effects on Skin Elasticity and Wrinkle Formation. Microorganisms, 12(11), 2179. https://doi.org/10.3390/microorganisms12112179