Litter Removal Counteracts the Effects of Warming on Soil Bacterial Communities in the Qinghai–Tibet Plateau
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Plot
2.2. Soil Collection and Analysis
2.3. Microbial Data and Analysis
2.4. Network Construction
2.5. Community Assembly Processes
2.6. Statistical Analysis
3. Results
3.1. Soil Microbial Diversity and Community Structure
3.2. Interaction Patterns of Soil Microorganisms and Microbial Community Assembly Processes
3.3. Driving Factors of Microbial Community Change
4. Discussion
4.1. Responses of the Soil Microbial Community to Warming and Litter Removal
4.2. Effects of Warming and Litter Removal on the Microbial Co-Occurrence Network
4.3. Microbial Community Construction Process
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Guo, X.; Feng, J.; Shi, Z.; Zhou, X.; Yuan, M.; Tao, X.; Hale, L.; Yuan, T.; Wang, J.; Qin, Y.; et al. Climate warming leads to divergent succession of grassland microbial communities. Nat. Clim. Chang. 2018, 8, 813–818. [Google Scholar] [CrossRef]
- Bei, Q.; Reitz, T.; Schnabel, B.; Eisenhauer, N.; Schädler, M.; Buscot, F.; Heintz-Buschart, A. Extreme summers impact cropland and grassland soil microbiomes. ISME J. 2023, 17, 1589–1600. [Google Scholar] [CrossRef] [PubMed]
- Yuan, M.M.; Guo, X.; Wu, L.; Zhang, Y.; Xiao, N.; Ning, D.; Shi, Z.; Zhou, X.; Wu, L.; Yang, Y.; et al. Climate warming enhances microbial network complexity and stability. Nat. Clim. Chang. 2021, 11, 343–348. [Google Scholar] [CrossRef]
- Tang, L.; Zhong, L.; Xue, K.; Wang, S.; Xu, Z.; Lin, Q.; Luo, C.; Rui, Y.; Li, X.; Li, M.; et al. Warming counteracts grazing effects on the functional structure of the soil microbial community in a Tibetan grassland. Soil Biol. Biochem. 2019, 134, 113–121. [Google Scholar] [CrossRef]
- Bender, S.F.; Wagg, C.; van der Heijden, M.G.A. An Underground Revolution: Biodiversity and Soil Ecological Engineering for Agricultural Sustainability. Trends Ecol. Evol. 2016, 31, 440–452. [Google Scholar] [CrossRef]
- de Oliveira, T.B.; de Lucas, R.C.; Scarcella, A.S.A.; Contato, A.G.; Pasin, T.M.; Martinez, C.A.; Polizeli, M. Fungal communities differentially respond to warming and drought in tropical grassland soil. Mol. Ecol. 2020, 29, 1550–1559. [Google Scholar] [CrossRef]
- Solly, E.F.; Lindahl, B.D.; Dawes, M.A.; Peter, M.; Souza, R.C.; Rixen, C.; Hagedorn, F. Experimental soil warming shifts the fungal community composition at the alpine treeline. New Phytol. 2017, 215, 766–778. [Google Scholar] [CrossRef]
- Chen, W.; Zhou, H.; Wu, Y.; Li, Y.; Qiao, L.; Wang, J.; Zhai, J.; Song, Y.; Zhao, Z.; Zhang, Z.; et al. Plant-mediated effects of long-term warming on soil microorganisms on the Qinghai-Tibet Plateau. Catena 2021, 204, 105391. [Google Scholar] [CrossRef]
- Kuffner, M.; Hai, B.; Rattei, T.; Melodelima, C.; Schloter, M.; Zechmeister-Boltenstern, S.; Jandl, R.; Schindlbacher, A.; Sessitsch, A. Effects of season and experimental warming on the bacterial community in a temperate mountain forest soil assessed by 16S rRNA gene pyrosequencing. FEMS Microbiol. Ecol. 2012, 82, 551–562. [Google Scholar] [CrossRef]
- DeAngelis, K.M.; Pold, G.; Topcuoglu, B.D.; van Diepen, L.T.; Varney, R.M.; Blanchard, J.L.; Melillo, J.; Frey, S.D. Long-term forest soil warming alters microbial communities in temperate forest soils. Front. Microbiol. 2015, 6, 104. [Google Scholar] [CrossRef]
- Guo, X.; Zhou, X.; Hale, L.; Yuan, M.; Ning, D.; Feng, J.; Shi, Z.; Li, Z.; Feng, B.; Gao, Q.; et al. Climate warming accelerates temporal scaling of grassland soil microbial biodiversity. Nat. Ecol. Evol. 2019, 3, 612–619. [Google Scholar] [CrossRef] [PubMed]
- Hillebrand, H.; Langenheder, S.; Lebret, K.; Lindstrom, E.; Ostman, O.; Striebel, M. Decomposing multiple dimensions of stability in global change experiments. Ecol. Lett. 2018, 21, 21–30. [Google Scholar] [CrossRef] [PubMed]
- Marichal, R.; Mathieu, J.; Couteaux, M.M.; Mora, P.; Roy, J.; Lavelle, P. Earthworm and microbe response to litter and soils of tropical forest plantations with contrasting C:N:P stoichiometric ratios. Soil Biol. Biochem. 2011, 43, 1528–1535. [Google Scholar] [CrossRef]
- Li, S.; Song, M.; Jing, S. Effects of different carbon inputs on soil nematode abundance and community composition. Appl. Soil Ecol. 2021, 163, 103915. [Google Scholar] [CrossRef]
- Huang, R.; Crowther, T.W.; Sui, Y.; Sun, B.; Liang, Y. High stability and metabolic capacity of bacterial community promote the rapid reduction of easily decomposing carbon in soil. Commun. Biol. 2021, 4, 1376. [Google Scholar] [CrossRef]
- Che, R.; Wang, S.; Wang, Y.; Xu, Z.; Wang, W.; Rui, Y.; Wang, F.; Hu, J.; Tao, J.; Cui, X. Total and active soil fungal community profiles were significantly altered by six years of warming but not by grazing. Soil Biol. Biochem. 2019, 139, 107611. [Google Scholar] [CrossRef]
- Kalam, S.; Basu, A.; Ahmad, I.; Sayyed, R.Z.; El-Enshasy, H.A.; Dailin, D.J.; Suriani, N.L. Recent Understanding of Soil Acidobacteria and Their Ecological Significance: A Critical Review. Front. Microbiol. 2020, 11, 580024. [Google Scholar] [CrossRef]
- Zhou, X.; Chen, X.; Qi, X.; Zeng, Y.; Guo, X.; Zhuang, G.; Ma, A. Soil bacterial communities associated with multi-nutrient cycling under long-term warming in the alpine meadow. Front. Microbiol. 2023, 14, 1136187. [Google Scholar] [CrossRef]
- Challacombe, J.F.; Hesse, C.N.; Bramer, L.M.; McCue, L.A.; Lipton, M.; Purvine, S.; Nicora, C.; Gallegos-Graves, L.V.; Porras-Alfaro, A.; Kuske, C.R. Genomes and secretomes of Ascomycota fungi reveal diverse functions in plant biomass decomposition and pathogenesis. BMC Genom. 2019, 20, 976. [Google Scholar] [CrossRef]
- Yang, B.; Yang, Z.; He, K.; Zhou, W.; Feng, W. Soil Fungal Community Diversity, Co-Occurrence Networks, and Assembly Processes under Diverse Forest Ecosystems. Microorganisms 2024, 12, 1915. [Google Scholar] [CrossRef]
- Donhauser, J.; Frey, B. Alpine soil microbial ecology in a changing world. FEMS Microbiol. Ecol. 2018, 94, fiy099. [Google Scholar] [CrossRef] [PubMed]
- Kojima, T.; Jenkins, S.; Weerasekara, A.; Fan, J.-W. Arbuscular Mycorrhizal Diversity and Function in Grassland Ecosystems. In Mycorrhizal Fungi: Use in Sustainable Agriculture and Land Restoration; Solaiman, Z.M., Abbott, L.K., Varma, A., Eds.; Springer: Berlin/Heidelberg, Germany, 2014; pp. 149–169. [Google Scholar]
- Aqeel, M.; Ran, J.; Hu, W.; Irshad, M.K.; Dong, L.; Akram, M.A.; Eldesoky, G.E.; Aljuwayid, A.M.; Chuah, L.F.; Deng, J. Plant-soil-microbe interactions in maintaining ecosystem stability and coordinated turnover under changing environmental conditions. Chemosphere 2023, 318, 137924. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Zhou, H.; Chen, W.; Zhang, Y.; Wang, J.; Liu, H.; Zhao, Z.; Li, Y.; You, Q.; Yang, B.; et al. Response of the soil food web to warming and litter removal in the Tibetan Plateau, China. Geoderma 2021, 401, 115318. [Google Scholar] [CrossRef]
- Hurt, R.A.; Qiu, X.; Wu, L.; Roh, Y.; Palumbo, A.V.; Tiedje, J.M.; Zhou, J. Simultaneous recovery of RNA and DNA from soils and sediments. Appl. Environ. Microbiol. 2001, 67, 4495–4503. [Google Scholar] [CrossRef]
- Bolyen, E.; Rideout, J.R.; Dillon, M.; Bokulich, N.; Abnet, C.; Al-Ghalith, G.; Alexander, H.; Alm, E.; Arumugam, M.; Asnicar, F.; et al. QIIME 2: Reproducible, interactive, scalable, and extensible microbiome data science. PeerJ 2018, 6, e27295v2. [Google Scholar] [CrossRef]
- Zhou, J.; Deng, Y.; Luo, F.; He, Z.; Tu, Q.; Zhi, X. Functional molecular ecological networks. mBio 2010, 1, e00169-10. [Google Scholar] [CrossRef]
- Ma, B.; Wang, H.; Dsouza, M.; Lou, J.; He, Y.; Dai, Z.; Brookes, P.C.; Xu, J.; Gilbert, J.A. Geographic patterns of co-occurrence network topological features for soil microbiota at continental scale in eastern China. ISME J. 2016, 10, 1891–1901. [Google Scholar] [CrossRef]
- Jiao, S.; Yang, Y.; Xu, Y.; Zhang, J.; Lu, Y. Balance between community assembly processes mediates species coexistence in agricultural soil microbiomes across eastern China. ISME J. 2020, 14, 202–216. [Google Scholar] [CrossRef]
- Stegen, J.C.; Lin, X.; Fredrickson, J.K.; Chen, X.; Kennedy, D.W.; Murray, C.J.; Rockhold, M.L.; Konopka, A. Quantifying community assembly processes and identifying features that impose them. ISME J. 2013, 7, 2069–2079. [Google Scholar] [CrossRef]
- Xun, W.; Li, W.; Xiong, W.; Ren, Y.; Liu, Y.; Miao, Y.; Xu, Z.; Zhang, N.; Shen, Q.; Zhang, R. Diversity-triggered deterministic bacterial assembly constrains community functions. Nat. Commun. 2019, 10, 3833. [Google Scholar] [CrossRef]
- Wen, T.; Xie, P.; Penton, C.R.; Hale, L.; Thomashow, L.S.; Yang, S.; Ding, Z.; Su, Y.; Yuan, J.; Shen, Q. Specific metabolites drive the deterministic assembly of diseased rhizosphere microbiome through weakening microbial degradation of autotoxin. Microbiome 2022, 10, 177. [Google Scholar] [CrossRef] [PubMed]
- Yang, B.; Feng, W.; Zhou, W.; He, K.; Yang, Z. Association between Soil Physicochemical Properties and Bacterial Community Structure in Diverse Forest Ecosystems. Microorganisms 2024, 12, 728. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Ning, D. Stochastic Community Assembly: Does It Matter in Microbial Ecology? Microbiol. Mol. Biol. Rev. 2017, 81, e00002-17. [Google Scholar] [CrossRef]
- Oksanen, J.; Blanchet, F.G.; Kindt, R.; Legendre, P.; Minchin, P.; O’Hara, B.; Simpson, G.; Solymos, P.; Stevens, H.; Wagner, H. Vegan: Community Ecology Package. R Package Version 2015, 2, 1–2. [Google Scholar]
- Osburn, E.D.; Aylward, F.O.; Barrett, J.E. Historical land use has long-term effects on microbial community assembly processes in forest soils. ISME Commun. 2021, 1, 48. [Google Scholar] [CrossRef]
- Chen, Y.; Chen, L.; Lun, A.T.L.; Baldoni, P.L.; Smyth, G.K. edgeR 4.0: Powerful differential analysis of sequencing data with expanded functionality and improved support for small counts and larger datasets. bioRxiv 2024. [Google Scholar] [CrossRef]
- Latan, H.; Hair, J.F.; Noonan, R.; Sabol, M. Introduction to the Partial Least Squares Path Modeling: Basic Concepts and Recent Methodological Enhancements. In Partial Least Squares Path Modeling: Basic Concepts, Methodological Issues and Applications; Latan, H., Hair, J.J.F., Noonan, R., Eds.; Springer International Publishing: Cham, Switzerland, 2023; pp. 3–21. [Google Scholar]
- Yu, H.; Deng, Y.; He, Z.; Van Nostrand, J.D.; Wang, S.; Jin, D.; Wang, A.; Wu, L.; Wang, D.; Tai, X.; et al. Elevated CO2 and Warming Altered Grassland Microbial Communities in Soil Top-Layers. Front. Microbiol. 2018, 9, 1790. [Google Scholar] [CrossRef]
- Wang, S.; Bao, X.; Feng, K.; Deng, Y.; Zhou, W.; Shao, P.; Zheng, T.; Yao, F.; Yang, S.; Liu, S.; et al. Warming-driven migration of core microbiota indicates soil property changes at continental scale. Sci. Bull. 2021, 66, 2025–2035. [Google Scholar] [CrossRef]
- Banerjee, S.; Schlaeppi, K.; van der Heijden, M.G.A. Keystone taxa as drivers of microbiome structure and functioning. Nat. Rev. Microbiol. 2018, 16, 567–576. [Google Scholar] [CrossRef]
- Sharma, M.; Khurana, H.; Singh, D.N.; Negi, R.K. The genus Sphingopyxis: Systematics, ecology, and bioremediation potential—A review. J. Environ. Manag. 2021, 280, 111744. [Google Scholar] [CrossRef]
- Wu, Y.; Chen, D.; Delgado-Baquerizo, M.; Liu, S.; Wang, B.; Wu, J.; Hu, S.; Bai, Y. Long-term regional evidence of the effects of livestock grazing on soil microbial community structure and functions in surface and deep soil layers. Soil Biol. Biochem. 2022, 168, 108629. [Google Scholar] [CrossRef]
- Zhou, Y.; Sun, B.; Xie, B.; Feng, K.; Zhang, Z.; Zhang, Z.; Li, S.; Du, X.; Zhang, Q.; Gu, S.; et al. Warming reshaped the microbial hierarchical interactions. Glob. Chang. Biol. 2021, 27, 6331–6347. [Google Scholar] [CrossRef]
- Hamonts, K.; Bissett, A.; Macdonald, B.C.T.; Barton, P.S.; Manning, A.D.; Young, A. Effects of ecological restoration on soil microbial diversity in a temperate grassy woodland. Appl. Soil Ecol. 2017, 117–118, 117–128. [Google Scholar] [CrossRef]
- Zheng, H.; Yang, T.; Bao, Y.; He, P.; Yang, K.; Mei, X.; Wei, Z.; Xu, Y.; Shen, Q.; Banerjee, S. Network analysis and subsequent culturing reveal keystone taxa involved in microbial litter decomposition dynamics. Soil Biol. Biochem. 2021, 157, 108230. [Google Scholar] [CrossRef]
- Saia, S.; Tamayo, E.; Schillaci, C.; De Vita, P. Arbuscular Mycorrhizal Fungi and Nutrient Cycling in Cropping Systems. In Carbon and Nitrogen Cycling in Soil; Datta, R., Meena, R.S., Pathan, S.I., Ceccherini, M.T., Eds.; Springer: Singapore, 2020; pp. 87–115. [Google Scholar]
- Worrich, A.; Stryhanyuk, H.; Musat, N.; König, S.; Banitz, T.; Centler, F.; Frank, K.; Thullner, M.; Harms, H.; Richnow, H.-H.; et al. Mycelium-mediated transfer of water and nutrients stimulates bacterial activity in dry and oligotrophic environments. Nat. Commun. 2017, 8, 15472. [Google Scholar] [CrossRef]
- He, D.; Shen, W.; Eberwein, J.; Zhao, Q.; Ren, L.; Wu, Q.L. Diversity and co-occurrence network of soil fungi are more responsive than those of bacteria to shifts in precipitation seasonality in a subtropical forest. Soil Biol. Biochem. 2017, 115, 499–510. [Google Scholar] [CrossRef]
- Brözel, V.S. Microbial Interactions in Soil. Microorganisms 2022, 10, 1939. [Google Scholar] [CrossRef]
- Li, Y.; Hu, C. Biogeographical patterns and mechanisms of microbial community assembly that underlie successional biocrusts across northern China. NPJ Biofilms Microbiomes 2021, 7, 15. [Google Scholar] [CrossRef]
- Bahram, M.; Hildebrand, F.; Forslund, S.K.; Anderson, J.L.; Soudzilovskaia, N.A.; Bodegom, P.M.; Bengtsson-Palme, J.; Anslan, S.; Coelho, L.P.; Harend, H.; et al. Structure and function of the global topsoil microbiome. Nature 2018, 560, 233–237. [Google Scholar] [CrossRef]
- Baldrian, P.; Head, I.M.; Prosser, J.I.; Schloter, M.; Smalla, K.; Tebbe, C.C. Ecology and metagenomics of soil microorganisms. FEMS Microbiol. Ecol. 2011, 78, 1–2. [Google Scholar] [CrossRef]
- van der Heijden, M.G.A.; Martin, F.M.; Selosse, M.A.; Sanders, I.R. Mycorrhizal ecology and evolution: The past, the present, and the future. New Phytol. 2015, 205, 1406–1423. [Google Scholar] [CrossRef] [PubMed]
- Tedersoo, L.; Bahram, M.; Põlme, S.; Kõljalg, U.; Yorou, N.S.; Wijesundera, R.; Villarreal Ruiz, L.; Vasco-Palacios, A.M.; Thu, P.Q.; Suija, A.; et al. Fungal biogeography. Global diversity and geography of soil fungi. Science 2014, 346, 1256688. [Google Scholar] [CrossRef] [PubMed]
- Ning, D.; Yuan, M.; Wu, L.; Zhang, Y.; Guo, X.; Zhou, X.; Yang, Y.; Arkin, A.P.; Firestone, M.K.; Zhou, J. A quantitative framework reveals ecological drivers of grassland microbial community assembly in response to warming. Nat. Commun. 2020, 11, 4717. [Google Scholar] [CrossRef]
- Evans, S.; Martiny, J.B.; Allison, S.D. Effects of dispersal and selection on stochastic assembly in microbial communities. ISME J. 2017, 11, 176–185. [Google Scholar] [CrossRef]
- Zhou, J.; Liu, W.; Deng, Y.; Jiang, Y.H.; Xue, K.; He, Z.; Van Nostrand, J.D.; Wu, L.; Yang, Y.; Wang, A. Stochastic assembly leads to alternative communities with distinct functions in a bioreactor microbial community. mBio 2013, 4, e00584-12. [Google Scholar] [CrossRef]
- Wu, L.; Ning, D.; Zhang, B.; Li, Y.; Zhang, P.; Shan, X.; Zhang, Q.; Brown, M.R.; Li, Z.; Van Nostrand, J.D.; et al. Global diversity and biogeography of bacterial communities in wastewater treatment plants. Nat. Microbiol. 2019, 4, 1183–1195. [Google Scholar] [CrossRef]
- Xiao, X.; Liang, Y.; Zhou, S.-X.; Zhuang, S.; Sun, B. Fungal community reveals less dispersal limitation and potentially more connected network than that of bacteria in bamboo forest soils. Mol. Ecol. 2018, 27, 550–563. [Google Scholar] [CrossRef]
Bacteria | Fungi | |||
---|---|---|---|---|
Pseudo-F | R2 | Pseudo-F | R2 | |
(W + WL) vs. (L + CK) | 1.651 ** | 0.083 | 1.082 | 0.057 |
(WL + L) vs. (W + CK) | 0.869 | 0.044 | 0.871 | 0.046 |
All sample type | 1.282 | 0.065 | 0.796 | 0.042 |
Pairwise Comparisons | ||||
WL vs. W (p > 0.05) | WL vs. W (p > 0.05) | |||
WL vs. L (p > 0.05) | WL vs. L (p > 0.05) | |||
WL vs. CK (p > 0.05) | WL vs. CK (p > 0.05) | |||
W vs. L (p > 0.05) | W vs. L (p > 0.05) | |||
W vs. CK (p < 0.05) | W vs. CK (p > 0.05) | |||
L vs. CK (p > 0.05) | L vs. CK (p > 0.05) | |||
Multivariate homogeneity of group dispersions | ||||
(W + WL) vs. (L + CK) | 2.173 * | 0.091 |
WL | W | L | CK | |||||
---|---|---|---|---|---|---|---|---|
Pearson threshold | 0.99 | 0.99 | 0.99 | 0.99 | ||||
Nodes | 1693 | 1640 | 1727 | 1673 | ||||
Links | 4423 | 4523 | 4882 | 11005 | ||||
Average degree (avgK) | 5.225 | 5.5158 | 5.6537 | 13.156 | ||||
Randomized network structure | Empirical | 100 Random | Empirical | 100 Random | Empirical | 100 Random | Empirical | 100 Random |
Average path distance (GD) | 7.097 | 4.259 ± 0.017 | 6.559 | 4.088 ± 0.018 | 6.491 | 4.117 ± 0.015 | 4.519 | 3.183 ± 0.008 |
Average clustering coefficient (avgCC) | 0.297 | 0.009 ± 0.002 | 0.304 | 0.012 ± 0.002 | 0.322 | 0.010 ± 0.001 | 0.351 | 0.020 ± 0.001 |
Transitivity (Trans) | 0.19 | 0.012 ± 0.001 | 0.187 | 0.016 ± 0.001 | 0.178 | 0.012 ± 0.001 | 0.378 | 0.026 ± 0.001 |
Modularity (fast_greedy) | 0.71 | 0.424 ± 0.003 | 0.691 | 0.405 ± 0.002 | 0.724 | 0.401 ± 0.003 | 0.563 | 0.227 ± 0.003 |
R square of power-law | 0.824 | 0.865 | 0.837 | 0.778 | ||||
B-B positive correlation | 792 | 800 | 1229 | 3491 | ||||
B-B negative correlation | 744 | 604 | 525 | 2899 | ||||
F-F positive correlation | 460 | 339 | 405 | 357 | ||||
F-F negative correlation | 1257 | 1336 | 1173 | 727 | ||||
B-F positive correlation | 471 | 578 | 642 | 1924 | ||||
B-F negative correlation | 506 | 616 | 908 | 1607 | ||||
F-B positive correlation | 97 | 76 | - | - | ||||
F-B negative correlation | 96 | 174 | - | - |
Taxon | Partition | Adj.R2 | p-Value | Significant Variables |
---|---|---|---|---|
Bacteria | Soil | 0.488 | 0.005 | –N |
Vegetation | −0.174 | 0.77 | ||
Soil + Vegetation | 0.273 | 0.07 | ||
Soil|Vegetation | 0.447 | 0.018 | AP | |
Vegetation|Soil | −0.214 | 0.941 | ||
Soil ∩ Vegetation | −0.041 | |||
Residuals | 0.727 | |||
Fungi | Soil | 0.177 | 0.011 | TP, NAG |
Vegetation | −0.009 | 0.554 | ||
Soil + Vegetation | 0.198 | 0.018 | ||
Soil|Vegetation | 0.207 | 0.008 | TP, NAG | |
Vegetation|Soil | 0.021 | 0.315 | ||
Soil ∩ Vegetation | −0.03 | |||
Residuals | 0.802 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, G.; Wu, Y.; Chen, W.; Zhao, Z.; Li, Y.; Qiao, L.; Liu, G.; Xue, S. Litter Removal Counteracts the Effects of Warming on Soil Bacterial Communities in the Qinghai–Tibet Plateau. Microorganisms 2024, 12, 2274. https://doi.org/10.3390/microorganisms12112274
Li G, Wu Y, Chen W, Zhao Z, Li Y, Qiao L, Liu G, Xue S. Litter Removal Counteracts the Effects of Warming on Soil Bacterial Communities in the Qinghai–Tibet Plateau. Microorganisms. 2024; 12(11):2274. https://doi.org/10.3390/microorganisms12112274
Chicago/Turabian StyleLi, Guanwen, Yang Wu, Wenjing Chen, Ziwen Zhao, Yuanze Li, Leilei Qiao, Guobin Liu, and Sha Xue. 2024. "Litter Removal Counteracts the Effects of Warming on Soil Bacterial Communities in the Qinghai–Tibet Plateau" Microorganisms 12, no. 11: 2274. https://doi.org/10.3390/microorganisms12112274
APA StyleLi, G., Wu, Y., Chen, W., Zhao, Z., Li, Y., Qiao, L., Liu, G., & Xue, S. (2024). Litter Removal Counteracts the Effects of Warming on Soil Bacterial Communities in the Qinghai–Tibet Plateau. Microorganisms, 12(11), 2274. https://doi.org/10.3390/microorganisms12112274