Effects of Prospective Audit and Feedback in Patients with Extended-Spectrum β-Lactamase-Producing Escherichia coli Bacteremia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Microbiological Analysis
2.3. PAF Intervention
2.4. Clinical Characteristics
2.5. Process Indicators
2.6. Clinical Outcomes
2.7. Statistical Analysis
3. Results
3.1. Patient Characteristics
3.2. Comparison of Process Indicators Between the Pre-PAF and Post-PAF Groups
3.3. Comparison of Clinical Outcomes Between the Pre-PAF and Post-PAF Groups
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Hawkey, P.M.; Livermore, D.M. Prevalence and clonality of extended-spectrum beta-lactamases in Asia. Clin. Microbiol. Infect. 2008, 14, 159–165. [Google Scholar] [CrossRef] [PubMed]
- Cantón, R.; Novais, A.; Machado, E.; Peixe, L.; Baquero, F.; Coque, T.M. Prevalence and spread of extended-spectrum beta-lactamase-producing Enterobacteriaceae in Europe. Clin. Microbiol. Infect. 2008, 14, 144–153. [Google Scholar] [CrossRef] [PubMed]
- Stefani, S.; Campana, S.; Cariani, L.; Carno-va-le, V.; Colombo, C.; Lleo, M.M.; Iula, V.D.; Minicucci, L.; Morelli, P.; Pizzamiglio, G. Relevance of multidrug-resistant Pseudomonas aeruginosa infections in cystic fibrosis. Int. J. Med. Microbiol. 2017, 307, 353–362. [Google Scholar] [CrossRef] [PubMed]
- Murray, C.J.L.; Ikuta, K.S.; Sharara, F.; Swetschinski, L.; Robles Aguilar, G.; Gray, A.; Han, C.; Bisignano, C.; Rao, P.; Wool, E.; et al. Global burden of bacterial antimicrobial resistance in 2019: A systematic analysis. Lancet 2022, 399, 629–655. [Google Scholar] [CrossRef]
- O’Neill, J.I.M. Antimicrobial resistance: Tackling a crisis for the health and wealth of nations. Rev. Antimicrob. Resist. 2014, 20, 1–16. [Google Scholar]
- Piddock, L.J.V. Reflecting on the final report of the O’Neill review on antimicrobial resistance. Lancet Infect. Dis. 2016, 16, 767–768. [Google Scholar] [CrossRef]
- Salgado-Caxito, M.; Benavides, J.A.; Adell, A.D.; Paes, A.C.; Moreno-Switt, A.I. Global prevalence and molecular characterization of extended-spectrum β-lactamase producing Escherichia coli in dogs and cats—A scoping review and meta-analysis. One Health 2021, 12, 100236. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention (CDC). ESBL-Producing Enterobacterales. Available online: https://www.cdc.gov/esbl-producing-enterobacterales/about/index.html (accessed on 11 April 2024).
- Paterson, D.L.; Bonomo, R.A. Extended-spectrum β-lactamases: A clinical update. Clin. Microbiol. Rev. 2005, 18, 657–686. [Google Scholar] [CrossRef]
- Rodríguez-Baño, J.; Alcalá, J.C.; Cisneros, J.M.; Grill, F.; Oliver, A.; Horcajada, J.P.; Tórtola, T.; Mirelis, B.; Navarro, G.; Cuenca, M.; et al. Community infections caused by extended-spectrum beta-lactamase-producing Escherichia coli. JAMA Intern. Med. 2008, 168, 1897–1902. [Google Scholar] [CrossRef]
- Ny, S.; Löfmark, S.; Börjesson, S.; Englund, S.; Ringman, M.; Bergström, J.; Nauclér, P.; Giske, C.G. Community carriage of ESBL-producing Escherichia coli is associated with strains of low pathogenicity: A Swedish nationwide study. J. Antimicrob. Chemother. 2017, 72, 582–588. [Google Scholar] [CrossRef]
- Díaz-Agero Pérez, C.; López-Fresneda, N.; Rincon Carlavilla, A.L.; Hernández García, M.; Ruiz-Garbajosa, P.; Aranaz-Andrés, J.M.; Maechler, F.; Gastmeier, P.; Bonten, M.J.M.; Canton, R. Local prevalence of extended-spectrum beta-lactamase (ESBL) producing Enterobacteriaceae intestinal carriers at admission and co-expression of ESBL and OXA-48 carbapenemase in Klebsiella pneumoniae: A prevalence survey in a Spanish University Hospital. BMJ Open 2019, 9, e024879. [Google Scholar] [CrossRef] [PubMed]
- Kurz, M.S.E.; Bayingana, C.; Ndoli, J.M.; Sendegeya, A.; Durst, A.; Pfüller, R.; Gahutu, J.B.; Mockenhaupt, F.P. Intense pre-admission carriage and further acquisition of ESBL-producing Enterobacteriaceae among patients and their caregivers in a tertiary hospital in Rwanda. Trop. Med. Int. Health 2017, 22, 210–220. [Google Scholar] [CrossRef] [PubMed]
- Haruki, Y.; Hagiya, H.; Haruki, M.; Sugiyama, T. Clinical characteristics and outcome of critically ill patients with bacteremia caused by extended-spectrum beta-lactamase producing and non-producing Escherichia coli. J. Infect. Chemother. 2018, 24, 944–947. [Google Scholar] [CrossRef]
- Lee, C.C.; Wang, J.L.; Lee, C.H.; Hung, Y.P.; Hong, M.Y.; Chang, C.M.; Ko, W.C. Age-related trends in adults with community-onset bacteremia. Antimicrob. Agents Chemother. 2017, 61, e01050-17. [Google Scholar] [CrossRef]
- Maslikowska, J.A.; Walker, S.A.; Elligsen, M.; Mittmann, N.; Palmay, L.; Daneman, N.; Simor, A. Impact of infection with extended-spectrum beta-lactamase-producing Escherichia coli or Klebsiella species on outcome and hospitalization costs. J. Hosp. Infect. 2016, 92, 33–41. [Google Scholar] [CrossRef]
- Cao, H.; Phe, K.; Laine, G.A.; Russo, H.R.; Putney, K.S.; Tam, V.H. An institutional review of antimicrobial stewardship interventions. J. Glob. Antimicrob. Resist. 2016, 6, 75–77. [Google Scholar] [CrossRef]
- Barlam, T.F.; Cosgrove, S.E.; Abbo, L.M.; MacDougall, C.; Schuetz, A.N.; Septimus, E.J.; Srinivasan, A.; Dellit, T.H.; Falck-Ytter, Y.T.; Fishman, N.O.; et al. Executive summary: Implementing an antibiotic stewardship program: Guidelines by the Infectious Diseases Society of America and the Society for Healthcare Epidemiology of America. Clin. Infect. Dis. 2016, 62, 1197–1202. [Google Scholar] [CrossRef]
- Barlam, T.F.; Cosgrove, S.E.; Abbo, L.M.; MacDougall, C.; Schuetz, A.N.; Septimus, E.J.; Srinivasan, A.; Dellit, T.H.; Falck-Ytter, Y.T.; Fishman, N.O.; et al. Implementing an antibiotic stewardship program: Guidelines by the Infectious Diseases Society of America and the Society for Healthcare Epidemiology of America. Clin. Infect. Dis. 2016, 62, e51–e77. [Google Scholar] [CrossRef]
- Joint Committee for the Promotion of Appropriate Use of Antimicrobials by Eight Academic Societies. Guidance for implementing an antimicrobial stewardship program in Japan. Jpn. J. Chemother. 2017, 65, 650–687. [Google Scholar]
- Shinoda, Y.; Ohashi, K.; Matsuoka, T.; Arai, K.; Hotta, N.; Asano, I.; Yoshimura, T. Impact of continuous pharmacist intervention for injectable antimicrobials on the treatment of patients with Escherichia coli bacteremia. Am. J. Infect. Control 2022, 50, 1150–1155. [Google Scholar] [CrossRef]
- Yamaguchi, R.; Yamamoto, T.; Okamoto, K.; Tatsuno, K.; Ikeda, M.; Tanaka, T.; Wakabayashi, Y.; Sato, T.; Okugawa, S.; Moriya, K.; et al. Prospective audit and feedback implementation by a multidisciplinary antimicrobial stewardship team shortens the time to de-escalation of anti-MRSA agents. PLoS ONE 2022, 17, e0271812. [Google Scholar] [CrossRef] [PubMed]
- Charlson, M.E.; Pompei, P.; Ales, K.L.; MacKenzie, C.R. A new method of classifying prognostic comorbidity in longitudinal studies: Development and validation. J. Chronic Dis. 1987, 40, 373–383. [Google Scholar] [CrossRef] [PubMed]
- Feldman, C.; Alanee, S.; Yu, V.L.; Richards, G.A.; Ortqvist, A.; Rello, J.; Chiou, C.C.C.; Chedid, M.B.F.; Wagener, M.M.; Klugman, K.P.; et al. Severity of illness scoring systems in patients with bacteraemic pneumococcal pneumonia: Implications for the intensive care unit care. Clin. Microbiol. Infect. 2009, 15, 850–857. [Google Scholar] [CrossRef] [PubMed]
- Chow, J.W.; Yu, V.L. Combination antibiotic therapy versus monotherapy for gram-negative bacteraemia: A commentary. Int. J. Antimicrob. Agents 1999, 11, 7–12. [Google Scholar] [CrossRef] [PubMed]
- Tagashira, Y.; Horiuchi, M.; Tokuda, Y.; Heist, B.S.; Higuchi, M.; Honda, H. Antimicrobial stewardship for carbapenem use at a Japanese tertiary care center: An interrupted time series analysis on the impact of infectious disease consultation, prospective audit, and feedback. Am. J. Infect. Control. 2016, 44, 708–710. [Google Scholar] [CrossRef]
- Matono, T.; Umeda, Y.; Uchida, M.; Koga, H.; Kanatani, N.; Furuno, Y.; Yamashita, T.; Nakamura, K. Impact of an infectious disease physician-led carbapenem postprescription feedback on prescribing behavior in a Japanese tertiary hospital: A before-after study. J. Infect. Chemother. 2021, 27, 439–444. [Google Scholar] [CrossRef]
- Elligsen, M.; Walker, S.A.N.; Pinto, R.; Simor, A.; Mubareka, S.; Rachlis, A.; Allen, V.; Daneman, N. Audit and feedback to reduce broad-spectrum antibiotic use among intensive care unit patients: A controlled interrupted time series analysis. Infect. Control Hosp. Epidemiol. 2012, 33, 354–361. [Google Scholar] [CrossRef]
- Pitout, J.D.D.; Laupland, K.B. Extended-spectrum beta-lactamase-producing Enterobacteriaceae: An emerging public-health concern. Lancet Infect. Dis. 2008, 8, 159–166. [Google Scholar] [CrossRef]
- Aoto, K.; Inose, R.; Kosaka, T.; Shikata, K.; Muraki, Y. Comparative effectiveness of cefmetazole versus carbapenems and piperacillin/tazobactam as initial therapy for bacteremic acute cholangitis: A retrospective study. J. Infect. Chemother. 2024, 30, 213–218. [Google Scholar] [CrossRef]
- Takesue, Y.; Kusachi, S.; Mikamo, H.; Sato, J.; Watanabe, A.; Kiyota, H.; Iwata, S.; Kaku, M.; Hanaki, H.; Sumiyama, Y.; et al. Antimicrobial susceptibility of common pathogens isolated from postoperative intra-abdominal infections in Japan. J. Infect. Chemother. 2018, 24, 330–340. [Google Scholar] [CrossRef]
- Miyazaki, M.; Yamada, Y.; Matsuo, K.; Komiya, Y.; Uchiyama, M.; Nagata, N.; Takata, T.; Jimi, S.; Imakyure, O. Change in the antimicrobial resistance profile of extended-spectrum β-lactamase-producing Escherichia coli. Clin. Med. Res. 2019, 11, 635–641. [Google Scholar] [CrossRef] [PubMed]
- Nakakura, I.; Imanishi, K.; Hirota, K.; Tsubokura, M.; Uehira, A.; Miyabe, T.; Sakou, R.; Yamauchi, K. Antimicrobial treatment duration and outcomes in patients with bacteremia caused by extended-spectrum β-lactamase-producing Gram-negative bacteria: A single-center retrospective study. Jpn. J. Chemother. 2020, 68, 539–546. [Google Scholar]
- Giannella, M.; Pascale, R.; Toschi, A.; Ferraro, G.; Graziano, E.; Furii, F.; Bartoletti, M.; Tedeschi, S.; Ambretti, S.; Lewis, R.E.; et al. Treatment duration for Escherichia coli bloodstream infection and outcomes: Retrospective single-center study. Clin. Microbiol. Infect. 2018, 24, 1077–1083. [Google Scholar] [CrossRef] [PubMed]
- Chotiprasitsakul, D.; Han, J.H.; Cosgrove, S.E.; Harris, A.D.; Lautenbach, E.; Conley, A.T.; Tolomeo, P.; Wise, J.; Tamma, P.D.; Antibacterial Resistance Leadership Group. Comparing the outcomes of adults with Enterobacteriaceae bacteremia receiving short-course versus prolonged-course antibiotic therapy in a multicenter, propensity score–matched cohort. Clin. Infect. Dis. 2018, 66, 172–177. [Google Scholar] [CrossRef]
- Tagashira, Y.; Sakamoto, N.; Isogai, T.; Hikone, M.; Kosaka, A.; Chino, R.; Higuchi, M.; Uehara, Y.; Honda, H. Impact of inadequate initial antimicrobial therapy on mortality in patients with bacteraemic cholangitis: A retrospective cohort study. Clin. Microbiol. Infect. 2017, 23, 740–747. [Google Scholar] [CrossRef]
- Jensen, U.S.; Knudsen, J.D.; Ostergaard, C.; Gradel, K.O.; Frimodt-Møller, N.; Schønheyder, H.C. Recurrent bacteraemia: A 10-year regional population-based study of clinical and microbiological risk factors. J. Infect. 2010, 60, 191–199. [Google Scholar] [CrossRef]
- Jensen, U.S.; Knudsen, J.D.; Wehberg, S.; Gregson, D.B.; Laupland, K.B. Risk factors for recurrence and death after bacteraemia: A population-based study. Clin. Microbiol. Infect. 2011, 17, 1148–1154. [Google Scholar] [CrossRef]
- Chong, Y.; Yakushiji, H.; Ito, Y.; Kamimura, T. Clinical and molecular epidemiology of extended-spectrum β-lactamase-producing Escherichia coli and Klebsiella pneumoniae in a long-term study from Japan. Eur. J. Clin. Microbiol. Infect. Dis. 2011, 30, 83–87. [Google Scholar] [CrossRef]
- Akine, D.; Sasahara, T.; Kiga, K.; Ae, R.; Kosami, K.; Yoshimura, A.; Kubota, Y.; Sasaki, K.; Kimura, Y.; Ogawa, M.; et al. Distribution of extended-spectrum beta-lactamase genes and antimicrobial susceptibility among residents in geriatric long-term care facilities in Japan. Antibiotics 2021, 11, 36. [Google Scholar] [CrossRef]
- Hamada, Y.; Matsumura, Y.; Nagashima, M.; Akazawa, T.; Doi, Y.; Hayakawa, K. Retrospective evaluation of appropriate dosing of cefmetazole for invasive urinary tract infection due to extended-spectrum beta-lactamase-producing Escherichia coli. J. Infect. Chemother. 2021, 27, 1602–1606. [Google Scholar] [CrossRef]
Variables | Pre-PAF Group (n = 31) | Post-PAF Group (n = 31) | p Value | |
---|---|---|---|---|
Age, years a | 84 (79–90) | 84 (77–89) | 0.92 | |
Male sex | 12 (38.7) | 16 (51.6) | 0.31 | |
History of catheter insertion | 19 (61.3) | 21 (67.7) | 0.60 | |
Use of anticancer and immunosuppressive agents | 4 (12.9) | 7 (22.6) | 0.51 | |
Surgical history | 9 (29.0) | 7 (22.6) | 0.56 | |
Pitt bacteremia score a | 1 (0–4) | 2 (0–2) | 0.61 | |
Pitt bacteremia score ≥ 2 | 14 (45.2) | 18 (58.1) | 0.30 | |
Charlson comorbidity index a | 3 (2–5) | 2 (1–4) | 0.40 | |
Charlson comorbidity index ≥ 3 | 19 (61.3) | 14 (45.2) | 0.20 | |
White blood cell counts, /µL a | 9400 (4200–13,300) | 10,500 (6300–13,400) | 0.42 | |
C-reactive protein, mg/dL a | 9.3 (4.7–13.7) | 11.1 (5.8–20.4) | 0.20 | |
Creatinine, mg/dL a | 1.06 (0.66–1.57) | 0.96 (0.67–1.52) | 0.98 | |
Detection of multiple bacteria in blood culture | 4 (12.9) | 3 (9.7) | 1.00 | |
Sources of bacteremia | 0.59 | |||
Urinary tract infection | 15 (48.4) | 18 (58.1) | ||
Biliary tract infection | 10 (32.2) | 8 (25.8) | ||
Respiratory tract infection | 4 (12.9) | 3 (9.7) | ||
Catheter-related bloodstream infection | 1 (3.2) | 0 (0) | ||
Skin and soft tissue infection | 1 (3.2) | 0 (0) | ||
Pancreatic infection | 0 (0) | 1 (3.2) | ||
Unknown | 0 (0) | 1 (3.2) | ||
Initial treatment with antibiotics | 0.58 | |||
Sulbactam/cefoperazone | 8 (25.8) | 7 (22.6) | ||
Ceftriaxone | 8 (25.8) | 7 (22.6) | ||
Meropenem | 6 (19.4) | 9 (29.0) | ||
Tazobactam/piperacillin | 2 (6.5) | 4 (12.9) | ||
Cefmetazole | 2 (6.5) | 3 (9.7) | ||
Cefotiam | 1 (3.2) | 1 (3.2) | ||
Sulbactam/ampicillin | 2 (6.5) | 0 (0) | ||
Biapenem | 2 (6.5) | 0 (0) | ||
Initial treatment with carbapenem | 8 (25.8) | 9 (29.0) | 0.78 |
Variables | Pre-PAF Group (n = 31) | Post-PAF Group (n = 31) | p Value |
---|---|---|---|
Blood culture identification 2 panel | 0 (0) | 22 (71.0) | <0.0001 |
Number of days from blood culture submission to a positive blood culture result a | 1 (1–3) | 1 (1–2) | 0.74 |
De-escalation from broad-spectrum antibiotics to cefmetazole | 11 (35.4) | 25 (80.7) | 0.0003 |
Length of treatment with antibiotics, days a | 11 (7–16) | 12 (8–16) | 0.55 |
Length of treatment with broad-spectrum antibiotics, days a | 7 (3–12.5) | 5 (2–8) | 0.29 |
Switching from intravenous to oral antibiotics | 3 (9.7) | 2 (6.5) | 1.00 |
Variables | Pre-PAF Group (n = 31) | Post-PAF Group (n = 31) | p Value |
---|---|---|---|
Length of hospital stay, days a | 13 (10–22) | 15 (11–22) | 0.51 |
Treatment failure | 12 (38.7) | 4 (12.9) | 0.04 |
30-day mortality | 5 (16.1) | 1 (3.2) | 0.19 |
Relapse of infections | 7 (22.6) | 3 (9.7) | 0.3 |
Variables | No Treatment Failure (n = 46) | Treatment Failure (n = 16) | p Value | Multivariate Analysis | p Value | ||
---|---|---|---|---|---|---|---|
OR | 95% CI | ||||||
Age, years a | 83.5 (76.8–89) | 87 (80–92.5) | 0.16 | — | — | — | |
Male sex | 23 (50.0) | 5 (31.3) | 0.19 | — | — | — | |
History of catheter insertion | 31 (67.4) | 9 (56.3) | 0.42 | — | — | — | |
Use of anticancer and immunosuppressive agents | 8 (17.4) | 3 (18.8) | 1.00 | — | — | — | |
Surgical history | 10 (21.7) | 6 (37.5) | 0.21 | — | — | — | |
Pitt bacteremia score a | 1 (0–2) | 2.5 (0.3–6.8) | 0.11 | — | — | — | |
Pitt bacteremia score ≥ 2 | 22 (47.8) | 10 (62.5) | 0.31 | — | — | — | |
Charlson comorbidity index, median a | 3 (2–4) | 2 (1–5.8) | 0.73 | — | — | — | |
Charlson comorbidity in-dex ≥ 3 | 26 (56.5) | 7 (43.8) | 0.37 | — | — | — | |
White blood cell counts, /µL a | 10,500 (5875–13,300) | 9750 (6225–17,200) | 0.89 | — | — | — | |
C-reactive protein, mg/dL a | 11 (5.2–17.1) | 8.4 (3–16.2) | 0.38 | — | — | — | |
Creatinine, mg/dL a | 1 (0.65–1.49) | 1.2 (0.79–1.62) | 0.77 | — | — | — | |
Detection of multiple bacteria in blood cultures | 4 (8.7) | 3 (18.8) | 0.36 | — | — | — | |
Sources of bacteremia | 0.54 | — | — | — | |||
Urinary tract infection | 25 (54.4) | 8 (50.0) | — | — | — | ||
Biliary tract infection | 12 (26.1) | 6 (37.5) | — | — | — | ||
Respiratory tract infection | 6 (13.0) | 1 (6.3) | — | — | — | ||
Catheter-related bloodstream infection | 0 (0) | 1 (6.3) | — | — | — | ||
Skin and soft tissue infection | 1 (2.2) | 0 (0) | — | — | — | ||
Pancreatic infection | 1 (2.2) | 0 (0) | — | — | — | ||
Unknown | 1 (2.2) | 0 (0) | — | — | — | ||
Initial treatment with antibiotics | 0.54 | — | — | — | |||
Sulbactam/cefoperazone | 12 (26.1) | 3 (18.8) | — | — | — | ||
Ceftriaxone | 12 (26.1) | 3 (18.8) | — | — | — | ||
Meropenem | 9 (19.6) | 6 (37.5) | — | — | — | ||
Tazobactam/piperacillin | 5 (10.9) | 1 (6.3) | — | — | — | ||
Cefmetazole | 5 (10.9) | 0 (0) | — | — | — | ||
Cefotiam | 1 (2.2) | 1 (6.3) | — | — | — | ||
Sulbactam/ampicillin | 1 (2.2) | 1 (6.3) | — | — | — | ||
Biapenem | 1 (2.2) | 1 (6.3) | — | — | — | ||
Initial treatment with carbapenem | 10 (21.7) | 7 (43.8) | 0.089 | 3.4 | 0.9–12.8 | 0.068 | |
Prospective audit and feedback | 27 (58.7) | 4 (25.0) | 0.04 | 0.2 | 0.05–0.78 | 0.02 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yamada, Y.; Miyazaki, M.; Kushima, H.; Hirata, H.; Ogawa, A.; Komiya, Y.; Hagiwara, C.; Nakashima, A.; Ishii, H.; Imakyure, O. Effects of Prospective Audit and Feedback in Patients with Extended-Spectrum β-Lactamase-Producing Escherichia coli Bacteremia. Microorganisms 2024, 12, 2275. https://doi.org/10.3390/microorganisms12112275
Yamada Y, Miyazaki M, Kushima H, Hirata H, Ogawa A, Komiya Y, Hagiwara C, Nakashima A, Ishii H, Imakyure O. Effects of Prospective Audit and Feedback in Patients with Extended-Spectrum β-Lactamase-Producing Escherichia coli Bacteremia. Microorganisms. 2024; 12(11):2275. https://doi.org/10.3390/microorganisms12112275
Chicago/Turabian StyleYamada, Yota, Motoyasu Miyazaki, Hisako Kushima, Hitomi Hirata, Arata Ogawa, Yukie Komiya, Chika Hagiwara, Akio Nakashima, Hiroshi Ishii, and Osamu Imakyure. 2024. "Effects of Prospective Audit and Feedback in Patients with Extended-Spectrum β-Lactamase-Producing Escherichia coli Bacteremia" Microorganisms 12, no. 11: 2275. https://doi.org/10.3390/microorganisms12112275
APA StyleYamada, Y., Miyazaki, M., Kushima, H., Hirata, H., Ogawa, A., Komiya, Y., Hagiwara, C., Nakashima, A., Ishii, H., & Imakyure, O. (2024). Effects of Prospective Audit and Feedback in Patients with Extended-Spectrum β-Lactamase-Producing Escherichia coli Bacteremia. Microorganisms, 12(11), 2275. https://doi.org/10.3390/microorganisms12112275