Investigation of Antibiotic Resistance of E. coli Associated with Farm Animal Feces with Participation of Citizen Scientists
Abstract
:1. Introduction
2. Materials and Methods
2.1. Citizen Science Recruitment and Mentor Training
- To organize and supervise the research team for sample collection and investigation;
- To be familiar with the techniques of collecting, describing, storing, and transporting specimens according to research areas;
- To organize the transfer of samples to V. M. Gorbatov Federal Research Center for Food Systems;
- To organize the educational process based on the research activities of the program participants, to analyze the results with the participants, and to record the results under the requirements of educational institutions.
2.2. Sample Collection and Reagents
- Sample transportation medium;
- Sample description questionnaire (species, age of the animal, life history of the animal, medication intake, farm coordinates, etc.);
- Sample collection instructions.
2.3. Molecular Analysis of Samples
2.4. Microbiological Analysis of Samples
2.5. Analysis of Data Collected by Citizen Scientists
2.6. Statistical Analysis
3. Results
3.1. Sample Collection and Analysis
3.2. Molecular Analysis
3.3. Microbiological Analysis
4. Discussion
- (1)
- We used simple, standardized methods for all participants.
- (2)
- Positive and negative control samples were developed and submitted to the mentors. These controls provided for all of the methods indicated that the analysis was correct.
- (3)
- We invited mentors: university and college teachers who worked with citizen scientists and monitored the quality of the work performed.
- (4)
- Quality control and confirmation of the work performed by qualified scientists were carried out at every stage.
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Alexander, J.; Hembach, N.; Schwartz, T. Evaluation of Antibiotic Resistance Dissemination by Wastewater Treatment Plant Effluents with Different Catchment Areas in Germany. Sci. Rep. 2020, 10, 8952. [Google Scholar] [CrossRef] [PubMed]
- Templar, H.A.; Dila, D.K.; Bootsma, M.J.; Corsi, S.R.; McLellan, S.L. Quantification of Human-Associated Fecal Indicators Reveal Sewage from Urban Watersheds as a Source of Pollution to Lake Michigan. Water Res. 2016, 100, 556–567. [Google Scholar] [CrossRef] [PubMed]
- Schwarz, S.; Loeffler, A.; Kadlec, K. Bacterial Resistance to Antimicrobial Agents and Its Impact on Veterinary and Human Medicine. Vet. Dermatol. 2017, 28, 82. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Gu, J.; Wang, X.; Song, Z.; Dai, X.; Guo, H.; Yu, J.; Zhao, W.; Lei, L. Enhanced Removal of Antibiotic Resistance Genes and Mobile Genetic Elements During Swine Manure Composting Inoculated with Mature Compost. J. Hazard. Mater. 2021, 411, 125135. [Google Scholar] [CrossRef]
- Ezzariai, A.; Hafidi, M.; Khadra, A.; Aemig, Q.; El Fels, L.; Barret, M.; Merlina, G.; Patureau, D.; Pinelli, E. Human and Veterinary Antibiotics during Composting of Sludge or Manure: Global Perspectives on Persistence, Degradation, and Resistance Genes. J. Hazard. Mater. 2018, 359, 465–481. [Google Scholar] [CrossRef]
- Van Boeckel, T.P.; Brower, C.; Gilbert, M.; Grenfell, B.T.; Levin, S.A.; Robinson, T.P.; Teillant, A.; Laxminarayan, R. Global Trends in Antimicrobial Use in Food Animals. Proc. Natl. Acad. Sci. USA 2015, 112, 5649–5654. [Google Scholar] [CrossRef]
- Maron, D.F.; Smith, T.J.; Nachman, K.E. Restrictions on Antimicrobial Use in Food Animal Production: An International Regulatory and Economic Survey. Glob. Health 2013, 9, 48. [Google Scholar] [CrossRef]
- Makarov, D.A.; Ivanova, O.E.; Karabanov, S.Y.; Gergel, M.A.; Pomazkova, A.V. Antimicrobial Resistance of Commensal Escherichia coli from Food-Producing Animals in Russia. Vet. World 2020, 13, 2053–2061. [Google Scholar] [CrossRef] [PubMed]
- Ivanova, O.E.; Panin, A.N.; Karabanov, S.Y.; Makarov, D.A.; Ahmetzyanova, A.A.; Gergel, M.A. Veterinary Monitoring of Antimicrobial Resistance in the Russian Federation. Agrar. Sci. 2021, 4S, 7–11. [Google Scholar] [CrossRef]
- White, D.G.; Hudson, C.; Maurer, J.J.; Ayers, S.; Zhao, S.; Lee, M.D.; Bolton, L.; Foley, T.; Sherwood, J. Characterization of Chloramphenicol and Florfenicol Resistance in Escherichia Coli Associated with Bovine Diarrhea. J. Clin. Microbiol. 2000, 38, 4593–4598. [Google Scholar] [CrossRef]
- Tadesse, D.A.; Zhao, S.; Tong, E.; Ayers, S.; Singh, A.; Bartholomew, M.J.; McDermott, P.F. Antimicrobial Drug Resistance in Escherichia coli from Humans and Food Animals, United States, 1950–2002. Emerg. Infect. Dis. 2012, 18, 741–749. [Google Scholar] [CrossRef] [PubMed]
- Lundin, J.I.; Dargatz, D.A.; Wagner, B.A.; Lombard, J.E.; Hill, A.E.; Ladely, S.R.; Fedorka-Cray, P.J. Antimicrobial Drug Resistance of Fecal Escherichia coli and Salmonella spp. Isolates from United States Dairy Cows. Foodborne Pathog. Dis. 2008, 5, 7–19. [Google Scholar] [CrossRef]
- Carrique-Mas, J.J.; Trung, N.V.; Hoa, N.T.; Mai, H.H.; Thanh, T.H.; Campbell, J.I.; Wagenaar, J.A.; Hardon, A.; Hieu, T.Q.; Schultsz, C. Antimicrobial Usage in Chicken Production in the Mekong Delta of Vietnam. Zoonoses Public Health 2015, 62, 70–78. [Google Scholar] [CrossRef] [PubMed]
- Duse, A.; Waller, K.P.; Emanuelson, U.; Unnerstad, H.E.; Persson, Y.; Bengtsson, B. Risk Factors for Antimicrobial Resistance in Fecal Escherichia coli from Preweaned Dairy Calves. J. Dairy Sci. 2015, 98, 500–516. [Google Scholar] [CrossRef] [PubMed]
- Catry, B.; Cavaleri, M.; Baptiste, K.; Grave, K.; Grein, K.; Holm, A.; Jukes, H.; Liebana, E.; Navas, A.L.; Mackay, D.; et al. Use of Colistin-Containing Products within the European Union and European Economic Area (EU/EEA): Development of Resistance in Animals and Possible Impact on Human and Animal Health. Int. J. Antimicrob. Agents 2015, 46, 297–306. [Google Scholar] [CrossRef]
- Rhouma, M.; Beaudry, F.; Thériault, W.; Letellier, A. Colistin in Pig Production: Chemistry, Mechanism of Antibacterial Action, Microbial Resistance Emergence, and One Health Perspectives. Front. Microbiol. 2016, 7, 1789. [Google Scholar] [CrossRef]
- Liu, Y.-Y.; Wang, Y.; Walsh, T.R.; Yi, L.-X.; Zhang, R.; Spencer, J.; Doi, Y.; Tian, G.; Dong, B.; Huang, X.; et al. Emergence of Plasmid-Mediated Colistin Resistance Mechanism MCR-1 in Animals and Human Beings in China: A Microbiological and Molecular Biological Study. Lancet Infect. Dis. 2016, 16, 161–168. [Google Scholar] [CrossRef]
- Rebelo, A.R.; Bortolaia, V.; Kjeldgaard, J.S.; Pedersen, S.K.; Leekitcharoenphon, P.; Hansen, I.M.; Guerra, B.; Malorny, B.; Borowiak, M.; Hammerl, J.A.; et al. Multiplex PCR for Detection of Plasmid-Mediated Colistin Resistance Determinants, Mcr-1, Mcr-2, Mcr-3, Mcr-4 and Mcr-5 for Surveillance Purposes. Eurosurveillance 2018, 23, 17-00672. [Google Scholar] [CrossRef]
- Park, J.Y.; Heo, S.T.; Kwon, K.T.; Song, D.Y.; Lee, K.J.; Choi, J.A. MCR1 and KPC2 Co-Producing Klebsiella pneumoniae Bacteremia: First Case in Korea. Infect. Chemother. 2019, 51, 399. [Google Scholar] [CrossRef]
- Feng, Y. Transferability of MCR-1/2 Polymyxin Resistance: Complex Dissemination and Genetic Mechanism. ACS Infect. Dis. 2018, 4, 291–300. [Google Scholar] [CrossRef]
- Xavier, B.B.; Lammens, C.; Ruhal, R.; Kumar-Singh, S.; Butaye, P.; Goossens, H.; Malhotra-Kumar, S. Identification of a Novel Plasmid-Mediated Colistin-Resistance Gene, Mcr-2, in Escherichia coli, Belgium, June 2016. Eurosurveillance 2016, 21, 30280. [Google Scholar] [CrossRef] [PubMed]
- Yin, W.; Li, H.; Shen, Y.; Liu, Z.; Wang, S.; Shen, Z.; Zhang, R.; Walsh, T.R.; Shen, J.; Wang, Y. Novel Plasmid-Mediated Colistin Resistance Gene Mcr-3 in Escherichia coli. MBio 2017, 8, e00543-17. [Google Scholar] [CrossRef] [PubMed]
- Carattoli, A.; Villa, L.; Feudi, C.; Curcio, L.; Orsini, S.; Luppi, A.; Pezzotti, G.; Magistrali, C.F. Novel Plasmid-Mediated Colistin Resistance Mcr-4 Gene in Salmonella and Escherichia coli, Italy 2013, Spain and Belgium, 2015 to 2016. Eurosurveillance 2017, 22, 30589. [Google Scholar] [CrossRef]
- Borowiak, M.; Fischer, J.; Hammerl, J.A.; Hendriksen, R.S.; Szabo, I.; Malorny, B. Identification of a Novel Transposon-Associated Phosphoethanolamine Transferase Gene, Mcr-5, Conferring Colistin Resistance in d-Tartrate Fermenting Salmonella enterica subsp. Enterica Serovar Paratyphi B. J. Antimicrob. Chemother. 2017, 72, 3317–3324. [Google Scholar] [CrossRef]
- Skov, R.L.; Monnet, D.L. Plasmid-Mediated Colistin Resistance (Mcr-1 Gene): Three Months Later, the Story Unfolds. Eurosurveillance 2016, 21, 30155. [Google Scholar] [CrossRef]
- Carretto, E.; Brovarone, F.; Nardini, P.; Russello, G.; Barbarini, D.; Pongolini, S.; Gagliotti, C.; Carattoli, A.; Sarti, M. Detection of Mcr-4 Positive Salmonella Enterica Serovar Typhimurium in Clinical Isolates of Human Origin, Italy, October to November 2016. Eurosurveillance 2018, 23, 17-00821. [Google Scholar] [CrossRef] [PubMed]
- Kluytmans, J. Plasmid-Encoded Colistin Resistance: Mcr-One, Two, Three and Counting. Eurosurveillance 2017, 22, 30588. [Google Scholar] [CrossRef]
- Arthur, M.; Reynolds, P.; Courvalin, P. Glycopeptide Resistance in Enterococci. Trends Microbiol. 1996, 4, 401–407. [Google Scholar] [CrossRef] [PubMed]
- Humphreys, H. Controlling the Spread of Vancomycin-Resistant Enterococci. Is Active Screening Worthwhile? J. Hosp. Infect. 2014, 88, 191–198. [Google Scholar] [CrossRef]
- Hiramatsu, K. Methicillin-Resistant Staphylococcus Aureus Clinical Strain with Reduced Vancomycin Susceptibility. J. Antimicrob. Chemother. 1997, 40, 135–136. [Google Scholar] [CrossRef]
- Howden, B.P.; Davies, J.K.; Johnson, P.D.R.; Stinear, T.P.; Grayson, M.L. Reduced Vancomycin Susceptibility in Staphylococcus Aureus, Including Vancomycin-Intermediate and Heterogeneous Vancomycin-Intermediate Strains: Resistance Mechanisms, Laboratory Detection, and Clinical Implications. Clin. Microbiol. Rev. 2010, 23, 99–139. [Google Scholar] [CrossRef] [PubMed]
- Bourdon, N.; Bérenger, R.; Lepoultier, R.; Mouet, A.; Lesteven, C.; Borgey, F.; Fines-Guyon, M.; Leclercq, R.; Cattoir, V. Rapid Detection of Vancomycin-Resistant Enterococci from Rectal Swabs by the Cepheid Xpert VanA/VanB Assay. Diagn. Microbiol. Infect. Dis. 2010, 67, 291–293. [Google Scholar] [CrossRef]
- Babady, N.E.; Gilhuley, K.; Cianciminio-Bordelon, D.; Tang, Y.-W. Performance Characteristics of the Cepheid Xpert VanA Assay for Rapid Identification of Patients at High Risk for Carriage of Vancomycin-Resistant Enterococci. J. Clin. Microbiol. 2012, 50, 3659–3663. [Google Scholar] [CrossRef]
- Zhou, X.; Arends, J.P.; Kampinga, G.A.; Ahmad, H.M.; Dijkhuizen, B.; van Barneveld, P.; Rossen, J.W.A.; Friedrich, A.W. Evaluation of the Xpert VanA / VanB Assay Using Enriched Inoculated Broths for Direct Detection of VanB Vancomycin-Resistant Enterococci. J. Clin. Microbiol. 2014, 52, 4293–4297. [Google Scholar] [CrossRef]
- Both, A.; Berneking, L.; Berinson, B.; Lütgehetmann, M.; Christner, M.; Aepfelbacher, M.; Rohde, H. Rapid Identification of the VanA/VanB Resistance Determinant in Enterococcus sp. from Blood Cultures Using the Cepheid Xpert VanA/VanB Cartridge System. Diagn. Microbiol. Infect. Dis. 2020, 96, 114977. [Google Scholar] [CrossRef] [PubMed]
- Kreidl, P.; Mayr, A.; Hinterberger, G.; Berktold, M.; Knabl, L.; Fuchs, S.; Posch, W.; Eschertzhuber, S.; Obwegeser, A.; Lass-Flörl, C.; et al. Outbreak Report: A Nosocomial Outbreak of Vancomycin Resistant Enterococci in a Solid Organ Transplant Unit. Antimicrob. Resist. Infect. Control 2018, 7, 86. [Google Scholar] [CrossRef] [PubMed]
- Holzknecht, B.J.; Hansen, D.S.; Nielsen, L.; Kailow, A.; Jarløv, J.O. Screening for Vancomycin-Resistant Enterococci with Xpert® VanA/VanB: Diagnostic Accuracy and Impact on Infection Control Decision Making. New Microbes New Infect. 2017, 16, 54–59. [Google Scholar] [CrossRef]
- He, Y.-H.; Ruan, G.-J.; Hao, H.; Xue, F.; Ma, Y.-K.; Zhu, S.-N.; Zheng, B. Real-Time PCR for the Rapid Detection of VanA, VanB and VanM Genes. J. Microbiol. Immunol. Infect. 2020, 53, 746–750. [Google Scholar] [CrossRef]
- Ilbeigi, K.; Askari Badouei, M.; Vaezi, H.; Zaheri, H.; Aghasharif, S.; Kafshdouzan, K. Molecular Survey of Mcr1 and Mcr2 Plasmid Mediated Colistin Resistance Genes in Escherichia coli Isolates of Animal Origin in Iran. BMC Res. Notes 2021, 14, 107. [Google Scholar] [CrossRef]
- Petersen, L.R.; Jamieson, D.J.; Powers, A.M.; Honein, M.A. Zika Virus. N. Engl. J. Med. 2016, 374, 1552–1563. [Google Scholar] [CrossRef]
- Tarter, K.D.; Levy, C.E.; Yaglom, H.D.; Adams, L.E.; Plante, L.; Casal, M.G.; Gouge, D.H.; Rathman, R.; Stokka, D.; Weiss, J.; et al. Using Citizen Science to Enhance Surveillance of Aedes Aegypti in Arizona, 2015–2017. J. Am. Mosq. Control Assoc. 2019, 35, 11–18. [Google Scholar] [CrossRef] [PubMed]
- Roche, J.; Bell, L.; Galvão, C.; Golumbic, Y.N.; Kloetzer, L.; Knoben, N.; Laakso, M.; Lorke, J.; Mannion, G.; Massetti, L.; et al. Citizen Science, Education, and Learning: Challenges and Opportunities. Front. Sociol. 2020, 5, 613814. [Google Scholar] [CrossRef] [PubMed]
- Tello, M.; Ocejo, M.; Oporto, B.; Hurtado, A. Prevalence of Cefotaxime-Resistant Escherichia coli Isolates from Healthy Cattle and Sheep in Northern Spain: Phenotypic and Genome-Based Characterization of Antimicrobial Susceptibility. Appl. Environ. Microbiol. 2020, 86, e00742-20. [Google Scholar] [CrossRef]
- Jalil, A.; Gul, S.; Bhatti, M.F.; Siddiqui, M.F.; Adnan, F. High Occurrence of Multidrug-Resistant Escherichia Coli Strains in Bovine Fecal Samples from Healthy Cows Serves as Rich Reservoir for AMR Transmission. Antibiotics 2022, 12, 37. [Google Scholar] [CrossRef] [PubMed]
- Sabença, C.; Romero-Rivera, M.; Barbero-Herranz, R.; Sargo, R.; Sousa, L.; Silva, F.; Lopes, F.; Abrantes, A.C.; Vieira-Pinto, M.; Torres, C.; et al. Molecular Characterization of Multidrug-Resistant Escherichia coli from Fecal Samples of Wild Animals. Vet. Sci. 2024, 11, 469. [Google Scholar] [CrossRef]
- Eltai, N.O.; Yassine, H.M.; El-Obeid, T.; Al-Hadidi, S.H.; Al Thani, A.A.; Alali, W.Q. Prevalence of Antibiotic-Resistant Escherichia Coli Isolates from Local and Imported Retail Chicken Carcasses. J. Food Prot. 2020, 83, 2200–2208. [Google Scholar] [CrossRef]
- Mikhayel, M.; Leclercq, S.O.; Sarkis, D.K.; Doublet, B. Occurrence of the Colistin Resistance Gene Mcr-1 and Additional Antibiotic Resistance Genes in ESBL/AmpC-Producing Escherichia coli from Poultry in Lebanon: A Nationwide Survey. Microbiol. Spectr. 2021, 9, e0002521. [Google Scholar] [CrossRef]
- Yu, A.C.S.; Loo, J.F.C.; Yu, S.; Kong, S.K.; Chan, T.-F. Monitoring Bacterial Growth Using Tunable Resistive Pulse Sensing with a Pore-Based Technique. Appl. Microbiol. Biotechnol. 2014, 98, 855–862. [Google Scholar] [CrossRef]
- Kubitschek, H.E. Cell Volume Increase in Escherichia Coli after Shifts to Richer Media. J. Bacteriol. 1990, 172, 94–101. [Google Scholar] [CrossRef]
- Basavaraju, M.; Gunashree, B.S. Escherichia coli: An Overview of Main Characteristics. In Escherichia coli—Old and New Insights; IntechOpen: London, UK, 2023. [Google Scholar]
- Yildirim, K.; Atas, C.; Simsek, E.; Coban, A.Y. The Effect of Inoculum Size on Antimicrobial Susceptibility Testing of Mycobacterium tuberculosis. Microbiol. Spectr. 2023, 11, e0031923. [Google Scholar] [CrossRef]
- Sever, E.A.; Aybakan, E.; Beşli, Y.; Karatuna, O.; Kocagoz, T. A Novel Rapid Bioluminescence-Based Antimicrobial Susceptibility Testing Method Based on Adenosine Triphosphate Consumption. Front. Microbiol. 2024, 15, 1357680. [Google Scholar] [CrossRef] [PubMed]
- CLSI M100-Ed34; Performance Standards for Antimicrobial Susceptibility Testing. CLSI: Wayne, PA, USA, 2024.
- Humphries, R.M.; Abbott, A.N.; Hindler, J.A. Understanding and Addressing CLSI Breakpoint Revisions: A Primer for Clinical Laboratories. J. Clin. Microbiol. 2019, 57, e00203-19. [Google Scholar] [CrossRef] [PubMed]
- Thomas, D.R. A General Inductive Approach for Analyzing Qualitative Evaluation Data. Am. J. Eval. 2006, 27, 237–246. [Google Scholar] [CrossRef]
- Akaratovic, K.I.; Kiser, J.P.; Gordon, S.; Abadam, C.F. Evaluation of the Trapping Performance of Four Biogents AG Traps and Two Lures for the Surveillance of Aedes Albopictus and Other Host-Seeking Mosquitoes. J. Am. Mosq. Control Assoc. 2017, 33, 108–115. [Google Scholar] [CrossRef] [PubMed]
- García, V.; García-Meniño, I.; Mora, A.; Flament-Simon, S.C.; Díaz-Jiménez, D.; Blanco, J.E.; Alonso, M.P.; Blanco, J. Co-Occurrence of Mcr-1, Mcr-4 and Mcr-5 Genes in Multidrug-Resistant ST10 Enterotoxigenic and Shiga Toxin-Producing Escherichia coli in Spain (2006-2017). Int. J. Antimicrob. Agents 2018, 52, 104–108. [Google Scholar] [CrossRef]
- Kawanishi, M.; Abo, H.; Ozawa, M.; Uchiyama, M.; Shirakawa, T.; Suzuki, S.; Shima, A.; Yamashita, A.; Sekizuka, T.; Kato, K.; et al. Prevalence of Colistin Resistance Gene Mcr-1 and Absence of Mcr-2 in Escherichia coli Isolated from Healthy Food-Producing Animals in Japan. Antimicrob. Agents Chemother. 2017, 61, e02057-16. [Google Scholar] [CrossRef]
- Huang, X.; Yu, L.; Chen, X.; Zhi, C.; Yao, X.; Liu, Y.; Wu, S.; Guo, Z.; Yi, L.; Zeng, Z.; et al. High Prevalence of Colistin Resistance and Mcr-1 Gene in Escherichia coli Isolated from Food Animals in China. Front. Microbiol. 2017, 8, 562. [Google Scholar] [CrossRef]
- Moosavian, M.; Ghadri, H.; Samli, Z. Molecular Detection of VanA and VanB Genes among Vancomycin-Resistant Enterococci in ICU-Hospitalized Patients in Ahvaz in Southwest of Iran. Infect. Drug Resist. 2018, 11, 2269–2275. [Google Scholar] [CrossRef]
- Yang, J.; Jiang, Y.; Guo, L.; Ye, L.; Ma, Y.; Luo, Y. Prevalence of Diverse Clones of Vancomycin-Resistant Enterococcus faecium ST78 in a Chinese Hospital. Microb. Drug Resist. 2016, 22, 294–300. [Google Scholar] [CrossRef]
- D’Costa, V.M.; King, C.E.; Kalan, L.; Morar, M.; Sung, W.W.L.; Schwarz, C.; Froese, D.; Zazula, G.; Calmels, F.; Debruyne, R.; et al. Antibiotic Resistance Is Ancient. Nature 2011, 477, 457–461. [Google Scholar] [CrossRef]
- Lupo, A.; Coyne, S.; Berendonk, T.U. Origin and Evolution of Antibiotic Resistance: The Common Mechanisms of Emergence and Spread in Water Bodies. Front. Microbiol. 2012, 3, 18. [Google Scholar] [CrossRef]
- López, L.; Santamaría, J.; Sánchez, A.; Castro, L.; Moreno, J.L. Presence of Tetracycline Resistant Bacteria and Genes in Grassland-Based Animal Production Systems. Cienc. Investig. Agrar. 2012, 39, 411–423. [Google Scholar] [CrossRef]
- Li, X.; Watanabe, N.; Xiao, C.; Harter, T.; McCowan, B.; Liu, Y.; Atwill, E.R. Antibiotic-Resistant E. coli in Surface Water and Groundwater in Dairy Operations in Northern California. Environ. Monit. Assess. 2014, 186, 1253–1260. [Google Scholar] [CrossRef] [PubMed]
- Heuer, H.; Schmitt, H.; Smalla, K. Antibiotic Resistance Gene Spread Due to Manure Application on Agricultural Fields. Curr. Opin. Microbiol. 2011, 14, 236–243. [Google Scholar] [CrossRef]
- Peng, S.; Feng, Y.; Wang, Y.; Guo, X.; Chu, H.; Lin, X. Prevalence of Antibiotic Resistance Genes in Soils after Continually Applied with Different Manure for 30 Years. J. Hazard. Mater. 2017, 340, 16–25. [Google Scholar] [CrossRef] [PubMed]
- Pollard, A.T.; Morra, M.J. Fate of Tetracycline Antibiotics in Dairy Manure-Amended Soils. Environ. Rev. 2018, 26, 102–112. [Google Scholar] [CrossRef]
- Irrgang, A.; Roschanski, N.; Tenhagen, B.-A.; Grobbel, M.; Skladnikiewicz-Ziemer, T.; Thomas, K.; Roesler, U.; Käsbohrer, A. Prevalence of Mcr-1 in E. coli from Livestock and Food in Germany, 2010–2015. PLoS ONE 2016, 11, e0159863. [Google Scholar] [CrossRef]
- Yao, X.; Doi, Y.; Zeng, L.; Lv, L.; Liu, J.-H. Carbapenem-Resistant and Colistin-Resistant Escherichia coli Co-Producing NDM-9 and MCR-1. Lancet Infect. Dis. 2016, 16, 288–289. [Google Scholar] [CrossRef]
- Li, A.; Yang, Y.; Miao, M.; Chavda, K.D.; Mediavilla, J.R.; Xie, X.; Feng, P.; Tang, Y.-W.; Kreiswirth, B.N.; Chen, L.; et al. Complete Sequences of Mcr-1 -Harboring Plasmids from Extended-Spectrum-β-Lactamase- and Carbapenemase-Producing Enterobacteriaceae. Antimicrob. Agents Chemother. 2016, 60, 4351–4354. [Google Scholar] [CrossRef]
- Du, H.; Chen, L.; Tang, Y.-W.; Kreiswirth, B.N. Emergence of the Mcr-1 Colistin Resistance Gene in Carbapenem-Resistant Enterobacteriaceae. Lancet Infect. Dis. 2016, 16, 287–288. [Google Scholar] [CrossRef]
- Perrin-Guyomard, A.; Bruneau, M.; Houée, P.; Deleurme, K.; Legrandois, P.; Poirier, C.; Soumet, C.; Sanders, P. Prevalence of Mcr-1 in Commensal Escherichia coli from French Livestock, 2007 to 2014. Eurosurveillance 2016, 21, 301351. [Google Scholar] [CrossRef] [PubMed]
- Veldman, K.; van Essen-Zandbergen, A.; Rapallini, M.; Wit, B.; Heymans, R.; van Pelt, W.; Mevius, D. Location of Colistin Resistance Gene Mcr-1 in Enterobacteriaceae from Livestock and Meat: Table 1. J. Antimicrob. Chemother. 2016, 71, 2340–2342. [Google Scholar] [CrossRef]
- Hasman, H.; Hammerum, A.M.; Hansen, F.; Hendriksen, R.S.; Olesen, B.; Agersø, Y.; Zankari, E.; Leekitcharoenphon, P.; Stegger, M.; Kaas, R.S.; et al. Detection of Mcr-1 Encoding Plasmid-Mediated Colistin-Resistant Escherichia Coli Isolates from Human Bloodstream Infection and Imported Chicken Meat, Denmark 2015. Eurosurveillance 2015, 20, 30085. [Google Scholar] [CrossRef]
- Malhotra-Kumar, S.; Xavier, B.B.; Das, A.J.; Lammens, C.; Hoang, H.T.T.; Pham, N.T.; Goossens, H. Colistin-Resistant Escherichia Coli Harbouring Mcr-1 Isolated from Food Animals in Hanoi, Vietnam. Lancet Infect. Dis. 2016, 16, 286–287. [Google Scholar] [CrossRef] [PubMed]
- Metan, G.; Zarakolu, P.; Unal, S. Rapid Detection of Antibacterial Resistance in Emerging Gram-Positive Cocci. J. Hosp. Infect. 2005, 61, 93–99. [Google Scholar] [CrossRef]
- Corso, A.C.; Gagetti, P.S.; Rodríguez, M.M.; Melano, R.G.; Ceriana, P.G.; Faccone, D.F.; Galas, M.F. Molecular Epidemiology of Vancomycin-Resistant Enterococcus Faecium in Argentina. Int. J. Infect. Dis. 2007, 11, 69–75. [Google Scholar] [CrossRef]
- Panesso, D.; Reyes, J.; Rincón, S.; Díaz, L.; Galloway-Peña, J.; Zurita, J.; Carrillo, C.; Merentes, A.; Guzmán, M.; Adachi, J.A.; et al. Molecular Epidemiology of Vancomycin-Resistant Enterococcus Faecium: A Prospective, Multicenter Study in South American Hospitals. J. Clin. Microbiol. 2010, 48, 1562–1569. [Google Scholar] [CrossRef]
- Söderblom, T.; Aspevall, O.; Erntell, M.; Hedin, G.; Heimer, D.; Hökeberg, I.; Kidd-Ljunggren, K.; Melhus, Å.; Olsson-Liljequist, B.; Sjögren, I.; et al. Alarming Spread of Vancomycin Resistant Enterococci in Sweden since 2007. Eurosurveillance 2010, 15, 19620. [Google Scholar] [CrossRef] [PubMed]
- Cekin, Y.; Daloğlu, A.E.; Öğünç, D.; Baysan, B.Ö.; Dağlar, D.; İnan, D.; Mutlu, D.; Öngüt, G.; Çolak, D. Evaluation of Vancomycin Resistance 3 Multiplexed PCR Assay for Detection of Vancomycin-Resistant Enterococci from Rectal Swabs. Ann. Lab. Med. 2013, 33, 326–330. [Google Scholar] [CrossRef]
- Marner, E.S.; Wolk, D.M.; Carr, J.; Hewitt, C.; Dominguez, L.L.; Kovacs, T.; Johnson, D.R.; Hayden, R.T. Diagnostic Accuracy of the Cepheid GeneXpert VanA/VanB Assay Ver. 1.0 to Detect the VanA and VanB Vancomycin Resistance Genes in Enterococcus from Perianal Specimens. Diagn. Microbiol. Infect. Dis. 2011, 69, 382–389. [Google Scholar] [CrossRef]
- Kang, M.; Xie, Y.; He, C.; Chen, Z.X.; Guo, L.; Yang, Q.; Liu, J.Y.; Du, Y.; Ou, Q.S.; Wang, L.L. Molecular Characteristics of Vancomycin-Resistant Enterococcus Faecium from a Tertiary Care Hospital in Chengdu, China. Eur. J. Clin. Microbiol. Infect. Dis. 2014, 33, 933–939. [Google Scholar] [CrossRef] [PubMed]
- Woodford, N.; Chadwick, P.R.; Morrison, D.; Cookson, B.D. Strains of Glycopeptide-Resistant Enterococcus Faecium Can Alter Their van Genotypes during an Outbreak. J. Clin. Microbiol. 1997, 35, 2966–2968. [Google Scholar] [CrossRef] [PubMed]
- Marcade, G.; Micol, J.-B.; Jacquier, H.; Raskine, L.; Donay, J.-L.; Nicolas-Viaud, S.; Rouveau, M.; Ribaud, P.; Dombret, H.; Leclercq, R.; et al. Outbreak in a Haematology Unit Involving an Unusual Strain of Glycopeptide-Resistant Enterococcus Faecium Carrying Both VanA and VanB Genes. J. Antimicrob. Chemother. 2014, 69, 500–505. [Google Scholar] [CrossRef]
- Papagiannitsis, C.C.; Malli, E.; Florou, Z.; Medvecky, M.; Sarrou, S.; Hrabak, J.; Petinaki, E. First Description in Europe of the Emergence of Enterococcus Faecium ST117 Carrying Both VanA and VanB Genes, Isolated in Greece. J. Glob. Antimicrob. Resist. 2017, 11, 68–70. [Google Scholar] [CrossRef]
- Khan, M.A.; Shorman, M.; Al-Tawfiq, J.; Hays, J.P. New Type F Lineage-Related Tn 1546 and a VanA/VanB Type Vancomycin-Resistant Enterococcus faecium Isolated from Patients in Dammam, Saudi Arabia during 2006–2007. Epidemiol. Infect. 2013, 141, 1109–1114. [Google Scholar] [CrossRef]
- Santona, A.; Taviani, E.; Hoang, H.M.; Fiamma, M.; Deligios, M.; Ngo, T.V.Q.; Van Le, A.; Cappuccinelli, P.; Rubino, S.; Paglietti, B. Emergence of Unusual VanA/VanB Genotype in a Highly Mutated VanB-Vancomycin-Resistant Hospital-Associated E. Faecium Background in Vietnam. Int. J. Antimicrob. Agents 2018, 52, 586–592. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, B.; Guo, Y.; Wang, J.; Zhao, P.; Liu, J.; He, K. Colistin Resistance Prevalence in Escherichia coli from Domestic Animals in Intensive Breeding Farms of Jiangsu Province. Int. J. Food Microbiol. 2019, 291, 87–90. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, Y.; Calvopina, M.; Izurieta, R.; Villacres, I.; Kawahara, R.; Sasaki, M.; Yamamoto, M. Colistin-Resistant Escherichia Coli with Mcr Genes in the Livestock of Rural Small-Scale Farms in Ecuador. BMC Res. Notes 2019, 12, 121. [Google Scholar] [CrossRef]
- García-Meniño, I.; Díaz-Jiménez, D.; García, V.; de Toro, M.; Flament-Simon, S.C.; Blanco, J.; Mora, A. Genomic Characterization of Prevalent Mcr-1, Mcr-4, and Mcr-5 Escherichia Coli Within Swine Enteric Colibacillosis in Spain. Front. Microbiol. 2019, 10, 2469. [Google Scholar] [CrossRef]
- Zhang, J.; Chen, L.; Wang, J.; Yassin, A.K.; Butaye, P.; Kelly, P.; Gong, J.; Guo, W.; Li, J.; Li, M.; et al. Molecular Detection of Colistin Resistance Genes (Mcr-1, Mcr-2 and Mcr-3) in Nasal/Oropharyngeal and Anal/Cloacal Swabs from Pigs and Poultry. Sci. Rep. 2018, 8, 3705. [Google Scholar] [CrossRef]
- Kieffer, N.; Aires-de-Sousa, M.; Nordmann, P.; Poirel, L. High Rate of MCR-1–Producing Escherichia coli and Klebsiella pneumoniae among Pigs, Portugal. Emerg. Infect. Dis. 2017, 23, 2023–2029. [Google Scholar] [CrossRef] [PubMed]
- Kozak, G.K.; Boerlin, P.; Janecko, N.; Reid-Smith, R.J.; Jardine, C. Antimicrobial Resistance in Escherichia Coli Isolates from Swine and Wild Small Mammals in the Proximity of Swine Farms and in Natural Environments in Ontario, Canada. Appl. Environ. Microbiol. 2009, 75, 559–566. [Google Scholar] [CrossRef] [PubMed]
- Founou, L.L.; Founou, R.C.; Essack, S.Y. Antibiotic Resistance in the Food Chain: A Developing Country-Perspective. Front. Microbiol. 2016, 7, 1881. [Google Scholar] [CrossRef] [PubMed]
- Teshager, T.; Herrero, I.A.; Porrero, M.C.; Garde, J.; Moreno, M.A.; Domínguez, L. Surveillance of Antimicrobial Resistance in Escherichia coli Strains Isolated from Pigs at Spanish Slaughterhouses. Int. J. Antimicrob. Agents 2000, 15, 137–142. [Google Scholar] [CrossRef]
- Sayah, R.S.; Kaneene, J.B.; Johnson, Y.; Miller, R. Patterns of Antimicrobial Resistance Observed in Escherichia coli Isolates Obtained from Domestic- and Wild-Animal Fecal Samples, Human Septage, and Surface Water. Appl. Environ. Microbiol. 2005, 71, 1394–1404. [Google Scholar] [CrossRef] [PubMed]
- Chopra, I.; Roberts, M. Tetracycline Antibiotics: Mode of Action, Applications, Molecular Biology, and Epidemiology of Bacterial Resistance. Microbiol. Mol. Biol. Rev. 2001, 65, 232–260. [Google Scholar] [CrossRef]
- Alexander, T.W.; Inglis, G.D.; Yanke, L.J.; Topp, E.; Read, R.R.; Reuter, T.; McAllister, T.A. Farm-to-Fork Characterization of Escherichia coli Associated with Feedlot Cattle with a Known History of Antimicrobial Use. Int. J. Food Microbiol. 2010, 137, 40–48. [Google Scholar] [CrossRef]
- Love, D.C.; Davis, M.F.; Bassett, A.; Gunther, A.; Nachman, K.E. Dose Imprecision and Resistance: Free-Choice Medicated Feeds in Industrial Food Animal Production in the United States. Environ. Health Perspect. 2011, 119, 279–283. [Google Scholar] [CrossRef]
- Marshall, B.M.; Levy, S.B. Food Animals and Antimicrobials: Impacts on Human Health. Clin. Microbiol. Rev. 2011, 24, 718–733. [Google Scholar] [CrossRef]
- Harada, K.; Asai, T.; Kojima, A.; Ishihara, K.; Takahashi, T. Role of Coresistance in the Development of Resistance to Chloramphenicol in Escherichia coli Isolated from Sick Cattle and Pigs. Am. J. Vet. Res. 2006, 67, 230–235. [Google Scholar] [CrossRef]
- Kaesbohrer, A.; Schroeter, A.; Tenhagen, B.-A.; Alt, K.; Guerra, B.; Appel, B. Emerging Antimicrobial Resistance in Commensal Escherichia coli with Public Health Relevance. Zoonoses Public Health 2012, 59, 158–165. [Google Scholar] [CrossRef] [PubMed]
- Cheng, A.C.; Turnidge, J.; Collignon, P.; Looke, D.; Barton, M.; Gottlieb, T. Control of Fluoroquinolone Resistance through Successful Regulation, Australia. Emerg. Infect. Dis. 2012, 18, 1453–1460. [Google Scholar] [CrossRef]
- Hang, B.P.T.; Wredle, E.; Börjesson, S.; Sjaunja, K.S.; Dicksved, J.; Duse, A. High Level of Multidrug-Resistant Escherichia coli in Young Dairy Calves in Southern Vietnam. Trop. Anim. Health Prod. 2019, 51, 1405–1411. [Google Scholar] [CrossRef]
- Nhung, N.; Cuong, N.; Thwaites, G.; Carrique-Mas, J. Antimicrobial Usage and Antimicrobial Resistance in Animal Production in Southeast Asia: A Review. Antibiotics 2016, 5, 37. [Google Scholar] [CrossRef]
- Ström, G.; Halje, M.; Karlsson, D.; Jiwakanon, J.; Pringle, M.; Fernström, L.-L.; Magnusson, U. Antimicrobial Use and Antimicrobial Susceptibility in Escherichia coli on Small- and Medium-Scale Pig Farms in North-Eastern Thailand. Antimicrob. Resist. Infect. Control 2017, 6, 75. [Google Scholar] [CrossRef] [PubMed]
- Lim, S.-K.; Nam, H.-M.; Moon, D.-C.; Jang, G.-C.; Jung, S.-C.; Korean, V. Antimicrobial Resistance of Escherichia coli Isolated from Healthy Animals during 2010–2012. Korean J. Vet. Res. 2014, 54, 131–137. [Google Scholar] [CrossRef]
- Kyung-Hyo, D.; Jae-Won, B.; Wan-Kyu, L. Antimicrobial Resistance Profiles of Escherichia coli from Diarrheic Weaned Piglets after the Ban on Antibiotic Growth Promoters in Feed. Antibiotics 2020, 9, 755. [Google Scholar] [CrossRef] [PubMed]
- Do, K.-H. Serogroups, Virulence Genes and Antimicrobial Resistance of F4+ and F18+ Escherichia coli Isolated from Weaned Piglets. Pak. Vet. J. 2019, 39, 266–270. [Google Scholar] [CrossRef]
- Song, H.-J.; Kim, S.-J.; Moon, D.C.; Mechesso, A.F.; Choi, J.-H.; Kang, H.Y.; Boby, N.; Yoon, S.-S.; Lim, S.-K. Antimicrobial Resistance in Escherichia coli Isolates from Healthy Food Animals in South Korea, 2010–2020. Microorganisms 2022, 10, 524. [Google Scholar] [CrossRef]
- Ahmad, A.; Zachariasen, C.; Christiansen, L.E.; Græsbøll, K.; Toft, N.; Matthews, L.; Nielsen, S.S.; Olsen, J.E. Modeling the Growth Dynamics of Multiple Escherichia coli Strains in the Pig Intestine Following Intramuscular Ampicillin Treatment. BMC Microbiol. 2016, 16, 205. [Google Scholar] [CrossRef]
- Bezerra, W.G.A.; da Silva, I.N.G.; Vasconcelos, R.H.; Machado, D.N.; Lopes, E.D.S.; Lima, S.V.G.; de C. Teixeira, R.S.; Lima, J.B.; Oliveira, F.R.; Maciel, W.C. Isolation and Antimicrobial Resistance of Escherichia coli and Salmonella enterica subsp. enterica (O:6,8) in Broiler Chickens. Acta Sci. Vet. 2016, 44, 7. [Google Scholar] [CrossRef]
- Jiang, H.-X.; Lü, D.-H.; Chen, Z.-L.; Wang, X.-M.; Chen, J.-R.; Liu, Y.-H.; Liao, X.-P.; Liu, J.-H.; Zeng, Z.-L. High Prevalence and Widespread Distribution of Multi-Resistant Escherichia coli Isolates in Pigs and Poultry in China. Vet. J. 2011, 187, 99–103. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Vázquez, A.V.; Rivera-Sánchez, G.; Lira-Méndez, K.; Reyes-López, M.Á.; Bocanegra-García, V. Prevalence, Antimicrobial Resistance and Virulence Genes of Escherichia coli Isolated from Retail Meat in Tamaulipas, Mexico. J. Glob. Antimicrob. Resist. 2018, 14, 266–272. [Google Scholar] [CrossRef]
- Roca-Saavedra, P.; Mendez-Vilabrille, V.; Miranda, J.M.; Nebot, C.; Cardelle-Cobas, A.; Franco, C.M.; Cepeda, A. Food Additives, Contaminants and Other Minor Components: Effects on Human Gut Microbiota—A Review. J. Physiol. Biochem. 2018, 74, 69–83. [Google Scholar] [CrossRef]
- Summers, M.F.; Hrabowski, F.A. Preparing Minority Scientists and Engineers. Science 2006, 311, 1870–1871. [Google Scholar] [CrossRef]
- Temple, L.; Cresawn, S.G.; Monroe, J.D. Genomics and Bioinformatics in Undergraduate Curricula: Contexts for Hybrid Laboratory/Lecture Courses for Entering and Advanced Science Students. Biochem. Mol. Biol. Educ. 2010, 38, 23–28. [Google Scholar] [CrossRef]
- Hanauer, D.I.; Jacobs-Sera, D.; Pedulla, M.L.; Cresawn, S.G.; Hendrix, R.W.; Hatfull, G.F. Teaching Scientific Inquiry. Science 2006, 314, 1880–1881. [Google Scholar] [CrossRef] [PubMed]
- Caruso, S.M.; Sandoz, J.; Kelsey, J. Non-STEM Undergraduates Become Enthusiastic Phage-Hunters. CBE—Life Sci. Educ. 2009, 8, 278–282. [Google Scholar] [CrossRef]
- Harrison, M.; Dunbar, D.; Ratmansky, L.; Boyd, K.; Lopatto, D. Classroom-Based Science Research at the Introductory Level: Changes in Career Choices and Attitude. CBE—Life Sci. Educ. 2011, 10, 279–286. [Google Scholar] [CrossRef]
- Jordan, T.C.; Burnett, S.H.; Carson, S.; Caruso, S.M.; Clase, K.; DeJong, R.J.; Dennehy, J.J.; Denver, D.R.; Dunbar, D.; Elgin, S.C.R.; et al. A Broadly Implementable Research Course in Phage Discovery and Genomics for First-Year Undergraduate Students. MBio 2014, 5, e01051-13. [Google Scholar] [CrossRef]
- Volynkina, I.A.; Zakalyukina, Y.V.; Alferova, V.A.; Belik, A.R.; Yagoda, D.K.; Nikandrova, A.A.; Buyuklyan, Y.A.; Udalov, A.V.; Golovin, E.V.; Kryakvin, M.A.; et al. Mechanism-Based Approach to New Antibiotic Producers Screening Among Actinomycetes in the Course of the Citizen Science Project. Antibiotics 2022, 11, 1198. [Google Scholar] [CrossRef] [PubMed]
Genes | Forward Primer | Reverse Primer |
---|---|---|
mcr-1 | 5′-CGGTCAGTCCGTTTGTTC-3′ | 5′-CTTGGTCGGTCTGTAGGG-3′ |
vanA | 5′-GCCGGAAAAAGGCTCTGAA-3′ | 5′-TTTTTTGCCGTTTCCTGTATCC-3′ |
vanB | 5′-GATTTGATTGTCGGCGAAGTG-3′ | 5′-TCCTGATGGATGCGGAAGA-3′ |
Region | Samples Collected, n | Samples Analyzed by Molecular Methods, n | Samples Analyzed by Microbiological Methods, n | Total Number of Samples Analyzed, n |
---|---|---|---|---|
Bashkortostan | 98 | 1 | 1 | |
Krasnoyarsk region | 572 | 115 | 102 | 217 |
Moscow region | 330 | 28 | 28 | |
Murmansk region | 212 | |||
Novgorod region | 144 | |||
Novosibirsk region | 42 | 1 | 1 | |
Omsk region | 586 | 56 | 56 | |
Oryol Region | 103 | 13 | 13 | |
Udmurt Republic | 655 | 43 | 104 | 147 |
Saint Petersburg | 132 | 1 | 1 | |
Tomsk region | 50 | |||
Vologda Region | 334 | 274 | 23 | 297 |
Voronezh region | 3320 | 161 | 192 | 353 |
Molecular Analysis | ||||||||
Region | Bos taurus (cown), n | Sus domesticus (pig), n | Poultry *, n | Equus caballus (horse), n | Capra hircus (goat), n | Ovis aries (sheep), n | Other or Not Specified, n | Total, n |
Krasnoyarsk region | 115 | 1 | 115 | |||||
Omsk region | 51 | 4 | 1 | 56 | ||||
Udmurt Republic | 38 | 2 | 4 | 1 | 43 | |||
Vologda Region | 257 | 2 | 5 | 1 | 1 | 2 | 5 | 274 |
Voronezh region | 88 | 22 | 13 | 20 | 9 | 3 | 6 | 161 |
Всегo | 549 | 26 | 23 | 25 | 11 | 6 | 11 | 649 |
Microbiological Analysis | ||||||||
Region | Bos taurus (cown), n | Sus domesticus (pig), n | Poultry *, n | Equus caballus (horse), n | Capra hircus (goat), n | Ovis aries (sheep), n | Other or Not Specified, n | Total, n |
Krasnoyarsk region | 102 | 102 | ||||||
Moscow region | 28 | 28 | ||||||
Oryol Region | 13 | 13 | ||||||
Udmurt Republic | 103 | 1 | 104 | |||||
Vologda Region | 17 | 2 | 3 | 1 | 23 | |||
Voronezh region | 69 | 87 | 17 | 9 | 4 | 1 | 3 | 192 |
Всегo | 332 | 87 | 20 | 9 | 4 | 4 | 4 | 462 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Timofeeva, A.M.; Galyamova, M.R.; Krivosheev, D.M.; Karabanov, S.Y.; Sedykh, S.E. Investigation of Antibiotic Resistance of E. coli Associated with Farm Animal Feces with Participation of Citizen Scientists. Microorganisms 2024, 12, 2308. https://doi.org/10.3390/microorganisms12112308
Timofeeva AM, Galyamova MR, Krivosheev DM, Karabanov SY, Sedykh SE. Investigation of Antibiotic Resistance of E. coli Associated with Farm Animal Feces with Participation of Citizen Scientists. Microorganisms. 2024; 12(11):2308. https://doi.org/10.3390/microorganisms12112308
Chicago/Turabian StyleTimofeeva, Anna M., Maria R. Galyamova, Dmitriy M. Krivosheev, Sergey Yu. Karabanov, and Sergey E. Sedykh. 2024. "Investigation of Antibiotic Resistance of E. coli Associated with Farm Animal Feces with Participation of Citizen Scientists" Microorganisms 12, no. 11: 2308. https://doi.org/10.3390/microorganisms12112308
APA StyleTimofeeva, A. M., Galyamova, M. R., Krivosheev, D. M., Karabanov, S. Y., & Sedykh, S. E. (2024). Investigation of Antibiotic Resistance of E. coli Associated with Farm Animal Feces with Participation of Citizen Scientists. Microorganisms, 12(11), 2308. https://doi.org/10.3390/microorganisms12112308