In Vitro Antimicrobial Activity of Volatile Compounds from the Lichen Pseudevernia furfuracea (L.) Zopf. Against Multidrug-Resistant Bacteria and Fish Pathogens
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection, Volatile Compound Extraction, and Chemical Characterization
2.1.1. Sample Collection
2.1.2. Volatile Compound Extraction
2.1.3. Gas Chromatography–Mass Spectrometry Protocol and Molecular Characterization
2.2. Antimicrobial Activity
2.2.1. Reference Strains
2.2.2. Clinical Strains
2.2.3. Fish Pathogenic Strains
2.2.4. Disc Diffusion Assay
2.2.5. Minimum Inhibitory Concentration
3. Results
3.1. Chemical Composition of the Volatile Compounds
3.2. Antimicrobial Activity
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Honegger, R. Lichens and Their Allies Past and Present. In Plant Relationships: Fungal-Plant Interactions; Springer: Berlin/Heidelberg, Germany, 2022; pp. 133–183. [Google Scholar]
- Hawksworth, D.L.; Grube, M. Lichens redefined as complex ecosystems. New Phytol. 2020, 227, 1281–1283. [Google Scholar] [CrossRef] [PubMed]
- Honegger, R. 15 The Symbiotic Phenotype of Lichen-Forming Ascomycetes and Their Endo- and Epibionts; Springer: Berlini/Heidelberg, Germany, 2012; pp. 287–339. [Google Scholar]
- Lücking, R.; Hodkinson, B.P.; Leavitt, S.D. The 2016 classification of lichenized fungi in the Ascomycota and Basidiomycota–Approaching one thousand genera. Bryol. 2017, 119, 361–416. [Google Scholar] [CrossRef]
- Ureña-Vacas, I.; González-Burgos, E.; Divakar, P.K.; Gómez-Serranillos, M.P. Lichen Depsides and Tridepsides: Progress in Pharmacological Approaches. J. Fungi 2023, 9, 116. [Google Scholar] [CrossRef] [PubMed]
- Ren, M.; Jiang, S.; Wang, Y.; Pan, X.; Pan, F.; Wei, X. Discovery and excavation of lichen bioactive natural products. Front. Microbiol. 2023, 14, 1177123. [Google Scholar] [CrossRef] [PubMed]
- Maciąg-Dorszyńska, M.; Węgrzyn, G.; Guzow-Krzemińska, B. Antibacterial activity of lichen secondary metabolite usnic acid is primarily caused by inhibition of RNA and DNA synthesis. FEMS Microbiol. Lett. 2014, 353, 57–62. [Google Scholar] [CrossRef]
- Ajaj, A.; Touhami, A.O.; Benkirane, R.; Douira, A. Contribution to the update catalogue of lichenized and lichenicolous fungi in Morocco. J. Anim. Plant Sci. JAPS 2013, 19, 2961–3025. [Google Scholar]
- Seaward, M.R.; Amrani, S. Checklist of lichens and lichenicolous fungi of Morocco. Herzogia 2022, 35, 564–612. [Google Scholar] [CrossRef]
- Egea, J.M. Catalogue of lichenized and lichenicolous fungi of Morocco. Bocconea 1996, 6, 19–114. [Google Scholar]
- Hale, M.E., Jr. A synopsis of the lichen genus Pseudevernia. Bryologist 1968, 71, 1–11. [Google Scholar] [CrossRef]
- Joulain, D.; Tabacchi, R. Lichen extracts as raw materials in perfumery. Part 2: Treemoss. Flavour Fragr. J. 2009, 24, 105–116. [Google Scholar] [CrossRef]
- Bellakhdar, J. Contribution à L’éTude de la Pharmacopée Traditionnelle AU Maroc: La Situation Actuelle, Les Produits, Les Sources du Savoir (Enquête Ethnopharmacologique de Terrain Réalisée de 1969 à 1992). Ph.D. Thesis, Université Paul Verlaine, Metz, France, 1997. [Google Scholar]
- Mitrovic, T.; Stamenkovic, S.; Cvetkovic, V.; Radulovic, N.; Mladenovic, M.; Stankovic, M.; Topuzovic, M.; Radojevic, I.; Stefanovic, O.; Vasic, S.; et al. Platismatia glauca and Pseudevernia furfuracea lichens as sources of antioxidant, antimicrobial and antibiofilm agents. Excli J. 2014, 13, 938–953. [Google Scholar] [PubMed]
- Aoussar, N.; Laasri, F.E.; Bourhia, M.; Manoljovic, N.; Mhand, R.A.; Rhallabi, N.; Ullah, R.; Shahat, A.A.; Noman, O.M.; Nasr, F.A.; et al. Phytochemical Analysis, Cytotoxic, Antioxidant, and Antibacterial Activities of Lichens. Evid.-Based Complement. Altern. Med. 2020, 2020, 8104538. [Google Scholar] [CrossRef] [PubMed]
- Aoussar, N.; Achmit, M.; Es-Sadeqy, Y.; Vasiljević, P.; Rhallabi, N.; Ait Mhand, R.; Zerouali, K.; Manojlović, N.; Mellouki, F. Phytochemical constituents, antioxidant and antistaphylococcal activities of Evernia prunastri (L.) Ach., Pseudevernia furfuracea (L.) Zopf. and Ramalina farinacea (L.) Ach. from Morocco. Arch. Microbiol. 2021, 203, 2887–2894. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Antimicrobial Resistance. Available online: https://www.who.int/news-room/fact-sheets/detail/antimicrobial-resistance (accessed on 6 November 2024).
- Tang, K.W.K.; Millar, B.C.; Moore, J.E. Antimicrobial Resistance (AMR). Br. J. Biomed. Sci. 2023, 80, 11387. [Google Scholar] [CrossRef] [PubMed]
- Salam, M.A.; Al-Amin, M.Y.; Salam, M.T.; Pawar, J.S.; Akhter, N.; Rabaan, A.A.; Alqumber, M.A.A. Antimicrobial Resistance: A Growing Serious Threat for Global Public Health. Healthcare 2023, 11, 1946. [Google Scholar] [CrossRef] [PubMed]
- Ikuta, K.S.; Swetschinski, L.R.; Robles Aguilar, G.; Sharara, F.; Mestrovic, T.; Gray, A.P.; Davis Weaver, N.; Wool, E.E.; Han, C.; Gershberg Hayoon, A.; et al. Global mortality associated with 33 bacterial pathogens in 2019: A systematic analysis for the Global Burden of Disease Study 2019. Lancet 2022, 400, 2221–2248. [Google Scholar] [CrossRef]
- Naylor, R.L.; Hardy, R.W.; Buschmann, A.H.; Bush, S.R.; Cao, L.; Klinger, D.H.; Little, D.C.; Lubchenco, J.; Shumway, S.E.; Troell, M. A 20-year retrospective review of global aquaculture. Nature 2021, 591, 551–563. [Google Scholar] [CrossRef]
- Naylor, R.L.; Goldburg, R.J.; Primavera, J.H.; Kautsky, N.; Beveridge, M.C.M.; Clay, J.; Folke, C.; Lubchenco, J.; Mooney, H.; Troell, M. Effect of aquaculture on world fish supplies. Nature 2000, 405, 1017–1024. [Google Scholar] [CrossRef]
- Reverter, M.; Sarter, S.; Caruso, D.; Avarre, J.-C.; Combe, M.; Pepey, E.; Pouyaud, L.; Vega-Heredía, S.; De Verdal, H.; Gozlan, R.E. Aquaculture at the crossroads of global warming and antimicrobial resistance. Nat. Commun. 2020, 11, 1870. [Google Scholar] [CrossRef]
- Dawood, M.A.O.; El Basuini, M.F.; Zaineldin, A.I.; Yilmaz, S.; Hasan, M.T.; Ahmadifar, E.; El Asely, A.M.; Abdel-Latif, H.M.R.; Alagawany, M.; Abu-Elala, N.M.; et al. Antiparasitic and Antibacterial Functionality of Essential Oils: An Alternative Approach for Sustainable Aquaculture. Pathogens 2021, 10, 185. [Google Scholar] [CrossRef]
- Irshath, A.A.; Rajan, A.P.; Vimal, S.; Prabhakaran, V.-S.; Ganesan, R. Bacterial Pathogenesis in Various Fish Diseases: Recent Advances and Specific Challenges in Vaccine Development. Vaccines 2023, 11, 470. [Google Scholar] [CrossRef] [PubMed]
- Yuan, X.; Lv, Z.; Zhang, Z.; Han, Y.; Liu, Z.; Zhang, H. A Review of Antibiotics, Antibiotic Resistant Bacteria, and Resistance Genes in Aquaculture: Occurrence, Contamination, and Transmission. Toxics 2023, 11, 420. [Google Scholar] [CrossRef]
- Xu, M.; Huang, X.H.; Shen, X.X.; Chen, H.Q.; Li, C.; Jin, G.Q.; Cao, J.S.; Xue, Z.X. Metagenomic insights into the spatiotemporal responses of antibiotic resistance genes and microbial communities in aquaculture sediments. Chemosphere 2022, 307, 135596. [Google Scholar] [CrossRef]
- Chen, J.M.; Sun, R.X.; Pan, C.G.; Sun, Y.; Mai, B.X.; Li, Q.X. Antibiotics and Food Safety in Aquaculture. J. Agric. Food Chem. 2020, 68, 11908–11919. [Google Scholar] [CrossRef]
- Kuebutornye, F.K.A.; Abarike, E.D. The contribution of medicinal plants to tilapia aquaculture: A review. Aquac. Int. 2020, 28, 965–983. [Google Scholar] [CrossRef]
- Tadese, D.A.; Song, C.; Sun, C.; Liu, B.; Liu, B.; Zhou, Q.; Xu, P.; Ge, X.; Liu, M.; Xu, X.; et al. The role of currently used medicinal plants in aquaculture and their action mechanisms: A review. Rev. Aquac. 2022, 14, 816–847. [Google Scholar] [CrossRef]
- Öntas, C.; Baba, E.; Kaplaner, E.; Küçükaydin, S.; Öztürk, M.; Ercan, M.D. Antibacterial Activity of Citrus limon Peel Essential Oil and Argania spinosa Oil Against Fish Pathogenic Bacteria. Kafkas Univ. Vet. Fak. Derg. 2016, 22, 741–749. [Google Scholar] [CrossRef]
- Navarrete, P.; Toledo, I.; Mardones, P.; Opazo, R.; Espejo, R.; Romero, J. Effect of Thymus vulgaris essential oil on intestinal bacterial microbiota of rainbow trout, Oncorhynchus mykiss (Walbaum) and bacterial isolates. Aquac. Res. 2010, 41, e667–e678. [Google Scholar] [CrossRef]
- Clauzade, G.; Roux, C.; Houmeau, J.-M.; Roux, C. Likenoj de Okcidenta Eŭropo: Ilustrita Determinlibro; Société Botanique du Centre-Ouest: Nercillac, France, 1985. [Google Scholar]
- Cannon, P.; Divakar, P.; Yahr, R.; Aptroot, A.; Clerc, P.; Coppins, B.; Fryday, A.; Sanderson, N.; Simkin, J. Lecanorales: Parmeliaceae including the genera Alectoria, Allantoparmelia, Arctoparmelia, Brodoa, Bryoria, Cetraria, Cetrariella, Cetrelia, Cornicularia, Evernia, Flavocetraria, Flavoparmelia, Hypogymnia, Hypotrachyna, Imshaugia, Melanelia, Melanelixia, Melanohalea, Menegazzia, Montanelia, Nesolechia, Parmelia, Parmelina, Parmeliopsis, Parmotrema, Platismatia, Pleurosticta, Protoparmelia, Pseudephebe, Pseudevernia, Punctelia, Raesaenenia, Tuckermannopsis, Usnea, Vulpicida and Xanthoparmelia. In Revisions of British and Irish Lichens; British Lichen Society: London, UK, 2023; Volume 33. [Google Scholar]
- Sanad, H.; Belattmania, Z.; Nafis, A.; Hassouani, M.; Mazoir, N.; Reani, A.; Hassani, L.; Vasconcelos, V.; Sabour, B. Chemical Composition and In Vitro Antioxidant and Antimicrobial Activities of the Marine Cyanolichen Lichina pygmaea Volatile Compounds. Mar. Drugs 2022, 20, 169. [Google Scholar] [CrossRef]
- El mekes, A.; Zahlane, K.; Ait Said, L.; Tadlaoui Ouafi, A.; Barakate, M. The clinical and epidemiological risk factors of infections due to multi-drug resistant bacteria in an adult intensive care unit of University Hospital Center in Marrakesh-Morocco. J. Infect. Public Health 2020, 13, 637–643. [Google Scholar] [CrossRef]
- Bonnet, R.; Caron, F.; Cavallo, J.; Chardon, H.; Chidiac, C.; Courvalin, P.; Drugeon, H.; Dubreuil, L.; Jarlier, V.; Jehl, F. Comité de l’Antibiogramme de la Société Française de Microbiologie. Recommandations 2013, 19, 133–142. [Google Scholar]
- EUCAST. Breakpoint Tables for Interpretation of MICs and Zone Diameters. Version 5.0; EUCAST: Basel, Switzerland, 2015. [Google Scholar]
- Magiorakos, A.-P.; Srinivasan, A.; Carey, R.B.; Carmeli, Y.; Falagas, M.; Giske, C.; Harbarth, S.; Hindler, J.; Kahlmeter, G.; Olsson-Liljequist, B. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: An international expert proposal for interim standard definitions for acquired resistance. Clin. Microbiol. Infect. 2012, 18, 268–281. [Google Scholar] [CrossRef] [PubMed]
- Girão, M.; Ribeiro, I.; Ribeiro, T.; Azevedo, I.C.; Pereira, F.; Urbatzka, R.; Leão, P.N.; Carvalho, M.F. Actinobacteria Isolated From Laminaria ochroleuca: A Source of New Bioactive Compounds. Front. Microbiol. 2019, 10, 683. [Google Scholar] [CrossRef] [PubMed]
- CLSI. Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically-Tenth Edition; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2015; Volume 35. [Google Scholar]
- CLSI. Reference Method for Broth Dilution Antifungal Susceptibility Testing of Yeasts; Approved Standard-Third Edition; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2008. [Google Scholar]
- Stojanovic, G.S. Volatile constituents of selected Parmeliaceae lichens. J. Serbian Chem. Soc. 2011, 76, 987–994, Erratum in J. Serbian Chem. Soc. 2017, 82, 1333. [Google Scholar] [CrossRef]
- Joulain, D.; Tabacchi, R. Lichen extracts as raw materials in perfumery. Part 1: Oakmoss. Flavour Fragr. J. 2009, 24, 49–61. [Google Scholar] [CrossRef]
- Andersen, F.; Andersen, K.H.; Bernois, A.; Brault, C.; Bruze, M.; Eudes, H.; Gadras, C.; Signoret, A.C.J.; Mose, K.F.; Muller, B.P.; et al. Reduced content of chloroatranol and atranol in oak moss absolute significantly reduces the elicitation potential of this fragrance material. Contact Dermat. 2015, 72, 75–83. [Google Scholar] [CrossRef]
- Avonto, C.; Chittiboyina, A.G.; Khan, S.I.; Dale, O.R.; Parcher, J.F.; Wang, M.; Khan, I.A. Are atranols the only skin sensitizers in oakmoss? A systematic investigation using non-animal methods. Toxicol. In Vitro 2021, 70, 105053. [Google Scholar] [CrossRef]
- Lopez-Nogueroles, M.; Chisvert, A.; Salvador, A. Determination of atranol and chloroatranol in perfumes using simultaneous derivatization and dispersive liquid-liquid microextraction followed by gas chromatography-mass spectrometry. Anal. Chim. Acta 2014, 826, 28–34. [Google Scholar] [CrossRef]
- Kahriman, N.; Yazici, K.; Arslan, T.; Aslan, A.; Karaoglu, S.A.; Yayli, N. Chemical Composition and Antimicrobial Activity of the Essential Oils from Evernia prunastri (L.) Ach. and Evernia divaricata (L.) Ach. Asian J. Chem. 2011, 23, 1937–1939. [Google Scholar]
- Le Pogam, P.; Herbette, G.; Boustie, J. Analysis of Lichen Metabolites, a Variety of Approaches. In Recent Advances in Lichenology: Modern Methods and Approaches in Biomonitoring and Bioprospection, Volume 1; Upreti, D.K., Divakar, P.K., Shukla, V., Bajpai, R., Eds.; Springer: New Delhi, India, 2015; pp. 229–261. [Google Scholar]
- Steinhäuser, S.S.; Andrésson, Ó.S.; Pálsson, A.; Werth, S. Fungal and cyanobacterial gene expression in a lichen symbiosis: Effect of temperature and location. Fungal Biol. 2016, 120, 1194–1208. [Google Scholar] [CrossRef]
- Asplund, J.; Ohlson, M.; Gauslaa, Y. Tree species shape the elemental composition in the lichen Hypogymnia physodes transplanted to pairs of spruce and beech trunks. Fungal Ecol. 2015, 16, 1–5. [Google Scholar] [CrossRef]
- Mokhtari, N.; Mrabet, R.; Lebailly, P.; Laurent, B. Spatialisation des bioclimats, de l’aridité et des étages de végétation du Maroc. Rev. Marocaine Des Sci. Agron. Et Vétérinaires 2014, 2, 50–66. [Google Scholar]
- Tas, I.; Yildirim, A.B.; Ozkan, E.; Ozyigitoglu, G.C.; Yavuz, M.Z.; Turker, A.U. Biological evaluation and phytochemical profiling of some lichen species. Acta Aliment. 2019, 48, 457–465. [Google Scholar] [CrossRef]
- Carpentier, C.; Queiroz, E.F.; Marcourt, L.; Wolfender, J.-L.; Azelmat, J.; Grenier, D.; Boudreau, S.; Voyer, N. Dibenzofurans and Pseudodepsidones from the Lichen Stereocaulon paschale Collected in Northern Quebec. J. Nat. Prod. 2017, 80, 210–214. [Google Scholar] [CrossRef] [PubMed]
- Nomura, H.; Isshiki, Y.; Sakuda, K.; Sakuma, K.; Kondo, S. The Antibacterial Activity of Compounds Isolated from Oakmoss against Legionella pneumophila and Other Legionella spp. Biol. Pharm. Bull. 2012, 35, 1560–1567. [Google Scholar] [CrossRef]
- Türk, H.; Yılmaz, M.; Tay, T.; Türk, A.Ö.; Kıvanç, M. Antimicrobial Activity of Extracts of Chemical Races of the Lichen Pseudevernia furfuracea and their Physodic Acid, Chloroatranorin, Atranorin, and Olivetoric Acid Constituents. Z. Für Naturforschung C 2006, 61, 499–507. [Google Scholar] [CrossRef]
- Ganesan, T.; Subban, M.; Christopher Leslee, D.B.; Kuppannan, S.B.; Seedevi, P. Structural characterization of n-hexadecanoic acid from the leaves of Ipomoea eriocarpa and its antioxidant and antibacterial activities. Biomass Convers. Biorefinery 2024, 14, 14547–14558. [Google Scholar] [CrossRef]
- Gröblacher, B.; Kunert, O.; Bucar, F. Compounds of Alpinia katsumadai as potential efflux inhibitors in Mycobacterium smegmatis. Bioorganic Med. Chem. 2012, 20, 2701–2706. [Google Scholar] [CrossRef]
- Kubo, I.; Muroi, H.; Himejima, M. Antimicrobial activity of green tea flavor components and their combination effects. J. Agric. Food Chem. 1992, 40, 245–248. [Google Scholar] [CrossRef]
- Chowdhry, L.; Khan, Z.K.; Kulshrestha, D.K. Evaluation of himachalol in murine invasive aspergillosis*. Mycoses 1996, 39, 449–452. [Google Scholar] [CrossRef]
- Lee, J.-Y.; Kim, Y.-S.; Shin, D.-H. Antimicrobial Synergistic Effect of Linolenic Acid and Monoglyceride against Bacillus cereus and Staphylococcus aureus. J. Agric. Food Chem. 2002, 50, 2193–2199. [Google Scholar] [CrossRef] [PubMed]
Relative Abundance (%) | ||||||
---|---|---|---|---|---|---|
Name | Formula | m/z | Retention Time (min) | Characterized m/z Fragmentation | PFVC1 | PFVC2 |
Trans-Verbenol | C10H16O | 150.10434 | 10.819 | 137.09605; 109.0679; 67.05420 | - | 2.25 |
Naphthalene | C10H8 | 128.06248 | 11.906 | 128.06195; 127.05422 | 1.23 | 2.2 |
ρ-Cymene-8-ol | C10H14O | 150.10434 | 11.929 | 135.08034; 132.09329 | - | 3.04 |
Quinoline | C9H7N | 129.05771 | 14.070 | 129.05716; 128.04941 | 0.25 | - |
2-Furancarboxaldehyde, 5-(2-furanylmethyl)- | C10H8O3 | 176.04712 | 19.878 | 110.05623; 53.04685 | 0.89 | 2.88 |
Chloroatranol | C8H7ClO3 | 186.00767 | 20.039 | 184.99997; 140.00228 | 19.80 | 24.38 |
δ-Cadinene | C15H24 | 204.18764 | 23.527 | 161.13234; 133.10115 | 1.41 | - |
Himachalol | C15H26O | 204.18767 | 23.825 | 204.18712; 150.03104; 119.08552 | 0.27 | - |
Methyl haematommate | C10H10O5 | 210.05272 | 24.176 | 210.05218; 178.025878; 150.03105 | 0.87 | - |
Atraric acid | C10H12O4 | 196.0733 | 24.978 | 196.07274; 177.03619; 164.05173 | 73.53 | 56.95 |
Acetisoeugenol | C12H14O3 | 238.08397 | 25.993 | 164.04664 | - | 3.77 |
Guaiol acetate | C17H28O2 | 204.18764 | 26.634 | 161.13238; 105.06987 | 0.82 | - |
n-Hexadecanoic acid | C16H32O2 | 256.24017 | 30.200 | 73.02841 | 0.94 | 2.67 |
Abietatriene | C20H30 | 270.23474 | 31.946 | 255.21075; 173.13241 | - | 1.62 |
9,12,15-Octadecatrienoic acid, (Z,Z,Z)- | C18H30O2 | 278.22421 | 33.130 | 79.05423; 55.05425 | - | 0.18 |
Total | 100 | 100 |
Microorganism | IZD | MIC (µg/mL) | ||
---|---|---|---|---|
PFVC1 | PFVC2 | PFVC1 | PFVC2 | |
Acinetobacter baumannii (A1) | 125 | 250 | ||
Escherichia coli (E1) | 500 | 500 | ||
Klebsiella pneumoniae (K1) | 500 | 1000 | ||
Staphylococcus aureus (S1) | 250 | 250 | ||
Staphylococcus aureus (ATCC 29213) | 250 | 250 | ||
Bacillus subtilis (ATCC 6633) | 500 | 250 | ||
Salmonella typhimurium (ATCC 25241) | 500 | 500 | ||
Escherichia coli (ATCC 25922) | 500 | 500 | ||
Candida albicans (ATCC 10231) | 62.5 | 31.25 | ||
Aeromonas hydrophila (DSM 30187) | 250 | 125 | ||
Pseudomonas anguiliseptica (DSM 12111) | 250 | 250 | ||
Edwardsiella tarda (DSM 30052) | 125 | 125 | ||
Listonella anguillarum (ATCC 19264) | 250 | 500 | ||
Yersinia ruckeri (ATCC 29473) | 250 | 250 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Essadki, Y.; Hilmi, A.; Cascajosa-Lira, A.; Girão, M.; Darrag, E.M.; Martins, R.; Romane, A.; El Amrani Zerrifi, S.; Mugani, R.; Tazart, Z.; et al. In Vitro Antimicrobial Activity of Volatile Compounds from the Lichen Pseudevernia furfuracea (L.) Zopf. Against Multidrug-Resistant Bacteria and Fish Pathogens. Microorganisms 2024, 12, 2336. https://doi.org/10.3390/microorganisms12112336
Essadki Y, Hilmi A, Cascajosa-Lira A, Girão M, Darrag EM, Martins R, Romane A, El Amrani Zerrifi S, Mugani R, Tazart Z, et al. In Vitro Antimicrobial Activity of Volatile Compounds from the Lichen Pseudevernia furfuracea (L.) Zopf. Against Multidrug-Resistant Bacteria and Fish Pathogens. Microorganisms. 2024; 12(11):2336. https://doi.org/10.3390/microorganisms12112336
Chicago/Turabian StyleEssadki, Yasser, Adel Hilmi, Antonio Cascajosa-Lira, Mariana Girão, El Mehdi Darrag, Rosário Martins, Abderrahmane Romane, Soukaina El Amrani Zerrifi, Richard Mugani, Zakaria Tazart, and et al. 2024. "In Vitro Antimicrobial Activity of Volatile Compounds from the Lichen Pseudevernia furfuracea (L.) Zopf. Against Multidrug-Resistant Bacteria and Fish Pathogens" Microorganisms 12, no. 11: 2336. https://doi.org/10.3390/microorganisms12112336
APA StyleEssadki, Y., Hilmi, A., Cascajosa-Lira, A., Girão, M., Darrag, E. M., Martins, R., Romane, A., El Amrani Zerrifi, S., Mugani, R., Tazart, Z., Redouane, E. M., Jos, A., Cameán, A. M., Vasconcelos, V., Campos, A., El Khalloufi, F., Oudra, B., Barakate, M., & Carvalho, M. d. F. (2024). In Vitro Antimicrobial Activity of Volatile Compounds from the Lichen Pseudevernia furfuracea (L.) Zopf. Against Multidrug-Resistant Bacteria and Fish Pathogens. Microorganisms, 12(11), 2336. https://doi.org/10.3390/microorganisms12112336