Enhanced Oil Recovery in a Co-Culture System of Pseudomonas aeruginosa and Bacillus subtilis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bacterial Strains, Growth Conditions, and Inoculum Preparation
2.2. Optimization of Inoculation Ratios and Determination of Properties in Co-Culture Systems
2.3. Determination of Cell Density and Biosurfactant Production in Culture Systems
2.4. Microscopic Oil Displacement Experiments
2.5. Oilfield Geochemical Features and MEOR Strategy
2.6. High-Throughput Sequencing and Microbial Community Analysis
2.7. Statistical Analyses
3. Results and Discussion
3.1. Growth, Biosurfactant Production, and Emulsification Properties in Co-Culture Systems with Different Inoculum Ratios
3.2. Effects of the Co-Culture System on Microbial Growth and Biosurfactant Production
3.3. Enhanced oil recovery potential of the Co-Culture System
3.4. Production Performance of the MEOR Field Trial Blocks
3.5. Bacterial Composition of the Reservoir Community in Oil Wells Across Various Phases of MEOR
3.6. Potential Functions of the Reservoir Community in Oil Wells Across Various Phases of MEOR
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Maleki, M.; Kazemzadeh, Y.; Monfared, A.D.; Hasan-Zadeh, A.; Abbasi, S. Bio-enhanced oil recovery (BEOR) methods: All-important review of the occasions and challenges. Can. J. Chem. Eng. 2024, 102, 2364–2390. [Google Scholar] [CrossRef]
- Saravanan, A.; Kumar, P.S.; Vardhan, K.H.; Jeevanantham, S.; Karishma, S.B.; Yaashikaa, P.R.; Vellaichamy, P. A review on systematic approach for microbial enhanced oil recovery technologies: Opportunities and challenges. J. Clean. Prod. 2020, 258, 120777. [Google Scholar] [CrossRef]
- Patel, J.; Borgohain, S.; Kumar, M.; Rangarajan, V.; Somasundaran, P.; Sen, R. Recent developments in microbial enhanced oil recovery. Renew. Sustain. Energy Rev. 2015, 52, 1539–1558. [Google Scholar] [CrossRef]
- Lourdes, R.S.; Cheng, S.Y.; Chew, K.W.; Ma, Z.L.; Show, P.L. Prospects of microbial enhanced oil recovery: Mechanisms and environmental sustainability. Sustain. Energy Technol. Assess. 2022, 53, 102527. [Google Scholar] [CrossRef]
- Nikolova, C.; Gutierrez, T. Use of Microorganisms in the Recovery of Oil from Recalcitrant Oil Reservoirs: Current State of Knowledge, Technological Advances and Future Perspectives. Front. Microbiol. 2020, 10, 2996. [Google Scholar] [CrossRef]
- Yin, J.; Wei, X.; Hu, F.; Cheng, C.; Song, M.; Zhuang, G.; Ma, A. Alternative stable microbiome state triggered by the introduction of functional microbes in oil reservoirs drives sustainable microbial enhanced oil recovery. Chem. Eng. J. 2023, 475, 146073. [Google Scholar] [CrossRef]
- Keller, L.; Surette, M.G. Communication in bacteria: An ecological and evolutionary perspective. Nat. Rev. Microbiol. 2006, 4, 249–258. [Google Scholar] [CrossRef]
- Thakur, V.; Baghmare, P.; Verma, A.; Verma, J.S.; Geed, S.R. Recent progress in microbial biosurfactants production strategies: Applications, technological bottlenecks, and future outlook. Bioresour. Technol. 2024, 408, 131211. [Google Scholar] [CrossRef]
- Gieg, L.M.; Fowler, S.J.; Berdugo-Clavijo, C. Syntrophic biodegradation of hydrocarbon contaminants. Curr. Opin. Biotechnol. 2014, 27, 21–29. [Google Scholar] [CrossRef]
- Alves, A.R.; Sequeira, A.M.; Cunha, A. Increase in bacterial biosurfactant production by co-cultivation with biofilm-forming bacteria. Lett. Appl. Microbiol. 2019, 69, 79–86. [Google Scholar] [CrossRef]
- Kamyabi, A.; Nouri, H.; Moghimi, H. Synergistic Effect of Sarocladium sp. and Cryptococcus sp. Co-Culture on Crude Oil Biodegradation and Biosurfactant Production. Appl. Biochem. Biotechnol. 2017, 182, 324–334. [Google Scholar] [CrossRef] [PubMed]
- Mu, B.Z.; Nazina, T.N. Recent Advances in Petroleum Microbiology. Microorganisms 2022, 10, 1706. [Google Scholar] [CrossRef] [PubMed]
- Safdel, M.; Anbaz, M.A.; Daryasafar, A.; Jamialahmadi, M. Microbial enhanced oil recovery, a critical review on worldwide implemented field trials in different countries. Renew. Sustain. Energy Rev. 2017, 74, 159–172. [Google Scholar] [CrossRef]
- Sharma, K.; Singh, V.; Pandit, S.; Thapa, B.S.; Pant, K.; Tusher, T.R. Isolation of Biosurfactant-Producing Bacteria and Their Co-Culture Application in Microbial Fuel Cell for Simultaneous Hydrocarbon Degradation and Power Generation. Sustainability 2022, 14, 15638. [Google Scholar] [CrossRef]
- Wu, B.; Xiu, J.L.; Yu, L.; Huang, L.X.; Yi, L.A.; Ma, Y.D. Degradation of crude oil in a co-culture system of Bacillus subtilis and Pseudomonas aeruginosa. Front. Microbiol. 2023, 14, 1132831. [Google Scholar] [CrossRef] [PubMed]
- Jiang, M.; Li, Q.X.; Hu, S.Y.; He, P.H.; Chen, Y.G.; Cai, D.B.; Wu, Y.T.; Chen, S.W. Enhanced aerobic denitrification performance with Bacillus licheniformis via secreting lipopeptide biosurfactant lichenysin. Chem. Eng. J. 2022, 434, 134686. [Google Scholar] [CrossRef]
- Cheng, W.M.; Liu, J.D.; Feng, Y.; Hu, X.M.; Zhao, Y.Y.; Liu, Y. Study on the cooperation mechanism of urea-hydrolysis bacteria and biosurfactant bacteria for dust suppression. Chem. Eng. J. 2024, 480, 148008. [Google Scholar] [CrossRef]
- Ebadi, A.; Sima, N.A.K.; Olamaee, M.; Hashemi, M.; Nasrabadi, R.G. Effective bioremediation of a petroleum-polluted saline soil by a surfactant-producing Pseudomonas aeruginosa consortium. J. Adv. Res. 2017, 8, 627–633. [Google Scholar] [CrossRef]
- Li, H.L.; Lai, R.Q.; Jin, Y.L.; Fang, X.X.; Cui, K.; Sun, S.S.; Gong, Y.J.; Li, H.N.; Zhang, Z.Z.; Zhang, G.Q.; et al. Directional culture of petroleum hydrocarbon degrading bacteria for enhancing crude oil recovery. J. Hazard. Mater. 2020, 390, 122160. [Google Scholar] [CrossRef]
- Li, H.S.; Fang, C.; Liu, X.R.; Bao, K.W.; Li, Y.; Bao, M.T. Quantitative analysis of biosurfactants in water samples by a modified oil spreading technique. Rsc Adv. 2023, 13, 9933–9944. [Google Scholar] [CrossRef]
- Yadav, A.K.; Manna, S.; Pandiyan, K.; Singh, A.; Kumar, M.; Chakdar, H.; Kashyap, P.L.; Srivastava, A.K. Isolation and characterization of biosurfactant producing Bacillus sp. from diesel fuel-contaminated site. Microbiology 2016, 85, 56–62. [Google Scholar] [CrossRef]
- Li, A.H.; Xu, M.Y.; Sun, W.; Sun, G.P. Rhamnolipid Production by Pseudomonas aeruginosa GIM 32 Using Different Substrates Including Molasses Distillery Wastewater. Appl. Biochem. Biotechnol. 2011, 163, 600–611. [Google Scholar] [CrossRef] [PubMed]
- Jiang, J.J.; Jin, M.J.; Li, X.Y.; Meng, Q.; Niu, J.; Long, X.W. Recent progress and trends in the analysis and identification of rhamnolipids. Appl. Microbiol. Biotechnol. 2020, 104, 8171–8186. [Google Scholar] [CrossRef]
- Yang, H.; Yu, H.M.; Shen, Z.Y. A novel high-throughput and quantitative method based on visible color shifts for screening Bacillus subtilis THY-15 for surfactin production. J. Ind. Microbiol. Biotechnol. 2015, 42, 1139–1147. [Google Scholar] [CrossRef]
- Cui, K.; Li, H.L.; Chen, P.; Li, Y.; Jiang, W.X.; Guo, K. New Technique for Enhancing Residual Oil Recovery from Low-Permeability Reservoirs: The Cooperation of Petroleum Hydrocarbon-Degrading Bacteria and SiO2 Nanoparticles. Microorganisms 2022, 10, 2104. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Luo, Y.J.; Lai, R.Q.; Cui, K.; Li, H.L.; Zhang, Z.Z.; Zhang, Y.; Shi, R.J. New Technique for Enhancing Oil Recovery from Low-Permeability Reservoirs: The Synergy of Silica Nanoparticles and Biosurfactant. Energy Fuels 2021, 35, 318–328. [Google Scholar] [CrossRef]
- Wang, D.; Sun, S.S.; Sha, T.; Liu, T.J.; Dong, H.H.; Cui, K.; Li, H.L.; Gong, Y.J.; Hou, J.R.; Zhang, Z.Z.; et al. Synergistic Effect of Silica Nanoparticles and Rhamnolipid on Wettability Alteration of Low Permeability Sandstone Rocks. Energy Fuels 2018, 32, 8098–8107. [Google Scholar] [CrossRef]
- Zhu, W.Y.; Zhao, J.X.; Han, H.Y.; Sun, G.Z.; Song, Z.Y. High-Pressure Microscopic Investigation on the Oil Recovery Mechanism by in Situ Biogases in Petroleum Reservoirs. Energy Fuels 2015, 29, 7866–7874. [Google Scholar] [CrossRef]
- Deng, S.Y.; Wang, B.; Zhang, H.; Qu, R.X.; Sun, S.S.; You, Q.; She, Y.H.; Zhang, F. Degradation and enhanced oil recovery potential of Alcanivorax borkumensis through production of bio-enzyme and bio-surfactant. Bioresour. Technol. 2024, 400, 130690. [Google Scholar] [CrossRef]
- Bolyen, E.; Rideout, J.R.; Dillon, M.R.; Bokulich, N.; Abnet, C.C.; Al-Ghalith, G.A.; Alexander, H.; Alm, E.J.; Arumugam, M.; Asnicar, F.; et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 2019, 37, 852–857. [Google Scholar] [CrossRef]
- Yun, Y.; Gui, Z.Y.; Su, T.Q.; Tian, X.F.; Wang, S.J.; Chen, Y.; Su, Z.Y.; Fan, H.Q.; Xie, J.X.; Li, G.Q.; et al. Deep mining decreases the microbial taxonomic and functional diversity of subsurface oil reservoirs. Sci. Total Environ. 2022, 821, 153564. [Google Scholar] [CrossRef] [PubMed]
- Geng, S.Y.; Xu, G.M.; You, Y.; Xia, M.; Zhu, Y.; Ding, A.Z.; Fan, F.Q.; Dou, J.F. Occurrence of polycyclic aromatic compounds and interdomain microbial communities in oilfield soils. Environ. Res. 2022, 212, 113191. [Google Scholar] [CrossRef] [PubMed]
- Ron, E.Z.; Rosenberg, E. Biosurfactants and oil bioremediation. Curr. Opin. Biotechnol. 2002, 13, 249–252. [Google Scholar] [CrossRef] [PubMed]
- Gao, C.-H.; Cao, H.; Cai, P.; Sorensen, S.J. The initial inoculation ratio regulates bacterial coculture interactions and metabolic capacity. ISME J. 2021, 15, 29–40. [Google Scholar] [CrossRef] [PubMed]
- Mahmoud, S.; Gaber, Y.; Khattab, R.A.; Bakeer, W.; Dishisha, T.; Ramadan, M.A. The inhibitory effect of dextranases from Bacillus velezensis and Pseudomonas stutzeri on Streptococcus mutans biofilm. Iran. J. Microbiol. 2022, 14, 850–862. [Google Scholar] [CrossRef]
- Saimmai, A.; Sobhon, V.; Maneerat, S. Molasses as a Whole Medium for Biosurfactants Production by Bacillus Strains and Their Application. Appl. Biochem. Biotechnol. 2011, 165, 315–335. [Google Scholar] [CrossRef]
- Braz, L.M.; Salazar-Bryam, A.M.; Andrade, G.S.S.; Tambourgi, E.B. Optimization and characterization of rhamnolipids produced by Pseudomonas aeruginosa ATCC 9027 using molasses as a substrate. World J. Microbiol. Biotechnol. 2023, 39, 51. [Google Scholar] [CrossRef]
- Gaur, V.K.; Sharma, P.; Sirohi, R.; Varjani, S.; Taherzadeh, M.J.; Chang, J.-S.; Ng, H.Y.; Wong, J.W.C.; Kim, S.-H. Production of biosurfactants from agro-industrial waste and waste cooking oil in a circular bioeconomy: An overview. Bioresour. Technol. 2022, 343, 126059. [Google Scholar] [CrossRef]
- Vis, M.A.M.; Ito, K.; Hofmann, S. Impact of Culture Medium on Cellular Interactions in in vitro Co-culture Systems. Front. Bioeng. Biotechnol. 2020, 8, 911. [Google Scholar] [CrossRef]
- Kalamara, M.; Spacapan, M.; Mandic-Mulec, I.; Stanley-Wall, N.R. Social behaviours by Bacillus subtilis: Quorum sensing, kin discrimination and beyond. Mol. Microbiol. 2018, 110, 863–878. [Google Scholar] [CrossRef]
- Dobler, L.; Vilela, L.F.; Almeida, R.V.; Neves, B.C. Rhamnolipids in perspective: Gene regulatory pathways, metabolic engineering, production and technological forecasting. New Biotechnol. 2016, 33, 123–135. [Google Scholar] [CrossRef] [PubMed]
- Wu, Q.; Zhi, Y.; Xu, Y. Systematically engineering the biosynthesis of a green biosurfactant surfactin by Bacillus subtilis 168. Metab. Eng. 2019, 52, 87–97. [Google Scholar] [CrossRef] [PubMed]
- Chatzidaki-Livanis, M.; Geva-Zatorsky, N.; Comstock, L.E. Bacteroides fragilis type VI secretion systems use novel effector and immunity proteins to antagonize human gut Bacteroidales species. Proc. Natl. Acad. Sci. USA 2016, 113, 3627–3632. [Google Scholar] [CrossRef]
- Bernal, P.; Allsopp, L.P.; Filloux, A.; Llamas, M.A. The Pseudomonas putida T6SS is a plant warden against phytopathogens. ISME J. 2017, 11, 972–987. [Google Scholar] [CrossRef]
- Molina-Santiago, C.; Pearson, J.R.; Navarro, Y.; Victoria Berlanga-Clavero, M.; Caraballo-Rodriguez, A.M.; Petras, D.; Luisa Garcia-Martin, M.; Lamon, G.; Haberstein, B.; Cazorla, F.M.; et al. The extracellular matrix protects Bacillus subtilis colonies from Pseudomonas invasion and modulates plant co-colonization. Nat. Commun. 2019, 10, 1919. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Wu, H.; Yang, M.; Xu, D.; Chen, J.; Feng, H.; Lu, Y.; Zhang, L.; Yu, Y.; Kang, W. Stability mechanism of O/W Pickering emulsions stabilized with regenerated cellulose. Carbohydr. Polym. 2018, 181, 224–233. [Google Scholar] [CrossRef]
- Komaiko, J.; McClements, D.J. Low-energy formation of edible nanoemulsions by spontaneous emulsification: Factors influencing particle size. J. Food Eng. 2015, 146, 122–128. [Google Scholar] [CrossRef]
- Gao, P.; Li, Y.; Tian, H.; Li, G.; Zhao, F.; Xia, W.; Pan, X.; Gu, J.-D.; Le, J.; Jia, C.; et al. Bacterial and Archaeal Community Distribution in Oilfield Water Re-injection Facilities and the Influences from Microorganisms in Injected Water. Microb. Ecol. 2022, 84, 1011–1028. [Google Scholar] [CrossRef]
- Joy, S.; Rahman, P.K.S.M.; Sharma, S. Biosurfactant production and concomitant hydrocarbon degradation potentials of bacteria isolated from extreme and hydrocarbon contaminated environments. Chem. Eng. J. 2017, 317, 232–241. [Google Scholar] [CrossRef]
- Domingues, P.M.; Oliveira, V.; Serafim, L.S.; Gomes, N.C.M.; Cunha, A. Biosurfactant Production in Sub-Oxic Conditions Detected in Hydrocarbon-Degrading Isolates from Marine and Estuarine Sediments. Int. J. Environ. Res. Public Health 2020, 17, 1746. [Google Scholar] [CrossRef]
- Fida, T.T.; Sharma, M.; Shen, Y.; Voordouw, G. Microbial sulfite oxidation coupled to nitrate reduction in makeup water for oil production. Chemosphere 2021, 284, 131298. [Google Scholar] [CrossRef] [PubMed]
- Yin, J.; Wei, X.; Hu, F.; Cheng, C.; Zhuang, X.; Song, M.; Zhuang, G.; Wang, F.; Ma, A. Halotolerant Bacillus velezensis sustainably enhanced oil recovery of low permeability oil reservoirs by producing biosurfactant and modulating the oil microbiome. Chem. Eng. J. 2023, 453, 139912. [Google Scholar] [CrossRef]
- Li, G.; Gao, P.; Wu, Y.; Tian, H.; Dai, X.; Wang, Y.; Cui, Q.; Zhang, H.; Pan, X.; Dong, H.; et al. Microbial Abundance and Community Composition Influence Production Performance in a Low-Temperature Petroleum Reservoir. Environ. Sci. Technol. 2014, 48, 5336–5344. [Google Scholar] [CrossRef] [PubMed]
- Nayarisseri, A.; Singh, S.K.; Arora, P.K. Genome analysis of biosurfactant producing bacterium, Bacillus tequilensis. PLoS ONE 2023, 18, e0285994. [Google Scholar] [CrossRef] [PubMed]
- Kiss, K.; Ng, W.T.; Li, Q. Production of rhamnolipids-producing enzymes of Pseudomonas in E-coli and structural characterization. Front. Chem. Sci. Eng. 2017, 11, 133–138. [Google Scholar] [CrossRef]
- Shahi, A.; Ince, B.; Aydin, S.; Ince, O. Assessment of the horizontal transfer of functional genes as a suitable approach for evaluation of the bioremediation potential of petroleum-contaminated sites: A mini-review. Appl. Microbiol. Biotechnol. 2017, 101, 4341–4348. [Google Scholar] [CrossRef]
- Xia, W.; Shen, W.; Yu, L.; Zheng, C.; Yu, W.; Tang, Y. Conversion of petroleum to methane by the indigenous methanogenic consortia for oil recovery in heavy oil reservoir. Appl. Energy 2016, 171, 646–655. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kang, D.; Lin, H.; Li, Q.; Su, N.; Cheng, C.; Luo, Y.; Zhang, Z.; Zhang, Z. Enhanced Oil Recovery in a Co-Culture System of Pseudomonas aeruginosa and Bacillus subtilis. Microorganisms 2024, 12, 2343. https://doi.org/10.3390/microorganisms12112343
Kang D, Lin H, Li Q, Su N, Cheng C, Luo Y, Zhang Z, Zhang Z. Enhanced Oil Recovery in a Co-Culture System of Pseudomonas aeruginosa and Bacillus subtilis. Microorganisms. 2024; 12(11):2343. https://doi.org/10.3390/microorganisms12112343
Chicago/Turabian StyleKang, Dingyu, Hai Lin, Qiang Li, Nan Su, Changkun Cheng, Yijing Luo, Zhongzhi Zhang, and Zhiyong Zhang. 2024. "Enhanced Oil Recovery in a Co-Culture System of Pseudomonas aeruginosa and Bacillus subtilis" Microorganisms 12, no. 11: 2343. https://doi.org/10.3390/microorganisms12112343
APA StyleKang, D., Lin, H., Li, Q., Su, N., Cheng, C., Luo, Y., Zhang, Z., & Zhang, Z. (2024). Enhanced Oil Recovery in a Co-Culture System of Pseudomonas aeruginosa and Bacillus subtilis. Microorganisms, 12(11), 2343. https://doi.org/10.3390/microorganisms12112343