Zero-Valent Iron and Sand Filtration Reduces Levels of Cyclospora cayetanensis Surrogates, Eimeria tenella and Eimeria acervulina, in Water
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Construction of Sand and ZVI Filters
2.2.1. Laboratory-Scale Filter
2.2.2. Field-Scale Filter
2.3. Propagation and Preparation of Eimeria spp. Inoculum
2.4. Animal Ethics Statement
2.5. Water Inoculation and Filtration
2.5.1. Lab-Scale Filter Experiments
2.5.2. Field-Scale Filter Experiments
2.6. Eimeria Oocyst Enumeration
2.7. Statistical Analysis
3. Results
3.1. Lab-Scale Filters
3.2. Field-Scale Filters
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Almeria, S.; Cinar, H.N.; Dubey, J.P. Cyclospora cayetanensis and Cyclosporiasis: An Update. Microorganisms 2019, 7, 317. [Google Scholar] [CrossRef] [PubMed]
- Mathison, B.A.; Pritt, B.S. Cyclosporiasis-Updates on Clinical Presentation, Pathology, Clinical Diagnosis, and Treatment. Microorganisms 2021, 9, 1863. [Google Scholar] [CrossRef] [PubMed]
- Chacin-Bonilla, L. Epidemiology of Cyclospora cayetanensis: A review focusing in endemic areas. Acta Trop. 2010, 115, 181–193. [Google Scholar] [CrossRef]
- Almeria, S.; Chacin-Bonilla, L.; Maloney, J.G.; Santin, M. Cyclospora cayetanensis: A Perspective (2020–2023) with Emphasis on Epidemiology and Detection Methods. Microorganisms 2023, 11, 2171. [Google Scholar] [CrossRef] [PubMed]
- Hadjilouka, A.; Tsaltas, D. Cyclospora cayetanensis-Major Outbreaks from Ready to Eat Fresh Fruits and Vegetables. Foods 2020, 9, 1703. [Google Scholar] [CrossRef] [PubMed]
- FDA. Outbreak Investigation of Cyclospora: Bagged Salads (June 2020). Available online: https://www.fda.gov/food/outbreaks-foodborne-illness/outbreak-investigation-cyclospora-bagged-salads-june-2020 (accessed on 6 September 2024).
- Casillas, S.M.; Bennett, C.; Straily, A. Notes from the Field: Multiple Cyclosporiasis Outbreaks-United States, 2018. MMWR Morb. Mortal. Wkly. Rep. 2018, 67, 1101–1102. [Google Scholar] [CrossRef]
- CDC. Surveillance of Cyclosporiasis. Available online: https://www.cdc.gov/cyclosporiasis/php/surveillance/index.html (accessed on 6 September 2024).
- FDA. FDA Sampling Assignment Update Identifies Cyclospora in Herbs. Available online: https://www.fda.gov/food/cfsan-constituent-updates/fda-sampling-assignment-update-identifies-cyclospora-herbs (accessed on 6 September 2024).
- Naganathan, T.; O’Connor, A.; Sargeant, J.M.; Shapiro, K.; Totton, S.; Winder, C.; Greer, A.L. The prevalence of Cyclospora cayetanensis in water: A systematic review and meta-analysis. Epidemiol. Infect. 2022, 150, e15. [Google Scholar] [CrossRef]
- Sathyanarayanan, L.; Ortega, Y. Effects of pesticides on sporulation of Cyclospora cayetanensis and viability of Cryptosporidium parvum. J. Food Prot. 2004, 67, 1044–1049. [Google Scholar] [CrossRef]
- Ortega, Y.R.; Mann, A.; Torres, M.P.; Cama, V. Efficacy of gaseous chlorine dioxide as a sanitizer against Cryptosporidium parvum, Cyclospora cayetanensis, and Encephalitozoon intestinalis on produce. J. Food Prot. 2008, 71, 2410–2414. [Google Scholar] [CrossRef]
- Ortega, Y.R.; Liao, J. Microwave inactivation of Cyclospora cayetanensis sporulation and viability of Cryptosporidium parvum oocysts. J. Food Prot. 2006, 69, 1957–1960. [Google Scholar] [CrossRef]
- Zawawy, E.; El-Said, D.; Ali, S.; Fathy, F. Disinfection efficacy of sodium dichloroisocyanurate (NADCC) against common food-borne intestinal protozoa. J. Egypt. Soc. Parasitol. 2010, 40, 165–185. [Google Scholar]
- Hussein, E.M.; Ahmed, S.A.; Mokhtar, A.B.; Elzagawy, S.M.; Yahi, S.H.; Hussein, A.M.; El-Tantawey, F. Antiprotozoal activity of magnesium oxide (MgO) nanoparticles against Cyclospora cayetanensis oocysts. Parasitol. Int. 2018, 67, 666–674. [Google Scholar] [CrossRef]
- Sathyanarayanan, L.; Ortega, Y. Effects of Temperature and Different Food Matrices on Cyclospora cayetanensis Oocyst Sporulation. J. Parasitol. 2006, 92, 218–222. [Google Scholar] [CrossRef] [PubMed]
- Ortega, Y.R.; Sanchez, R. Update on Cyclospora cayetanensis, a food-borne and waterborne parasite. Clin. Microbiol. Rev. 2010, 23, 218–234. [Google Scholar] [CrossRef] [PubMed]
- Verma, S.; Daverey, A.; Sharma, A. Slow sand filtration for water and wastewater treatment—A review. Environ. Technol. Rev. 2017, 6, 47–58. [Google Scholar] [CrossRef]
- Ellis, K.V.; Wood, W.E. Slow sand filtration. Crit. Rev. Environ. Control 1985, 15, 315–354. [Google Scholar] [CrossRef]
- Guchi, E. Review on Slow Sand Filtration in Removing Microbial Contamination and Particles from Drinking Water. Am. J. Food Nutr. 2015, 3, 47–55. [Google Scholar] [CrossRef]
- Waller, P.; Yitayew, M. Agricultural Drip Irrigation. In Irrigation and Drainage Engineering; Waller, P., Yitayew, M., Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 289–304. [Google Scholar]
- Kniel, K. Analysis of the Presence of Cyclospora in Waters of the Mid-Atlantic States and Evaluation of Removal and Inactivation by Filtration. Available online: https://www.centerforproducesafety.org/assets/research-database/Kniel-2019-Final-Report.pdf (accessed on 8 September 2024).
- You, Y.; Han, J.; Chiu, P.C.; Jin, Y. Removal and Inactivation of Waterborne Viruses Using Zerovalent Iron. Environ. Sci. Technol. 2005, 39, 9263–9269. [Google Scholar] [CrossRef]
- Bradley, I.; Straub, A.; Maraccini, P.; Markazi, S.; Nguyen, T.H. Iron oxide amended biosand filters for virus removal. Water Res. 2011, 45, 4501–4510. [Google Scholar] [CrossRef]
- George, D.; Mansoor Ahammed, M. Effect of zero-valent iron amendment on the performance of biosand filters. Water Supply 2019, 19, 1612–1618. [Google Scholar] [CrossRef]
- Yeager, C.; Tucker, M.; Gutierrez, A.; O’Brien, C.; Sharma, M.; Fournet, V.; Dubey, J.P.; Jenkins, M.; Kniel, K.; Rosenthal, B.M. Filters comprised of sand and Zero Valent Iron hold promise as tools to mitigate risk posed by Cyclospora cayetanensis oocysts. Food Waterborne Parasitol. 2024, 37, e00243. [Google Scholar] [CrossRef] [PubMed]
- Ingram, D.T.; Callahan, M.T.; Ferguson, S.; Hoover, D.G.; Chiu, P.C.; Shelton, D.R.; Millner, P.D.; Camp, M.J.; Patel, J.R.; Kniel, K.E.; et al. Use of zero-valent iron biosand filters to reduce Escherichia coli O157:H12 in irrigation water applied to spinach plants in a field setting. J. Appl. Microbiol. 2011, 112, 551–560. [Google Scholar] [CrossRef] [PubMed]
- Anderson-Coughlin, B.L.; Litt, P.K.; Kim, S.; Craighead, S.; Kelly, A.J.; Chiu, P.; Sharma, M.; Kniel, K.E. Zero-Valent Iron Filtration Reduces Microbial Contaminants in Irrigation Water and Transfer to Raw Agricultural Commodities. Microorganisms 2021, 9, 2009. [Google Scholar] [CrossRef]
- Marik, C.M.; Anderson-Coughlin, B.; Gartley, S.; Craighead, S.; Bradshaw, R.; Kulkarni, P.; Sharma, M.; Kniel, K.E. The efficacy of zero valent iron-sand filtration on the reduction of Escherichia coli and Listeria monocytogenes in surface water for use in irrigation. Environ. Res. 2019, 173, 33–39. [Google Scholar] [CrossRef]
- Kulkarni, P.; Raspanti, G.A.; Bui, A.Q.; Bradshaw, R.N.; Kniel, K.E.; Chiu, P.C.; Sharma, M.; Sapkota, A.; Sapkota, A.R. Zerovalent iron-sand filtration can reduce the concentration of multiple antimicrobials in conventionally treated reclaimed water. Environ. Res. 2019, 172, 301–309. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Bradshaw, R.; Kulkarni, P.; Allard, S.; Chiu, P.C.; Sapkota, A.R.; Newell, M.J.; Handy, E.T.; East, C.L.; Kniel, K.E.; et al. Zero-Valent Iron-Sand Filtration Reduces Escherichia coli in Surface Water and Leafy Green Growing Environments. Front. Sustain. Food Syst. 2020, 4, 112. [Google Scholar] [CrossRef]
- Kim, S.; Eckart, K.; Sabet, S.; Chiu, P.C.; Sapkota, A.R.; Handy, E.T.; East, C.L.; Kniel, K.E.; Sharma, M. Escherichia coli Reduction in Water by Zero-Valent Iron–Sand Filtration Is Based on Water Quality Parameters. Water 2021, 13, 2702. [Google Scholar] [CrossRef]
- Shi, C.; Wei, J.; Jin, Y.; Kniel, K.E.; Chiu, P.C. Removal of viruses and bacteriophages from drinking water using zero-valent iron. Sep. Purif. Technol. 2012, 84, 72–78. [Google Scholar] [CrossRef]
- Shearer, A.E.H.; Kniel, K.E. Enhanced Removal of Norovirus Surrogates, Murine Norovirus and Tulane Virus, from Aqueous Systems by Zero-Valent Iron. J. Food Prot. 2018, 81, 1432–1438. [Google Scholar] [CrossRef]
- Dubey, J.P.; Khan, A.; Rosenthal, B.M. Life Cycle and Transmission of Cyclospora cayetanensis: Knowns and Unknowns. Microorganisms 2022, 10, 118. [Google Scholar] [CrossRef]
- Augendre, L.; Costa, D.; Escotte-Binet, S.; Aubert, D.; Villena, I.; Dumètre, A.; La Carbona, S. Surrogates of foodborne and waterborne protozoan parasites: A review. Food Waterborne Parasitol. 2023, 33, e00212. [Google Scholar] [CrossRef] [PubMed]
- Pieniazek, N.J.; Herwaldt, B.L. Reevaluating the molecular taxonomy: Is human-associated Cyclospora a mammalian Eimeria species? Emerg. Infect. Dis. 1997, 3, 381–383. [Google Scholar] [CrossRef] [PubMed]
- Reiman, D.A.; Schmidt, T.M.; Gajadhar, A.; Sogin, M.; Cross, J.; Yoder, K.; Sethabutr, O.; Echeverria, P. Molecular Phylogenetic Analysis of Cyclospora, the Human Intestinal Pathogen, Suggests that It Is Closely Related to Eimeria Species. J. Infect. Dis. 1996, 173, 440–445. [Google Scholar] [CrossRef] [PubMed]
- Tucker, M.S.; Khan, A.; Jenkins, M.C.; Dubey, J.P.; Rosenthal, B.M. Hastening Progress in Cyclospora Requires Studying Eimeria Surrogates. Microorganisms 2022, 10, 1977. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.B.; Lee, E.-H. Coccidial Contamination of Raspberries: Mock Contamination with Eimeria acervulina as a Model for Decontamination Treatment Studies. J. Food Prot. 2001, 64, 1854–1857. [Google Scholar] [CrossRef]
- Kniel, K.E.; Shearer, A.E.H.; Cascarino, J.L.; Wilkins, G.C.; Jenkins, M.C. High Hydrostatic Pressure and UV Light Treatment of Produce Contaminated with Eimeria acervulina as a Cyclospora cayetanensis Surrogate. J. Food Prot. 2007, 70, 2837–2842. [Google Scholar] [CrossRef]
- Baumann, A.A.; Myers, A.K.; Khajeh-Kazerooni, N.; Rosenthal, B.; Jenkins, M.; O’Brien, C.; Fuller, L.; Morgan, M.; Lenaghan, S.C. Aqueous Ozone Exposure Inhibits Sporulation in the Cyclospora cayetanensis Surrogate Eimeria acervulina. J. Food Prot. 2024, 87, 100260. [Google Scholar] [CrossRef]
- Conway, D.P.; McKenzie, M.E. Introduction to Coccidiosis. In Poultry Coccidiosis: Diagnostic and Testing Procedures, 3rd ed.; Blackwell Publishing: Ames, IA, USA, 2007; pp. 7–16. [Google Scholar]
- CDC. Healthy Housing Reference Manual. Available online: https://stacks.cdc.gov/view/cdc/21748 (accessed on 23 September 2024).
- Goyal, M.R. Micro Irrigation: Filtration Systems. In Sustainable Micro Irrigation: Principles and Practices, 1st ed.; Goyal, M.R., Ed.; Apple Academic Press: New York, NY, USA, 2014. [Google Scholar]
- Ryley, J.F.; Meade, R.; Hazelhurst, J.; Robinson, T.E. Methods in coccidiosis research: Separation of oocysts from faeces. Parasitology 1976, 73, 311–326. [Google Scholar] [CrossRef]
- Benjamini, Y.; Hochberg, Y. Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. J. R. Stat. Soc. Ser. B (Methodol.) 1995, 57, 289–300. [Google Scholar] [CrossRef]
- Wang, S.; Zhang, M.; He, L.; Li, M.; Zhang, X.; Liu, F.; Tong, M. Bacterial capture and inactivation in sand filtration systems with addition of zero-valent iron as permeable layer under both slow and fast filtration conditions. J. Hazard. Mater. 2022, 436, 129122. [Google Scholar] [CrossRef]
- Lu, P.; Amburgey, J.E. A pilot-scale study of Cryptosporidium-sized microsphere removals from swimming pools via sand filtration. J. Water Health 2015, 14, 109–120. [Google Scholar] [CrossRef] [PubMed]
- Wood, M.; Simmonds, L.; MacAdam, J.; Hassard, F.; Jarvis, P.; Chalmers, R.M. Role of filtration in managing the risk from Cryptosporidium in commercial swimming pools—A review. J. Water Health 2019, 17, 357–370. [Google Scholar] [CrossRef] [PubMed]
- Murphy, J.L.; Hlavsa, M.C.; Carter, B.C.; Miller, C.; Jothikumar, N.; Gerth, T.R.; Beach, M.J.; Hill, V.R. Pool water quality and prevalence of microbes in filter backwash from metro-Atlanta swimming pools. J. Water Health 2017, 16, 87–92. [Google Scholar] [CrossRef]
- Karanis, P.; Schoenen, D.; Seitz, H.M. Giardia and Cryptosporidium in backwash water from rapid sand filters used for drinking water production. Zentralblatt Bakteriol. 1996, 284, 107–114. [Google Scholar] [CrossRef]
- Dandie, C.E.; Ogunniyi, A.D.; Ferro, S.; Hall, B.; Drigo, B.; Chow, C.W.K.; Venter, H.; Myers, B.; Deo, P.; Donner, E.; et al. Disinfection options for irrigation water: Reducing the risk of fresh produce contamination with human pathogens. Crit. Rev. Environ. Sci. Technol. 2020, 50, 2144–2174. [Google Scholar] [CrossRef]
- Dumètre, A.; Aubert, D.; Puech, P.-H.; Hohweyer, J.; Azas, N.; Villena, I. Interaction Forces Drive the Environmental Transmission of Pathogenic Protozoa. Appl. Environ. Microbiol. 2012, 78, 905–912. [Google Scholar] [CrossRef]
- Kuznar, Z.A.; Elimelech, M. Role of Surface Proteins in the Deposition Kinetics of Cryptosporidium parvum Oocysts. Langmuir 2005, 21, 710–716. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.N.; Walker, S.L.; Bradford, S.A. Coupled factors influencing the transport and retention of Cryptosporidium parvum oocysts in saturated porous media. Water Res. 2010, 44, 1213–1223. [Google Scholar] [CrossRef]
- Hsu, B.-M.; Huang, C.; Pan, J.R. Filtration behaviors of giardia and cryptosporidium—Ionic strength and pH effects. Water Res. 2001, 35, 3777–3782. [Google Scholar] [CrossRef]
- Harrington, G.W.; Xagoraraki, I.; Assavasilavasukul, P.; Standridge, J.H. Effect of Filtration Conditions on Removal of Emerging waterborne pathogens. J. AWWA 2003, 95, 95–104. [Google Scholar] [CrossRef]
- Tufenkji, N.; Dixon, D.R.; Considine, R.; Drummond, C.J. Multi-scale Cryptosporidium/sand interactions in water treatment. Water Res. 2006, 40, 3315–3331. [Google Scholar] [CrossRef] [PubMed]
- Weber-Shirk, M.L.; Dick, R.I. Physical—Chemical mechanisms in slow sand filters. J. AWWA 1997, 89, 87–100. [Google Scholar] [CrossRef]
- Yildiz, B.S. Performance assessment of modified biosand filter with an extra disinfection layer. J. Water Supply Res. Technol.-Aqua 2016, 65, 266–276. [Google Scholar] [CrossRef]
- Winoa. Zero Valent Iron (ZVI). Available online: https://www.winoa.com/wp-content/uploads/2023/08/Zero-valent-iron-BRO-W-abrasives-en-UNITED-STATES-2023-2.pdf (accessed on 12 September 2024).
- Bradford, S.A.; Bettahar, M. Straining, Attachment, and Detachment of Cryptosporidium Oocysts in Saturated Porous Media. J. Environ. Qual. 2005, 34, 469–478. [Google Scholar] [CrossRef]
Fraction | Volume (mL) | 100% Sand | 50% ZVI/50% Sand |
---|---|---|---|
1 a | 100 | 0.05 ± 0.03 a | 0.004 ± 0.006 a |
2 | 200 | 28.84 ± 5.16 a | 0.06 ± 0.08 b |
3 | 200 | 11.94 ± 3.14 a | 0.03 ± 0.03 b |
4 | 200 | 2.38 ± 0.23 a | 0.01 ± 0.02 b |
5 | 200 | 0.91 ± 0.20 a | 0.003 ± 0.003 b |
6 | 200 | 0.60 ± 0.27 a | 0.01 ± 0.02 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gutierrez, A.; Tucker, M.S.; Yeager, C.; Fournet, V.; Jenkins, M.C.; Dubey, J.P.; Kniel, K.E.; Rosenthal, B.M.; Sharma, M. Zero-Valent Iron and Sand Filtration Reduces Levels of Cyclospora cayetanensis Surrogates, Eimeria tenella and Eimeria acervulina, in Water. Microorganisms 2024, 12, 2344. https://doi.org/10.3390/microorganisms12112344
Gutierrez A, Tucker MS, Yeager C, Fournet V, Jenkins MC, Dubey JP, Kniel KE, Rosenthal BM, Sharma M. Zero-Valent Iron and Sand Filtration Reduces Levels of Cyclospora cayetanensis Surrogates, Eimeria tenella and Eimeria acervulina, in Water. Microorganisms. 2024; 12(11):2344. https://doi.org/10.3390/microorganisms12112344
Chicago/Turabian StyleGutierrez, Alan, Matthew S. Tucker, Christina Yeager, Valsin Fournet, Mark C. Jenkins, Jitender P. Dubey, Kalmia E. Kniel, Benjamin M. Rosenthal, and Manan Sharma. 2024. "Zero-Valent Iron and Sand Filtration Reduces Levels of Cyclospora cayetanensis Surrogates, Eimeria tenella and Eimeria acervulina, in Water" Microorganisms 12, no. 11: 2344. https://doi.org/10.3390/microorganisms12112344
APA StyleGutierrez, A., Tucker, M. S., Yeager, C., Fournet, V., Jenkins, M. C., Dubey, J. P., Kniel, K. E., Rosenthal, B. M., & Sharma, M. (2024). Zero-Valent Iron and Sand Filtration Reduces Levels of Cyclospora cayetanensis Surrogates, Eimeria tenella and Eimeria acervulina, in Water. Microorganisms, 12(11), 2344. https://doi.org/10.3390/microorganisms12112344