Divergence within the Taxon ‘Candidatus Phytoplasma asteris’ Confirmed by Comparative Genome Analysis of Carrot Strains
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and DNA Extraction
2.2. Genome Sequencing
2.3. Hybrid Genome Assembly and Quality Assessment
2.4. Functional Annotation
2.5. Phylogenetic and Functional Comparison
3. Results
3.1. Sequencing and Hybrid Assembly
3.2. Quality Assessment
3.3. Genomic Benchmarks of the Taxon ‘Ca. P. asteris’
3.4. Phylogenetic Analysis
3.4.1. Average Nucleotide Identity
3.4.2. Single Gene Analysis Supports Cluster Formation
3.5. Pan-Genome Analyses
3.6. Functional Reconstruction and Comparison
3.6.1. Key Metabolism and Membrane Transport
3.6.2. Secretome and Characteristic Effector Proteins
3.6.3. Immunodominant Membrane Proteins
3.6.4. Adhesine P38
3.6.5. Bax-Inhibitor 1
3.6.6. Superoxide Dismutase
3.7. Extrachromosomal Elements
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Doi, Y.; Teranaka, M.; Yora, K.; Asuyama, H. Mycoplasma- or PLT Group-like Microorganisms Found in the Phloem Elements of Plants Infected with Mulberry Dwarf, Potato Witches’ Broom, Aster Yellows, or Paulownia Witches’ Broom. Jpn. J. Phytopathol. 1967, 33, 259–266. [Google Scholar] [CrossRef]
- Lee, I.M.; Davis, R.E.; Gundersen-Rindal, D.E. Phytoplasma: Phytopathogenic mollicutes. Annl. Rev. Microbiol. 2000, 54, 221–255. [Google Scholar] [CrossRef] [PubMed]
- Davis, M.R.; Raid, R.N. Compendium of Umbelliferous Crop Diseases, 1st ed.; American Phytopathological Society: St. Paul, MN, USA, 2002; pp. 58–59. [Google Scholar]
- Carminati, G.; Satta, E.; Paltrinieri, S.; Bertaccini, A. Simultaneous evaluation of ‘Candidatus Phytoplasma’ and ‘Candidatus Liberibacter solanacearum’ seed transmission in carrot. Phytopathog. Mollicutes 2019, 9, 141–142. [Google Scholar] [CrossRef]
- Randa Zelyüt, F.; Ertunç, F.; Şenal, D. The association of 16SrVI and 16SrI phytoplasma groups with carrot seeds and weeds in Ankara and Konya provinces in Turkey. Plant Prot. Bull. 2022, 62, 24–33. [Google Scholar] [CrossRef]
- Strauss, E. Phytoplasma research begins to bloom. Science 2009, 325, 388–390. [Google Scholar] [CrossRef] [PubMed]
- Font, I.; Abad, P.; Albinana, M.; Espino, A.I.; Dally, E.L.; Davis, R.E.; Jorda, C. Amarilleos y enrojecimientos en zanahoria: Una enfermedad a diagnóstico. Boletín De Sanid. Veg. Plagas 1999, 25, 405–415. [Google Scholar]
- Duduk, B.; Perić, P.; Marčić, D.; Drobnjaković, T.; Picciau, L.; Alma, A.; Bertaccini, A. Phytoplasmas in carrots: Disease and potential vectors in Serbia. Bull. Insectol. 2008, 61, 327–331. [Google Scholar]
- Munyaneza, J.E.; Lemmetty, A.; Nissinen, A.I.; Sengoda, V.G.; Fisher, T.W. Molecular detection of aster yellows phytoplasma and ‘Candidatus Liberibacter solanacearum’ in carrots affected by the psyllid Trioza apicalis (Hemiptera: Triozidae) in Finland. J. Plant Pathol. 2011, 93, 697–700. [Google Scholar]
- Nisbet, C.; Ross, S.; Monger, W.A.; Highet, F.; Jeffries, C. First report of ‘Candidatus Phytoplasma asteris’ in commercial carrots in the United Kingdom. New Dis. Rep. 2014, 30, 16. [Google Scholar] [CrossRef]
- Jonghe, K.D.; Roo, I.D.; Goedefroit, T. A survey in carrot reveals a widespread aster yellows infection, and a first case of ‘Candidatus Liberibacter solanacearum’ in Belgium. Phytopathog. Mollicutes 2019, 9, 139–140. [Google Scholar] [CrossRef]
- Zwolińska, A.; Borodynko-Filas, N. Intra and extragenomic variation between 16S rRNA genes found in 16SrI-B- related phytopathogenic phytoplasma strains. Ann. Appl. Biol. 2021, 179, 368–381. [Google Scholar] [CrossRef]
- Oshima, K.; Kakizawa, S.; Nishigawa, H.; Jung, H.-Y.; Wei, W.; Suzuki, S.; Arashida, R.; Nakata, D.; Miyata, S.; Ugaki, M.; et al. Reductive evolution suggested from the complete genome sequence of a plant-pathogenic phytoplasma. Nat. Genet. 2004, 36, 27–29. [Google Scholar] [CrossRef]
- Bai, X.; Correa, V.R.; Toruño, T.Y.; Ammar, E.-D.; Kamoun, S.; Hogenhout, S.A. AY-WB phytoplasma secretes a protein that targets plant cell nuclei. Mol. Plant Microbe Interact. 2009, 22, 18–30. [Google Scholar] [CrossRef]
- Wang, N.; Yang, H.; Yin, Z.; Liu, W.; Sun, L.; Wu, Y. Phytoplasma effector SWP1 induces witches’ broom symptom by destabilizing the TCP transcription factor BRANCHED1. Mol. Plant Pathol. 2018, 19, 2623–2634. [Google Scholar] [CrossRef]
- Huang, W.; MacLean, A.M.; Sugio, A.; Maqbool, A.; Busscher, M.; Cho, S.-T.; Kamoun, S.; Kuo, C.-H.; Immink, R.G.H.; Hogenhout, S.A. Parasitic modulation of host development by ubiquitin-independent protein degradation. Cell 2021, 184, 5201–5214.e12. [Google Scholar] [CrossRef]
- Bai, X.; Zhang, J.; Ewing, A.; Miller, S.A.; Jancso Radek, A.; Shevchenko, D.V.; Tsukerman, K.; Walunas, T.; Lapidus, A.; Campbell, J.W.; et al. Living with genome instability: The adaptation of phytoplasmas to diverse environments of their insect and plant hosts. J. Bacteriol. 2006, 188, 3682–3696. [Google Scholar] [CrossRef]
- Yan, X.-H.; Lin, J.; Liu, Y.; Huang, P.; Liu, J.; Hu, Q.; Li, Y.; Pei, S.-C.; Huang, W.; Kuo, C.-H. Complete Genome Sequence of ‘Candidatus Phytoplasma asteris’ QS2022, a Plant Pathogen Associated with Lettuce Chlorotic Leaf Rot Disease in China. Microbiol. Resour. Announc. 2023, 12, e0030623. [Google Scholar] [CrossRef]
- Orlovskis, Z.; Canale, M.C.; Haryono, M.; Lopes, J.R.S.; Kuo, C.-H.; Hogenhout, S.A. A few sequence polymorphisms among isolates of Maize bushy stunt phytoplasma associate with organ proliferation symptoms of infected maize plants. Ann. Bot. 2017, 119, 869–884. [Google Scholar] [CrossRef]
- Cho, S.-T.; Zwolińska, A.; Huang, W.; Wouters, R.H.M.; Mugford, S.T.; Hogenhout, S.A.; Kuo, C.-H. Complete Genome Sequence of ‘Candidatus Phytoplasma asteris’ RP166, a Plant Pathogen Associated with Rapeseed Phyllody Disease in Poland. Microbiol. Resour. Announc. 2020, 9, e00760-20. [Google Scholar] [CrossRef]
- Cao, Y.; Sun, G.; Zhai, X.; Xu, P.; Ma, L.; Deng, M.; Zhao, Z.; Yang, H.; Dong, Y.; Shang, Z.; et al. Genomic insights into the fast growth of paulownias and the formation of Paulownia witches’ broom. Mol. Plant 2021, 14, 1668–1682. [Google Scholar] [CrossRef]
- Luo, L.; Zhang, X.; Meng, F.; Wang, Y.; Zhou, Y.; Liu, J. Draft Genome Sequences Resources of Mulberry Dwarf Phytoplasma Strain MDGZ-01 Associated with Mulberry Yellow Dwarf (MYD) Diseases. Plant Dis. 2022, 106, 2239–2242. [Google Scholar] [CrossRef]
- Schneller, H.; Rißler, D.; Zgraja, G.; Zunker, M.; Zimmermann, O.; Kost, W.; Lasch, E.; Schrameyer, K. Erster Nachweis von ‚Aster-Yellows-Disease’ an Möhren (Phytoplasmen bedingte Möhrenröte) und in der Kleinzikade Macrosteles sexnotatus (Fallén 1806) in Deutschland –Monitoring und Diagnose. J. Kulturpflanz. 2016, 68, 281–294. [Google Scholar]
- Mitrović, J.; Paltrinieri, S.; Contaldo, N.; Bertaccini, A.; Duduk, B. Occurrence of two ‘Candidatus Phytoplasma asteris’—Related phytoplasmas in poplar trees in Serbia. Bull. Insectol. 2011, 64, 57–58. [Google Scholar]
- Murray, M.G.; Thompson, W.F. Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res. 1980, 8, 4321–4325. [Google Scholar] [CrossRef]
- Deng, S.; Hiruki, C. Amplification of 16S rRNA genes from culturable and nonculturable Mollicutes. J. Microbiol. Meth. 1991, 14, 53–61. [Google Scholar] [CrossRef]
- Schneider, B.; Seemueller, E.; Smart, C.D.; Kirkpatrick, B.C. Phylogenetic Classification of Plant Pathogenic Mycoplasma-like Organisms or Phytoplasmas, 1st ed.; Academic Press: London, UK, 1995; pp. 369–380. [Google Scholar]
- Bentley, D.R.; Balasubramanian, S.; Swerdlow, H.P.; Smith, G.P.; Milton, J.; Brown, C.G.; Hall, K.P.; Evers, D.J.; Barnes, C.L.; Bignell, H.R.; et al. Accurate whole human genome sequencing using reversible terminator chemistry. Nature 2008, 456, 53–59. [Google Scholar] [CrossRef] [PubMed]
- Eid, J.; Fehr, A.; Gray, J.; Luong, K.; Lyle, J.; Otto, G.; Peluso, P.; Rank, D.; Baybayan, P.; Bettman, B.; et al. Real-time DNA sequencing from single polymerase molecules. Science 2009, 323, 133–138. [Google Scholar] [CrossRef]
- Koren, S.; Walenz, B.P.; Berlin, K.; Miller, J.R.; Bergman, N.H.; Phillippy, A.M. Canu: Scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation. Genome Res. 2017, 27, 722–736. [Google Scholar] [CrossRef] [PubMed]
- Altschul, S.F.; Gish, W.; Miller, W.; Myers, E.W.; Lipman, D.J. Basic local alignment search tool. J. Mol. Biol. 1990, 215, 403–410. [Google Scholar] [CrossRef]
- Suzek, B.E.; Huang, H.; McGarvey, P.; Mazumder, R.; Wu, C.H. UniRef: Comprehensive and non-redundant UniProt reference clusters. Bioinformatics 2007, 23, 1282–1288. [Google Scholar] [CrossRef]
- Buchfink, B.; Xie, C.; Huson, D.H. Fast and sensitive protein alignment using DIAMOND. Nat. Methods 2015, 12, 59–60. [Google Scholar] [CrossRef]
- Huson, D.H.; Auch, A.F.; Qi, J.; Schuster, S.C. MEGAN analysis of metagenomic data. Genome Res. 2007, 17, 377–386. [Google Scholar] [CrossRef]
- Carver, T.; Harris, S.R.; Berriman, M.; Parkhill, J.; McQuillan, J.A. Artemis: An integrated platform for visualization and analysis of high-throughput sequence-based experimental data. Bioinformatics 2012, 28, 464–469. [Google Scholar] [CrossRef]
- Simão, F.A.; Waterhouse, R.M.; Ioannidis, P.; Kriventseva, E.V.; Zdobnov, E.M. BUSCO: Assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 2015, 31, 3210–3212. [Google Scholar] [CrossRef]
- Aziz, R.K.; Bartels, D.; Best, A.A.; DeJongh, M.; Disz, T.; Edwards, R.A.; Formsma, K.; Gerdes, S.; Glass, E.M.; Kubal, M.; et al. The RAST Server: Rapid annotations using subsystems technology. BMC Genom. 2008, 9, 75. [Google Scholar] [CrossRef]
- Kanehisa, M.; Sato, Y.; Morishima, K. BlastKOALA and GhostKOALA: KEGG Tools for Functional Characterization of Genome and Metagenome Sequences. J. Mol. Biol. 2016, 428, 726–731. [Google Scholar] [CrossRef]
- Caspi, R.; Altman, T.; Billington, R.; Dreher, K.; Foerster, H.; Fulcher, C.A.; Holland, T.A.; Keseler, I.M.; Kothari, A.; Kubo, A.; et al. The MetaCyc database of metabolic pathways and enzymes and the BioCyc collection of Pathway/Genome Databases. Nucleic Acids Res. 2014, 42, 459–471. [Google Scholar] [CrossRef]
- Paysan-Lafosse, T.; Blum, M.; Chuguransky, S.; Grego, T.; Pinto, B.L.; Salazar, G.A.; Bileschi, M.L.; Bork, P.; Bridge, A.; Colwell, L.; et al. InterPro in 2022. Nucleic Acids Res. 2023, 51, 418–427. [Google Scholar] [CrossRef]
- Lowe, T.M.; Chan, P.P. tRNAscan-SE On-line: Integrating search and context for analysis of transfer RNA genes. Nucleic Acids Res. 2016, 44, 54–57. [Google Scholar] [CrossRef]
- Lagesen, K.; Hallin, P.; Rødland, E.A.; Staerfeldt, H.-H.; Rognes, T.; Ussery, D.W. RNAmmer: Consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res. 2007, 35, 3100–3108. [Google Scholar] [CrossRef]
- Käll, L.; Krogh, A.; Sonnhammer, E.L.L. Advantages of combined transmembrane topology and signal peptide prediction-the Phobius web server. Nucleic Acids Res. 2007, 35, 429–432. [Google Scholar] [CrossRef]
- Goris, J.; Konstantinidis, K.T.; Klappenbach, J.A.; Coenye, T.; Vandamme, P.; Tiedje, J.M. DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int. J. Syst. Evol. Microbiol. 2007, 57, 81–91. [Google Scholar] [CrossRef]
- Saitou, N.; Nei, M. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 1987, 4, 406–425. [Google Scholar]
- Darling, A.C.E.; Mau, B.; Blattner, F.R.; Perna, N.T. Mauve: Multiple alignment of conserved genomic sequence with rearrangements. Genome Res. 2004, 14, 1394–1403. [Google Scholar] [CrossRef]
- Bertaccini, A.; Arocha-Rosete, Y.; Contaldo, N.; Duduk, B.; Fiore, N.; Montano, H.G.; Kube, M.; Kuo, C.-H.; Martini, M.; Oshima, K.; et al. Revision of the ‘Candidatus Phytoplasma’ species description guidelines. Int. J. Syst. Evol. Microbiol. 2022, 72, 5353. [Google Scholar] [CrossRef]
- Hall, T.A. BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 1999, 41, 95–98. [Google Scholar]
- Tamura, K.; Stecher, G.; Kumar, S. MEGA11: Molecular Evolutionary Genetics Analysis Version 11. Mol. Biol. Evol. 2021, 38, 3022–3027. [Google Scholar] [CrossRef]
- Fischer, R. On the mathematical foundations of theoretical statistics. Philos. Trans. R. Soc. A 1922, 222, 309–368. [Google Scholar]
- Emms, D.M.; Kelly, S. OrthoFinder: Phylogenetic orthology inference for comparative genomics. Genome Biol. 2019, 20, 238. [Google Scholar] [CrossRef] [PubMed]
- Zübert, C.; Ilic, A.-M.; Duduk, B.; Kube, M. The Genome Reduction Excludes the Ribosomal Rescue System in Acholeplasmataceae. Microb. Physiol. 2022, 32, 45–56. [Google Scholar] [CrossRef]
- Cho, S.-T.; Kung, H.-J.; Huang, W.; Hogenhout, S.A.; Kuo, C.-H. Species Boundaries and Molecular Markers for the Classification of 16SrI Phytoplasmas Inferred by Genome Analysis. Front. Microbiol. 2020, 11, 1531. [Google Scholar] [CrossRef]
- Duduk, B.; Calari, A.; Paltrinieri, S.; Duduk, N.; Bertaccini, A. Multigene analysis for differentiation of aster yellows phytoplasmas infecting carrots in Serbia. Ann. Appl. Biol. 2009, 154, 219–229. [Google Scholar] [CrossRef]
- Mitrović, J.; Kakizawa, S.; Duduk, B.; Oshima, K.; Namba, S.; Bertaccini, A. The groEL gene as an additional marker for finer differentiation of ‘Candidatus Phytoplasma asteris’-related strains. Ann. Appl. Biol. 2011, 159, 41–48. [Google Scholar] [CrossRef]
- Duckeck, D.; Zübert, C.; Böhm, J.W.; Carminati, G.; Schneider, B.; Kube, M. Complete Genome of ‘Candidatus Phytoplasma rubi’ RS, a Phytopathogenic Bacterium Associated with Rubus Stunt Disease. Microbiol. Resour. Announc. 2023, 12, e0130322. [Google Scholar] [CrossRef]
- Kube, M.; Mitrovic, J.; Duduk, B.; Rabus, R.; Seemüller, E. Current view on phytoplasma genomes and encoded metabolism. Sci. World J. 2012, 2012, 185942. [Google Scholar] [CrossRef]
- Ku, C.; Lo, W.-S.; Kuo, C.-H. Horizontal transfer of potential mobile units in phytoplasmas. Mob. Genet. Elements 2013, 3, e26145. [Google Scholar] [CrossRef]
- Toruño, T.Y.; Musić, M.S.; Simi, S.; Nicolaisen, M.; Hogenhout, S.A. Phytoplasma PMU1 exists as linear chromosomal and circular extrachromosomal elements and has enhanced expression in insect vectors compared with plant hosts. Mol. Microbiol. 2010, 77, 1406–1415. [Google Scholar] [CrossRef]
- Tokuda, R.; Iwabuchi, N.; Kitazawa, Y.; Nijo, T.; Suzuki, M.; Maejima, K.; Oshima, K.; Namba, S.; Yamaji, Y. Potential mobile units drive the horizontal transfer of phytoplasma effector phyllogen genes. Front. Genet. 2023, 14, 1132432. [Google Scholar] [CrossRef]
- Böhm, J.W.; Duckeck, D.; Duduk, B.; Schneider, B.; Kube, M. Genome Comparison of ‘Candidatus Phytoplasma rubi’ with Genomes of Other 16SrV Phytoplasmas Highlights Special Group Features. Appl. Microbiol. 2023, 3, 1083–1100. [Google Scholar] [CrossRef]
- Koch, H.G.; Hengelage, T.; Neumann-Haefelin, C.; MacFarlane, J.; Hoffschulte, H.K.; Schimz, K.L.; Mechler, B.; Müller, M. In vitro studies with purified components reveal signal recognition particle (SRP) and SecA/SecB as constituents of two independent protein-targeting pathways of Escherichia coli. Mol. Biol. Cell 1999, 10, 2163–2173. [Google Scholar] [CrossRef]
- Koch, H.-G.; Moser, M.; Müller, M. Signal recognition particle-depencent protein targeting, universal to all kingdoms of life. In Reviews of Physiology, Biochemistry and Pharmacology, 1st ed.; Amara, S.G., Bamberg, E., Blaustein, M.P., Grunicke, H., Jahn, R., Lederer, W.J., Miyajima, A., Murer, H., Offermanns, S., Pfanner, N., et al., Eds.; Springer: Berlin/Heidelberg, Germany, 2003; pp. 55–94. [Google Scholar]
- Clements, J.; Bradford, B.Z.; Garcia, M.; Piper, S.; Huang, W.; Zwolinska, A.; Lamour, K.; Hogenhout, S.; Groves, R.L. ‘Candidatus Phytoplasma asteris’ subgroups display distinct disease progression dynamics during the carrot growing season. PLoS ONE 2021, 16, e0239956. [Google Scholar] [CrossRef]
- Barbara, D.J.; Morton, A.; Clark, M.F.; Davies, D.L. Immunodominant membrane proteins from two phytoplasmas in the aster yellows clade (chlorante aster yellows and clover phyllody) are highly divergent in the major hydrophilic region. Microbiology 2002, 148, 157–167. [Google Scholar] [CrossRef]
- Kakizawa, S.; Oshima, K.; Nishigawa, H.; Jung, H.-Y.; Wei, W.; Suzuki, S.; Tanaka, M.; Miyata, S.; Ugaki, M.; Namba, S. Secretion of immunodominant membrane protein from onion yellows phytoplasma through the Sec protein-translocation system in Escherichia coli. Microbiology 2004, 150, 135–142. [Google Scholar] [CrossRef]
- Kakizawa, S.; Oshima, K.; Ishii, Y.; Hoshi, A.; Maejima, K.; Jung, H.-Y.; Yamaji, Y.; Namba, S. Cloning of immunodominant membrane protein genes of phytoplasmas and their in planta expression. FEMS Microbiol. Lett. 2009, 293, 92–101. [Google Scholar] [CrossRef] [PubMed]
- Konnerth, A.; Krczal, G.; Boonrod, K. Immunodominant membrane proteins of phytoplasmas. Microbiology 2016, 162, 1267–1273. [Google Scholar] [CrossRef]
- Neriya, Y.; Maejima, K.; Nijo, T.; Tomomitsu, T.; Yusa, A.; Himeno, M.; Netsu, O.; Hamamoto, H.; Oshima, K.; Namba, S. Onion yellow phytoplasma P38 protein plays a role in adhesion to the hosts. FEMS Microbiol. Lett. 2014, 361, 115–122. [Google Scholar] [CrossRef]
- Hückelhoven, R. BAX Inhibitor-1, an ancient cell death suppressor in animals and plants with prokaryotic relatives. Apoptosis 2004, 9, 299–307. [Google Scholar] [CrossRef]
- Quaglino, F.; Kube, M.; Jawhari, M.; Abou-Jawdah, Y.; Siewert, C.; Choueiri, E.; Sobh, H.; Casati, P.; Tedeschi, R.; Lova, M.M.; et al. ‘Candidatus Phytoplasma phoenicium’ associated with almond witches’-broom disease: From draft genome to genetic diversity among strain populations. BMC Microbiol. 2015, 15, 148. [Google Scholar] [CrossRef]
- Wojtaszek, P. Oxidative burst: An early plant response to pathogen infection. Biochem. J. 1997, 322 Pt 3, 681–692. [Google Scholar] [CrossRef]
- Miura, C.; Sugawara, K.; Neriya, Y.; Minato, N.; Keima, T.; Himeno, M.; Maejima, K.; Komatsu, K.; Yamaji, Y.; Oshima, K.; et al. Functional characterization and gene expression profiling of superoxide dismutase from plant pathogenic phytoplasma. Gene 2012, 510, 107–112. [Google Scholar] [CrossRef]
- Lee, I.-M.; Gundersen-Rindal, D.E.; Davis, R.E.; Bottner, K.D.; Marcone, C.; Seemüller, E. ‘Candidatus Phytoplasma asteris’, a novel phytoplasma taxon associated with aster yellows and related diseases. Int. J. Syst. Evol. Microbiol. 2004, 54, 1037–1048. [Google Scholar] [CrossRef]
- Richter, M.; Rosselló-Móra, R. Shifting the genomic gold standard for the prokaryotic species definition. Proc. Natl. Acad. Sci. USA 2009, 106, 19126–19131. [Google Scholar] [CrossRef]
- Jain, C.; Rodriguez-R, L.M.; Phillippy, A.M.; Konstantinidis, K.T.; Aluru, S. High throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries. Nat. Commun. 2018, 9, 5114. [Google Scholar] [CrossRef]
- Hugenholtz, P.; Chuvochina, M.; Oren, A.; Parks, D.H.; Soo, R.M. Prokaryotic taxonomy and nomenclature in the age of big sequence data. ISME J. 2021, 15, 1879–1892. [Google Scholar] [CrossRef]
- Wei, W.; Zhao, Y. Phytoplasma Taxonomy: Nomenclature, Classification, and Identification. Biology 2022, 11, 1119. [Google Scholar] [CrossRef]
- Bertaccini, A.; Weintraub, P.G.; Rao, G.P.; Mori, N.; Bertaccini, A. Phytoplasmas: Plant Pathogenic Bacteria—II: Transmission and Management of Phytoplasma—Associated Diseases, 1st ed.; Springer Nature: Singapore, 2019; pp. 5–9. [Google Scholar]
- Nishimura, N.; Nakajima, S.; Sawayanagi, T.; Namba, S.; Shiomi, T.; Matsuda, I.; Tsuchizaki, T. Transmission of Cryptotaenia japonica Witches’ Broom and Onion Yellows Phytoplasmas by Hishimonus sellatus Uhler. Jpn. J. Phytopathol. 1998, 64, 474–477. [Google Scholar] [CrossRef]
- Nishigawa, H.; Oshima, K.; Kakizawa, S.; Jung, H.-Y.; Kuboyama, T.; Miyata, S.-I.; Ugaki, M.; Namba, S. A plasmid from a non-insect-transmissible line of a phytoplasma lacks two open reading frames that exist in the plasmid from the wild-type line. Gene 2002, 298, 195–201. [Google Scholar] [CrossRef]
- Nishigawa, H.; Oshima, K.; Kakizawa, S.; Jung, H.-Y.; Kuboyama, T.; Miyata, S.-I.; Ugaki, M.; Namba, S. Evidence of intermolecular recombination between extrachromosomal DNAs in phytoplasma: A trigger for the biological diversity of phytoplasma? Microbiology 2002, 148, 1389–1396. [Google Scholar] [CrossRef]
- Nishigawa, H.; Oshima, K.; Miyata, S.-I.; Ugaki, M.; Namba, S. Complete set of extrachromosomal DNAs from three pathogenic lines of onion yellows phytoplasma and use of PCR to differentiate each line. J. Gen. Plant Pathol. 2003, 69, 194–198. [Google Scholar]
- Nishimura, N.; Nakajima, S.; Kawakita, H.; Sato, M.; Namba, S.; Fujisawa, I.; Tsuchizaki, T. Transmission of Cryptotaenia japonica Witches’ Broom and Onion Yellows by Hishimonoides sellatiformis. Jpn. J. Phytopathol. 2004, 70, 22–25. [Google Scholar] [CrossRef]
- Wei, W.; Kakizawa, S.; Suzuki, S.; Jung, H.-Y.; Nishigawa, H.; Miyata, S.; Oshima, K.; Ugaki, M.; Hibi, T.; Namba, S. In planta dynamic analysis of onion yellows phytoplasma using localized inoculation by insect transmission. Phytopathology 2004, 94, 244–250. [Google Scholar] [CrossRef] [PubMed]
- Weintraub, P.G.; Beanland, L. Insect vectors of phytoplasmas. Annu. Rev. Entomol. 2006, 51, 91–111. [Google Scholar] [CrossRef]
- Ishii, Y.; Oshima, K.; Kakizawa, S.; Hoshi, A.; Maejima, K.; Kagiwada, S.; Yamaji, Y.; Namba, S. Process of reductive evolution during 10 years in plasmids of a non-insect-transmissible phytoplasma. Gene 2009, 446, 51–57. [Google Scholar] [CrossRef]
- Bertaccini, A.; Oshima, K.; Kakizawa, S.; Duduk, B.; Namba, S. Dissecting the Multifaceted Mechanisms That Drive Leafhopper Host–Phytoplasma Specificity. In Vector-Mediated Transmission of Plant Pathogens, 1st ed.; Judith, K.B., Ed.; American Phytopathological Society: St. Paul, MN, USA, 2016; pp. 21–28. [Google Scholar]
- Calari, A.; Paltrinieri, S.; Contaldo, N.; Sakalieva, D.; Mori, N.; Duduk, B.; Bertaccini, A. Molecular evidence of phytoplasmas in winter oilseed rape, tomato and corn seedlings. Bull. Insectol. 2011, 64, 151–158. [Google Scholar]
- Satta, E.; Ramirez, A.S.; Paltrinieri, S.; Contaldo, N.; Benito, P.; Poveda, J.B.; Bertaccini, A. Simultaneous detection of mixed ‘Candidatus Phytoplasma asteris’ and ‘Ca. Liberibacter solanacearum’ infection in carrot. Phytopathol. Mediterr. 2016, 55, 401–409. [Google Scholar]
- Satta, E.; Carminati, G.; Bertaccini, A. Phytoplasma presence in carrot seedlings. Australas. Plant Dis. Notes 2020, 15, 11. [Google Scholar] [CrossRef]
- Atanasoff, D. Stammhexenbesen bei Ulmen und anderen Bäumen. Arch. Pflanzenschutz 1973, 9, 241–243. [Google Scholar] [CrossRef]
- Van der Meer, F.A. Witches’ brooms in poplars? Populier 1980, 17, 42–43. [Google Scholar]
- Sharma, A.K.; Cousin, M.-T. Mycoplasmalike Organisms (MLOs) Associated With the Witches’ Broom Disease of Poplar. J. Phytopathol. 1986, 117, 349–356. [Google Scholar] [CrossRef]
- Seemüller, E.; Lederer, W. MLO-Associated Decline of Alnus glutinosa, Populus tremula and Crataegus monogyna. J. Phytopathol. 1988, 121, 33–39. [Google Scholar] [CrossRef]
- Berges, R.; Cousin, M.-T.; Roux, J.; Mäurer, R.; Seemüller, E. Detection of phytoplasma infections in declining Populus nigra ‘Italica’ trees and molecular differentiation of the aster yellows phytoplasmas identified in various Populus species. Eur. J. For. Pathol. 1997, 27, 33–43. [Google Scholar] [CrossRef]
- Marcone, C.; Ragozzino, A.; Seemuller, E. Dodder transmission of alder yellows phytoplasma to the experimental host Catharanthus roseus (periwinkle). Eur. J. For. Pathol. 1997, 27, 347–350. [Google Scholar] [CrossRef]
- Šeruga, M.; Škorić, D.; Botti, S.; Paltrinieri, S.; Juretić, N.; Bertaccini, A. Molecular identification of a phytoplasma naturally infecting Populus nigra L. cv. Italica trees in Croatia. Plant Prot. Sci. 2002, 38, 28–30. [Google Scholar] [CrossRef]
M8 | M33 | |
Assembly input | ||
Selected/mapped Illumina reads (%) | 223,496 (10.6) | 480,718 (22.2) |
Average read length (nt) | 250 | 250 |
SMRT reads total | 191,988 | 105,166 |
Average read length (nt) | 8694 | 9275 |
Incorporated reads | ||
No. of Illumina & SMRT reads used for chromosome reconstruction (sequencing coverage) | 10,116 | 11,776 |
(115.86-fold) | (176.15-fold) | |
No. of reads used for plasmid reconstruction (sequencing coverage) | 307 | 45 |
(95.09-fold) | (11.97-fold) | |
Genome organization (complete) | One circular chromosome, one plasmid | One circular chromosome, one plasmid |
16Sr-Group | Strain | Country of Origin | Plant Host | Length (bp) | G+C Content (%) | CDS (+ Pseudo Genes) | Coding Density (per kb) | Acc. no. 1 |
---|---|---|---|---|---|---|---|---|
16SrI-A | M33 | Germany | Carrot | 657,324 | 26.79 | 595 (51) | 0.905 | CP128397.1 |
AYWB | USA | Lettuce | 706,569 | 26.89 | 586 (62) | 0.829 | NC_007716.1 | |
16SrI-B | M8 | Germany | Carrot | 772,691 | 27.87 | 741 (77) | 0.958 | CP128414.1 |
OY-M | Japan | Onion | 853,092 | 27.76 | 752 (-) | 0.881 | AP006628.2 | |
M3 | Brazil | Maize | 576,118 | 28.46 | 485 (-) | 0.841 | CP015149.1 | |
DeVilla | South Africa | Periwinkle | 600,116 | 28.44 | 545 (10) | 0.908 | CP035949.1 | |
RP166 | Poland | Rapeseed | 829,546 | 27.70 | 753 (-) | 0.907 | CP055264.1 | |
Zhengzhou | China | Paulownia | 891,641 | 27.35 | 906 (68) | 1.016 | NZ_CP066882.1 | |
MDGZ-01 | China | Mulberry | 622,358 | 29.09 | 535 (10) | 0.859 | NZ_CP085837.1 | |
QS2022 | China | Lettuce | 834,303 | 27.57 | 819 (-) | 0.981 | CP120448.1 |
Strain | M33 | AYWB | M8 | OY-M | M3 | DeVilla | RP166 | Zhengzhou | MDGZ-01 | QS2022 |
---|---|---|---|---|---|---|---|---|---|---|
M33 | 99.44 | 93.19 | 92.97 | 92.88 | 92.85 | 93.29 | 92.95 | 92.93 | 92.91 | |
AYWB | 99.44 | 93.20 | 93.00 | 92.80 | 92.80 | 93.19 | 92.91 | 92.93 | 92.81 | |
M8 | 93.19 | 93.20 | 99.02 | 98.54 | 98.64 | 99.93 | 98.66 | 98.91 | 98.44 | |
OY-M | 92.97 | 93.00 | 99.02 | 98.44 | 98.49 | 99.01 | 98.49 | 98.70 | 99.12 | |
M3 | 92.88 | 92.80 | 98.54 | 98.44 | 99.15 | 98.56 | 98.24 | 98.37 | 98.23 | |
DeVilla | 92.85 | 92.80 | 98.64 | 98.49 | 99.15 | 98.63 | 98.29 | 98.40 | 98.31 | |
RP166 | 93.29 | 93.19 | 99.93 | 99.01 | 98.56 | 98.63 | 98.64 | 98.91 | 98.45 | |
Zhengzhou | 92.95 | 92.91 | 98.66 | 98.49 | 98.24 | 98.29 | 98.64 | 98.35 | 98.12 | |
MDGZ-01 | 92.93 | 92.93 | 98.91 | 98.70 | 98.37 | 98.40 | 98.91 | 98.35 | 98.51 | |
QS2022 | 92.91 | 92.81 | 98.44 | 99.12 | 98.23 | 98.31 | 98.45 | 98.12 | 98.51 |
16SrRNA | M33 | AYWB | M8 | OY-M | M3 | DeVilla | RP166 | Zhengzhou | MDGZ-01 | QS2022 | RS |
---|---|---|---|---|---|---|---|---|---|---|---|
M33 | - | 99.4 | 99.3 | 98.7 | 99.2 | 98.8 | 99 | 98.9 | 98.8 | 99.1 | 89.1 |
AYWB | 99.4 | - | 98.8 | 99.2 | 98.6 | 99.2 | 98.5 | 99.4 | 99.4 | 98.6 | 89.4 |
M8 | 99.3 | 98.8 | - | 99.1 | 99.4 | 99 | 99.7 | 99.2 | 99.1 | 99.4 | 88.9 |
OY-M | 98.7 | 99.2 | 99.1 | - | 98.8 | 99.6 | 98.8 | 99.6 | 99.6 | 98.8 | 89.3 |
M3 | 99.2 | 98.6 | 99.4 | 98.8 | - | 99 | 99.7 | 99 | 99 | 99.8 | 88.7 |
DeVilla | 98.8 | 99.2 | 99 | 99.6 | 99 | - | 98.8 | 99.6 | 99.5 | 98.8 | 89.5 |
RP166 | 99 | 98.5 | 99.7 | 98.8 | 99.7 | 98.8 | - | 98.9 | 98.8 | 99.6 | 88.6 |
Zhengzhou | 98.9 | 99.4 | 99.2 | 99.6 | 99 | 99.6 | 98.9 | - | 99.8 | 99 | 89.3 |
MDGZ-01 | 98.8 | 99.4 | 99.1 | 99.6 | 99 | 99.5 | 98.8 | 99.8 | - | 98.9 | 89.2 |
QS2022 | 99.1 | 98.6 | 99.4 | 98.8 | 99.8 | 98.8 | 99.6 | 99 | 98.9 | - | 88.6 |
RS | 89.1 | 89.4 | 88.9 | 89.3 | 88.7 | 89.5 | 88.6 | 89.3 | 89.2 | 88.6 | - |
tufB | M33 | AYWB | M8 | OY-M | M3 | DeVilla | RP166 | Zhengzhou | MDGZ-01 | QS2022 | RS |
M33 | - | 99.8 | 96.7 | 96.7 | 96.7 | 96.7 | 96.7 | 96.4 | 96.7 | 96.8 | 68 |
AYWB | 99.8 | - | 96.8 | 96.8 | 96.8 | 96.7 | 96.8 | 96.5 | 96.8 | 96.9 | 68 |
M8 | 96.7 | 96.8 | - | 100 | 99.6 | 99.4 | 100 | 99.6 | 100 | 99.7 | 67.8 |
OY-M | 96.7 | 96.8 | 100 | - | 99.6 | 99.4 | 100 | 99.6 | 100 | 99.7 | 67.8 |
M3 | 96.7 | 96.8 | 99.6 | 99.6 | - | 99.7 | 99.6 | 99.3 | 99.6 | 99.5 | 67.8 |
DeVilla | 96.7 | 96.7 | 99.4 | 99.4 | 99.7 | - | 99.4 | 99 | 99.4 | 99.3 | 67.9 |
RP166 | 96.7 | 96.8 | 100 | 100 | 99.6 | 99.4 | - | 99.6 | 100 | 99.7 | 67.8 |
Zhengzhou | 96.4 | 96.5 | 99.6 | 99.6 | 99.3 | 99 | 99.6 | - | 99.6 | 99.4 | 67.7 |
MDGZ-01 | 96.7 | 96.8 | 100 | 100 | 99.6 | 99.4 | 100 | 99.6 | - | 99.7 | 67.8 |
QS2022 | 96.8 | 96.9 | 99.7 | 99.7 | 99.5 | 99.3 | 99.7 | 99.4 | 99.7 | - | 67.8 |
RS | 68 | 68 | 67.8 | 67.8 | 67.8 | 67.9 | 67.8 | 67.7 | 67.8 | 67.8 | - |
groEL | M33 | AYWB | M8 | OY-M | M3 | DeVilla | RP166 | Zhengzhou | MDGZ-01 | QS2022 | RS |
M33 | - | 99.8 | 97 | 97.1 | 96.8 | 96.9 | 97 | 96.8 | 96.8 | 96.8 | 69.5 |
AYWB | 99.8 | - | 97.2 | 97.2 | 97 | 97 | 97.2 | 96.9 | 96.9 | 97 | 69.5 |
M8 | 97 | 97.2 | - | 99.9 | 99.8 | 99.7 | 100 | 99.7 | 99.7 | 99.6 | 69.4 |
OY-M | 97.1 | 97.2 | 99.9 | - | 99.7 | 99.8 | 99.9 | 99.6 | 99.6 | 99.5 | 69.4 |
M3 | 96.8 | 97 | 99.8 | 99.7 | - | 99.8 | 99.8 | 99.5 | 99.5 | 99.4 | 69.5 |
DeVilla | 96.9 | 97 | 99.7 | 99.8 | 99.8 | - | 99.7 | 99.5 | 99.5 | 99.3 | 69.4 |
RP166 | 97 | 97.2 | 100 | 99.9 | 99.8 | 99.7 | - | 99.7 | 99.7 | 99.6 | 69.4 |
Zhengzhou | 96.8 | 96.9 | 99.7 | 99.6 | 99.5 | 99.5 | 99.7 | - | 99.5 | 99.3 | 69.3 |
MDGZ-01 | 96.8 | 96.9 | 99.7 | 99.6 | 99.5 | 99.5 | 99.7 | 99.5 | - | 99.3 | 69.6 |
QS2022 | 96.8 | 97 | 99.6 | 99.5 | 99.4 | 99.3 | 99.6 | 99.3 | 99.3 | - | 69.4 |
RS | 69.5 | 69.5 | 69.4 | 69.4 | 69.5 | 69.4 | 69.4 | 69.3 | 69.6 | 69.4 | - |
secA | M33 | AYWB | M8 | OY-M | M3 | DeVilla | RP166 | Zhengzhou | MDGZ-01 | QS2022 | RS |
M33 | - | 99.9 | 95.2 | 95.2 | 95.1 | 95.1 | 95.2 | 95.1 | 95.3 | 95.2 | 67.7 |
AYWB | 99.9 | - | 95.2 | 95.3 | 95.1 | 95.1 | 95.2 | 95.2 | 95.3 | 95.3 | 67.8 |
M8 | 95.2 | 95.2 | - | 99.6 | 99.2 | 99.2 | 100 | 99.4 | 99.6 | 99.3 | 67.7 |
OY-M | 95.2 | 95.3 | 99.6 | - | 99.3 | 99.3 | 99.6 | 99.5 | 99.6 | 99.4 | 67.8 |
M3 | 95.1 | 95.1 | 99.2 | 99.3 | - | 99.4 | 99.2 | 99.2 | 99.4 | 99.2 | 68.1 |
DeVilla | 95.1 | 95.1 | 99.2 | 99.3 | 99.4 | - | 99.2 | 99.2 | 99.4 | 99.2 | 67.9 |
RP166 | 95.2 | 95.2 | 100 | 99.6 | 99.2 | 99.2 | - | 99.4 | 99.6 | 99.3 | 67.7 |
Zhengzhou | 95.1 | 95.2 | 99.4 | 99.5 | 99.2 | 99.2 | 99.4 | - | 99.5 | 99.3 | 67.8 |
MDGZ-01 | 95.3 | 95.3 | 99.6 | 99.6 | 99.4 | 99.4 | 99.6 | 99.5 | - | 99.4 | 67.8 |
QS2022 | 95.2 | 95.3 | 99.3 | 99.4 | 99.2 | 99.2 | 99.3 | 99.3 | 99.4 | - | 67.9 |
RS | 67.7 | 67.8 | 67.7 | 67.8 | 68.1 | 67.9 | 67.7 | 67.8 | 67.8 | 67.9 | - |
secY | M33 | AYWB | M8 | OY-M | M3 | DeVilla | RP166 | Zhengzhou | MDGZ-01 | QS2022 | RS |
M33 | - | 99.8 | 94.7 | 94.2 | 94.5 | 94.4 | 94.7 | 94.2 | 93.9 | 94.2 | 55 |
AYWB | 99.8 | - | 94.9 | 94.4 | 94.6 | 94.6 | 94.9 | 94.4 | 94.1 | 94.3 | 55.2 |
M8 | 94.7 | 94.9 | - | 99.4 | 99.3 | 99.3 | 100 | 99.1 | 99 | 99.3 | 55.5 |
OY-M | 94.2 | 94.4 | 99.4 | - | 99.1 | 99.1 | 99.4 | 98.9 | 98.7 | 99.7 | 55.4 |
M3 | 94.5 | 94.6 | 99.3 | 99.1 | - | 99.5 | 99.3 | 98.8 | 98.7 | 99 | 55.5 |
DeVilla | 94.4 | 94.6 | 99.3 | 99.1 | 99.5 | - | 99.3 | 99 | 98.7 | 99 | 55.6 |
RP166 | 94.7 | 94.9 | 100 | 99.4 | 99.3 | 99.3 | - | 99.1 | 99 | 99.3 | 55.5 |
Zhengzhou | 94.2 | 94.4 | 99.1 | 98.9 | 98.8 | 99 | 99.1 | - | 98.5 | 98.8 | 55.5 |
MDGZ-01 | 93.9 | 94.1 | 99 | 98.7 | 98.7 | 98.7 | 99 | 98.5 | - | 98.7 | 55.5 |
QS2022 | 94.2 | 94.3 | 99.3 | 99.7 | 99 | 99 | 99.3 | 98.8 | 98.7 | - | 55.3 |
RS | 55 | 55.2 | 55.5 | 55.4 | 55.5 | 55.6 | 55.5 | 55.5 | 55.5 | 55.3 | - |
rplV-rpsC | M33 | AYWB | M8 | OY-M | M3 | DeVilla | RP166 | Zhengzhou | MDGZ-01 | QS2022 | RS |
M33 | - | 100 | 97.7 | 97.5 | 97.1 | 97.3 | 97.7 | 97 | 97.5 | 97.5 | 63.6 |
AYWB | 100 | - | 97.7 | 97.5 | 97.1 | 97.3 | 97.7 | 97 | 97.5 | 97.5 | 63.6 |
M8 | 97.7 | 97.7 | - | 99.8 | 99.4 | 99.4 | 100 | 99.3 | 99.8 | 99.8 | 63.2 |
OY-M | 97.5 | 97.5 | 99.8 | - | 99.2 | 99.2 | 99.8 | 99.2 | 99.6 | 99.6 | 63.2 |
M3 | 97.1 | 97.1 | 99.4 | 99.2 | - | 99.6 | 99.4 | 98.8 | 99.2 | 99.2 | 63.1 |
DeVilla | 97.3 | 97.3 | 99.4 | 99.2 | 99.6 | - | 99.4 | 98.8 | 99.2 | 99.2 | 63.2 |
RP166 | 97.7 | 97.7 | 100 | 99.8 | 99.4 | 99.4 | - | 99.3 | 99.8 | 99.8 | 63.2 |
Zhengzhou | 97 | 97 | 99.3 | 99.2 | 98.8 | 98.8 | 99.3 | - | 99.2 | 99.2 | 63 |
MDGZ-01 | 97.5 | 97.5 | 99.8 | 99.6 | 99.2 | 99.2 | 99.8 | 99.2 | - | 99.6 | 63.1 |
QS2022 | 97.5 | 97.5 | 99.8 | 99.6 | 99.2 | 99.2 | 99.8 | 99.2 | 99.6 | - | 63.2 |
RS | 63.6 | 63.6 | 63.2 | 63.2 | 63.1 | 63.2 | 63.2 | 63 | 63.1 | 63.2 | - |
Strain | M33 | AYWB | M8 | OY-M | M3 | DeVilla | RP166 | Zhengzhou | MDGZ-01 | QS2022 |
---|---|---|---|---|---|---|---|---|---|---|
M33 | - | 421 | 401 | 382 | 370 | 370 | 398 | 381 | 365 | 403 |
AYWB | 421 | - | 410 | 389 | 377 | 373 | 411 | 388 | 376 | 404 |
M8 | 401 | 410 | - | 437 | 418 | 432 | 597 | 448 | 420 | 470 |
OY-M | 382 | 389 | 437 | - | 399 | 411 | 437 | 441 | 407 | 498 |
M3 | 370 | 377 | 418 | 399 | - | 429 | 414 | 413 | 400 | 414 |
DeVilla | 370 | 373 | 432 | 411 | 429 | - | 421 | 443 | 413 | 426 |
RP166 | 398 | 411 | 597 | 437 | 414 | 421 | - | 443 | 411 | 463 |
Zhengzhou | 381 | 388 | 448 | 441 | 413 | 443 | 443 | - | 420 | 456 |
MDGZ-01 | 365 | 376 | 420 | 407 | 400 | 413 | 411 | 420 | - | 406 |
QS2022 | 403 | 404 | 470 | 498 | 414 | 426 | 463 | 456 | 406 | - |
16Sr-Group | Strain | All Genes | Multi-Copy Genes | |||
---|---|---|---|---|---|---|
No. | No. | % of All | Σ Length in bp | Chromosome (%) | ||
16SrI-A | M33 | 595 | 112 | 18.82 | 59,451 | 9.04 |
AYWB | 586 | 155 | 26.45 | 85,755 | 12.14 | |
16SrI-B | M8 | 741 | 188 | 25.37 | 108,651 | 14.06 |
OY-M | 752 | 251 | 33.38 | 185,037 | 21.69 | |
M3 | 485 | 36 | 7.42 | 19,425 | 3.37 | |
DeVilla | 545 | 78 | 14.31 | 48,174 | 8.03 | |
RP166 | 753 | 269 | 35.72 | 177,861 | 21.44 | |
Zhengzhou | 906 | 385 | 42.49 | 219,270 | 24.59 | |
MDGZ-01 | 535 | 66 | 12.34 | 46,800 | 7.52 | |
QS2022 | 819 | 291 | 35.53 | 172,767 | 20.71 |
Strains | Cytosolic | Signal Peptide | Signal Peptide and Transmembrane Domaine | Transmembrane Domaine Only |
---|---|---|---|---|
M33 | 369 | 33 | 7 | 186 |
AYWB | 399 | 31 | 9 | 147 |
M8 | 498 | 43 | 8 | 192 |
OY-M | 517 | 37 | 12 | 186 |
M3 | 333 | 20 | 7 | 125 |
DeVilla | 387 | 19 | 7 | 132 |
RP166 | 493 | 47 | 8 | 205 |
Zhengzhou | 630 | 30 | 9 | 237 |
MDGZ-01 | 361 | 26 | 11 | 137 |
QS2022 | 519 | 44 | 11 | 245 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Toth, R.; Ilic, A.-M.; Huettel, B.; Duduk, B.; Kube, M. Divergence within the Taxon ‘Candidatus Phytoplasma asteris’ Confirmed by Comparative Genome Analysis of Carrot Strains. Microorganisms 2024, 12, 1016. https://doi.org/10.3390/microorganisms12051016
Toth R, Ilic A-M, Huettel B, Duduk B, Kube M. Divergence within the Taxon ‘Candidatus Phytoplasma asteris’ Confirmed by Comparative Genome Analysis of Carrot Strains. Microorganisms. 2024; 12(5):1016. https://doi.org/10.3390/microorganisms12051016
Chicago/Turabian StyleToth, Rafael, Anna-Marie Ilic, Bruno Huettel, Bojan Duduk, and Michael Kube. 2024. "Divergence within the Taxon ‘Candidatus Phytoplasma asteris’ Confirmed by Comparative Genome Analysis of Carrot Strains" Microorganisms 12, no. 5: 1016. https://doi.org/10.3390/microorganisms12051016
APA StyleToth, R., Ilic, A. -M., Huettel, B., Duduk, B., & Kube, M. (2024). Divergence within the Taxon ‘Candidatus Phytoplasma asteris’ Confirmed by Comparative Genome Analysis of Carrot Strains. Microorganisms, 12(5), 1016. https://doi.org/10.3390/microorganisms12051016