Paulownia Witches’ Broom Disease: A Comprehensive Review
Abstract
:1. Introduction
2. Historical Background
3. The Paulownia Witches’ Broom Phytoplasma
4. Transmission of PaWB Phytoplasmas
5. Symptomatology of PaWB Disease
6. Physiological and Anatomic Responses to Phytoplasma Infection
7. Changes in Gene Expression in Phytoplasma-Infected Paulownia
7.1. Transcriptional Responses
Plant Material | Analysis Methods | Primary Analysis Results | Corresponding Pathways | Key Corresponding Genes | References |
---|---|---|---|---|---|
P. fortunei, healthy, diseased and MMS-treated diseased in vitro plantlets. | AFLP, MSAP and RT-qPCR. | 81 methylated fragments and 6 DEGs. | [48] | ||
P. tomentosa, healthy, diseased and MMS-treated diseased in vitro plantlets. | AFLP, MSAP and RT-qPCR. | 72 methylated fragments and 6 DEGs. | [49] | ||
Paulownia spp., healthy and diseased field trees, in vitro plantlets. | Transcriptome sequencing and RT-qPCR. | 1271 DEGs in field trees, 1206 DEGs in in vitro plantlets and 19 common KEGG pathways. | Cytokinin biosynthesis, photosynthesis, cell wall biosynthesis and degradation. | Isopentenyl diphosphate isomerase and isopentenyl-transferase. | [51] |
P. tomentosa × P. fortunei, healthy, diseased and MMS-treated diseased in vitro plantlets. | Transcriptome sequencing and RT-qPCR. | 74 significant DEGs and 16 KOGs categories. | General function, posttranslational modification and protein turnover. | [52] | |
P. fortunei, healthy, diseased and MMS-treated diseased in vitro plantlets. | Transcriptome sequencing and RT-qPCR. | 1309 DEGs and 83 KEGG pathways. | Plant–pathogen interaction, circadian rhythm, hormone-related. | [53] | |
P. fortunei, healthy, diseased and MMS-treated diseased in vitro plantlets. | Transcriptome sequencing and RT-qPCR. | 618 DEGs and 82 KEGG pathways. | Phenylpropanoid metabolism, hormone biosynthesis and signaling, defense and/or pathogenesis and signal transduction. | [54] | |
P. tomentosa, healthy, diseased and MMS-treated diseased in vitro plantlets. | Transcriptome sequencing and RT-qPCR. | 2540 DEGs and 119 KEGG pathways. | Folate and fatty acid synthesis and plant hormone signal transduction. | [55] | |
P. tomentosa, P. fortunei and P. tomentosa × P. fortunei, healthy, diseased and MMS-treated diseased in vitro plantlets. | Transcriptome sequencing and RT-qPCR. | 74 DEGs and 12 KEGG pathways. | Phytohormone and alternative splicing. | [56] | |
P. tomentosa, healthy, diseased and MMS-treated diseased in vitro plantlets. | Transcriptome, miRNA and degradome sequencing and RT-qPCR. | 902 DEGs, 24 PaWB-related DERs and19 target genes among the DEGs. | Morphological changes, plant defense and plant hormones. | miR156g, miR166c and miR403. | [57] |
P. fortunei, healthy, diseased and MMS-treated diseased in vitro plantlets. | Transcriptome, miRNA and degradome sequencing and RT-qPCR. | 756 DEGs, 67 PaWB-related DERs and 635 target genes among the DEGs. | ARF, WRKY, NAC, MYB and SOD. | [58] | |
P. fortunei, healthy, diseased and MMS-treated diseased in vitro plantlets. | Full-length transcriptome sequencing, LC-ESI-MS/MS metabolism and RT-qPCR. | 1561 full length transcripts and 645 metabolites related to PaWB. | SA-binding protein 2, ferulic acid and ethylene-responsive transcription factor RAP2–7 isoform X2. | [59] | |
P. tomentosa × P. fortunei, healthy, diseased and MMS-treated diseased in vitro plantlets. | miRNA and degradome sequencing and RT-qPCR. | 33 PaWB-related DERs (13 conserved and 20 novel) and 166 DER target genes. | Plant–pathogen interactions and plant hormone signal transduction, metabolic features. | [60] | |
P. fortunei, healthy, diseased and MMS-treated diseased in vitro plantlets. | miRNA and degradome sequencing and RT-qPCR. | 37 PaWB-related DERs (14 conserved and 24 novel) and 147 DER target genes | Transcription, stress response and nitrogen metabolism | miR159-3p, miR169a/b, miR169l, miR171a/b/c/d, miR1-3p, miR17b, miR30-3p and miR32-3p. | [61] |
P. fortunei, healthy, diseased and MMS-treated diseased in vitro plantlets. | miRNA and degradome sequencing and RT-qPCR. | 38 PaWB-related DERs (17 conserved and 20 novel) and 166 target genes of the DERs. | miR160c, miR167, miR171, miR397, miR398a and miR399a/b. | [62] | |
P. tomentosa, P. fortunei and P. tomentosa × P. fortunei, healthy, diseased and MMS-treated diseased in vitro plantlets. | miRNA and degradome sequencing and RT-qPCR. | 76 common DERs (35 miRNA families) from three paulownia species and 196 target genes. | Photosynthesis, plant hormone, plant defense, energy metabolism and material metabolic. | miR156. | [63] |
P. tomentosa, healthy, diseased and rifampin-treated diseased in vitro plantlets. | High throughput RNA sequencing and RT-qPCR. | 1063 PaWB-related mRNAs, 110 PaWB-related lnc RNAs and 12 PaWB-related target genes. | [64] | ||
P. fortunei, healthy, and diseased in vitro plantlets. | High throughput RNA sequencing. | 2725 lncRNAs and 748 DELs. | Lignin biosynthesis, plant–pathogen interaction and plant hormone signal transduction. | [65] | |
P. tomentosa, healthy, diseased and MMS-treated diseased in vitro plantlets. | High throughput RNA sequencing and RT-qPCR. | 3689 lncRNAs, 112 DELs and 51 alternatively spliced target genes. | Reactive oxygen species-induced hypersensitive response and effector-triggered immunity. | [66] | |
P. fortunei, healthy and diseased in vitro plantlets. | High throughput RNA sequencing. | 229 lncRNAs, 65 circRNAs and 65 miRNAs, differentially expressed. | Phytohormone biosynthesis, signal transduction, protein processing, amino acid metabolism, chloroplast and defense response. | [67] | |
P. fortunei, healthy, diseased and MMS-treated diseased in vitro plantlets. | m6A transcriptome sequencing and m6A MeRIP RT-PCR. | 315 differential methylated genes. | CLV2, STM, F-box and MSH5. | [68] | |
P. tomentosa, healthy, diseased and MMS-treated diseased in vitro plantlets. | iTRAQ proteome sequencing and RT-qPCR | 2051 proteins and 43 PaWB-related DAPs. | Photosynthesis, expression of dwarf symptom, energy production and cell signal pathways. | [69] | |
P. fortunei, healthy, diseased and MMS-treated diseased in vitro plantlets. | iTRAQ proteome sequencing and RT-qPCR | 2358 proteins and 36 PaWB-related DAPs. | Carbohydrate and energy metabolism, protein synthesis and degradation and stress resistance. | [70] | |
P. fortunei, healthy, diseased and MMS-treated diseased in vitro plantlets. | iTRAQ proteome sequencing and RT-qPCR. | 2969 proteins and 27 PaWB-related DAPs. | Photosynthesis-related, energy-related and ribosome-related. | [71] | |
P. tomentosa, healthy, diseased, MMS-treated healthy and diseased in vitro plantlets. | Quantitative mass spectrometry proteome, acetylome and succinylome. | 8963 proteins, 546 PaWB-related acetylated proteins and 5 PaWB-related succinylated proteins. | Protochlorophyllide reductase, RuBisCO and chlorophyll and starch biosynthesis. | [72] | |
P. fortunei, healthy and diseased in vitro plantlets. | Hi-C sequencing RNA-seq. | 477 and 510 specific TAD boundaries, 2304 and 3540 specific chromatin loops in healthy and diseased samples and 694 DEGs in common loops. | 11 PaWB-closely related genes. | [73] | |
P. fortunei, healthy and diseased in vitro plantlets. | ChIP-seq and ChIP-qPCR. | 1821, 1159 and 2727 DMGs marked by H3K4me3, H3K36me3 or H3K9ac and 141 co-modified DMGs. | Metabolic pathways, biosynthesis of secondary metabolites, phenylpropanoid biosynthesis, plant–pathogen interaction and plant hormone signal transduction. | [74] | |
P. fortunei, healthy, diseased and MMS-treated diseased in vitro plantlets. | Chip-seq and RNA-seq. | 365, 2244 and 752 PaWB-associated genes with H3K4me3, H3K36me3 and H3K9ac methylation. | Plant–pathogen interaction, plant hormone signal transduction and starch and sucrose metabolism | [75] | |
P. fortunei, healthy and diseased in vitro plantlets. | Bisulfite and transcriptome sequencing, bisulfite-PCR and RT-qPCR. | 422,662 DMRs, 27,871 DMR-associated DEGs and 436 genes verified by RNA-seq. | Plant hormone signal transduction, carbon metabolism and starch and sucrose metabolism. | TPR1 and R2R3-MYB | [76] |
7.2. Post Transcript Response
7.2.1. Noncoding Ribonucleic Acids
7.2.2. Splice Variants
7.2.3. Messenger RNA Modification (Epitranscriptome)
7.3. Translational and Post-Translational Response
7.3.1. Proteomic Analysis
7.3.2. Lysine Acetylation and Succinylation
7.4. Genome Accessibility
7.4.1. Three-Dimensional Chromatin Structure
7.4.2. Histone Methylation and Acetylation
7.4.3. DNA Methylation
8. Genome and Effectors of Paulownia Witches’ Broom Phytoplasma
8.1. Paulownia Witches’ Broom Phytoplasma Genome
8.2. Effectors
9. Changes in the Microbiome in Response to Phytoplasma Infection
10. Paulownia Witches’ Broom Control
10.1. Resistance of Paulownia to Phytoplasmas
10.2. Chemical Treatment
10.3. Field Management
11. Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bertaccini, A. Plants and phytoplasmas: When bacteria modify plants. Plants 2022, 11, 1425. [Google Scholar] [CrossRef]
- Wang, R.; Bai, B.; Li, D.; Wang, J.; Huang, W.; Wu, Y.; Zhao, L. Phytoplasma: A plant pathogen that cannot be ignored in agricultural production—Research progress and outlook. Mol. Plant Pathol. 2024, 25, e13437. [Google Scholar] [CrossRef]
- Bertaccini, A.; Arocha-Rosete, Y.; Contaldo, N.; Duduk, B.; Fiore, N.; Montano, H.G.; Kube, M.; Kuo, C.-H.; Martini, M.; Oshima, K.; et al. Revision of the ‘Candidatus Phytoplasma’ species description guidelines. Int. J. Syst. Evol. Microbiol. 2022, 72, 005353. [Google Scholar] [CrossRef] [PubMed]
- Wei, W.; Zhao, Y. Phytoplasma taxonomy: Nomenclature, classification, and identification. Biology 2022, 11, 1119. [Google Scholar] [CrossRef]
- Dżugan, M.; Miłek, M.; Grabek-Lejko, D.; Hęclik, J.; Jacek, B.; Litwińczuk, W. Antioxidant activity, polyphenolic profiles and antibacterial properties of leaf extract of various Paulownia spp. clones. Agronomy 2021, 11, 2001. [Google Scholar] [CrossRef]
- Slawinska, N.; Zajac, J.; Olas, B. Paulownia organs as interesting new sources of bioactive compounds. Int. J. Mol. Sci. 2023, 24, 1676. [Google Scholar] [CrossRef]
- Jakubowski, M. Cultivation potential and uses of paulownia wood: A review. Forests 2022, 13, 668. [Google Scholar] [CrossRef]
- Cao, Y.; Sun, G.; Zhai, X.; Xu, P.; Ma, L.; Deng, M.; Zhao, Z.; Yang, H.; Dong, Y.; Shang, Z.; et al. Genomic insights into the fast growth of paulownias and the formation of Paulownia witches’ broom. Mol. Plant 2021, 14, 1668–1682. [Google Scholar] [CrossRef] [PubMed]
- Yue, H.N.; Wu, Y.F.; Shi, Y.Z.; Wu, K.K.; Li, Y.R. First report of paulownia witches’ broom phytoplasma in China. Plant Dis. 2008, 92, 1134. [Google Scholar] [CrossRef]
- Tokushige, Y. Witches’ broom of Paulownia tomentosa L. J. Fac. Agric. Kyushu Univ. 1951, 10, 45–67. [Google Scholar] [CrossRef]
- Zhu, B. Current status of paulownia witches’ broom research. J. Shandong For. Sci. Technol. 1986, 2, 1–6. [Google Scholar]
- Jung, H.-Y.; Win, N.K.K.; Kim, Y.-H. Current status of phytoplasmas and their related diseases in Korea. Plant Pathol. J. 2012, 28, 239–247. [Google Scholar] [CrossRef]
- Doi, Y.; Teranaka, M.; Yora, K.; Asuyama, H. Mycoplasma-or PLT group-like microorganisms found in the phloem elements of plants infected with mulberry dwarf, potato witches’ broom, aster yellows, or paulownia witches’ broom. Jpn. J. Phytopathol. 1967, 33, 259–266. [Google Scholar] [CrossRef]
- International Committee on Systematic Bacteriology Subcommittee on the Taxonomy of Mollicutes: Minutes of the Interim Meetings, 1 and 2 August 1992, Ames, Iowa. Int. J. Syst. Bacteriol. 1993, 43, 394–397. [CrossRef]
- IRPCM. ‘Candidatus Phytoplasma’, a taxon for the wall-less, non-helical prokaryotes that colonize plant phloem and insects. Int. J. Syst. Evol. Microbiol. 2004, 54, 1243–1255. [Google Scholar] [CrossRef] [PubMed]
- Jin, K.X. Study of witches’ broom on paulownia. Acta Phytophyl. Sin. 1980, 7, 177–182. [Google Scholar]
- Li, Z.N.; Zhang, L.; Zhao, L.; Wu, Y.F. A new phytoplasma associated with witches’ broom on Japanese maple in China. For. Pathol. 2012, 42, 371–376. [Google Scholar] [CrossRef]
- Chang, W.; Li, X.; Shao, Y.; Xu, J.; Zhu, X. Molecular identification of the phytoplasma associated with kerria witches’ broom. Acta Phytopathol. Sin. 2012, 42, 541–545. [Google Scholar]
- Gao, J. Molecular Detection and Identification of Two Phytoplasma Diseases. Master’s Thesis, Hunan Agricultural University, Changsha, China, 2009. [Google Scholar]
- Li, Z.; Zhang, L.; Liu, P.; Bai, Y.; Wu, Y. First report of an aster yellows phytoplasma as the cause of rose balsam phyllody in China. J. Phytopathol. 2011, 159, 799–801. [Google Scholar] [CrossRef]
- Gao, R.; Zhang, G.M.; Lan, Y.F.; Zhu, T.S.; Yu, X.Q.; Zhu, X.P.; Li, X.D. Molecular characterization of phytoplasma associated with rose witches’ broom in China. J. Phytopathol. 2007, 156, 93–98. [Google Scholar] [CrossRef]
- Liu, J.; Chang, W.C.; Zhu, T.S.; Gao, R.; Wang, J.; Li, X.D. First report of ‘Candidatus Phytoplasma asteris’ subgroup 16SrI-D associated with Rosa xanthina witches’ broom in China. Plant Dis. 2018, 102, 1848. [Google Scholar] [CrossRef]
- Li, Z.N.; Min, H.; Yan, Y.; Zhao, Z.; Wu, W.J.; Wu, Y.F. First report of Syringa oblata and S. reticulata leafroll disease in China. Plant Dis. 2009, 93, 322. [Google Scholar] [CrossRef]
- Zhang, C.P.; Wu, K.K.; Li, Z.N.; Zhang, J.; Wang, W.L.; Wu, Y.F. Occurrence of an aster yellows (16SrI) group phytoplasma associated with a leaf roll disease of shinyleaf yellowhorn in China. Plant Pathol. 2009, 58, 790. [Google Scholar] [CrossRef]
- Sahashi, N.; Nakamura, H.; Yoshikawa, N.; Kubono, T.; Shoji, T.; Takahashi, T. Distribution and seasonal variation in detection of phytoplasma in bark phloem tissues of single paulownia trees infected with witches’ broom. Jpn. J. Phytopathol. 1995, 61, 481–484. [Google Scholar] [CrossRef]
- Cao, Y.B.; Zhai, X.Q.; Jie, D.W.; Fan, G.Q. Impact of annual temperature variation on distribution and year-round concentration variation of paulownia witches’ broom phytoplasma. J. Henan Agric. Sci. 2016, 45, 85–88. [Google Scholar]
- Nakamura, H.; Ohgake, S.; Sahashi, N.; Yoshikawa, N.; Kubono, T.; Takahashi, T. Seasonal variation of paulownia witches’-broom phytoplasma in paulownia trees and distribution of the disease in the Tohoku district of Japan. J. For. Res. 1998, 3, 39–42. [Google Scholar] [CrossRef]
- Kong, D.Z.; Lin, C.L.; Yu, S.S.; Tian, G.Z.; Ma, H.B.; Wang, S.J. Molecular diversity and evolutionary relatedness of paulownia witches’ broom phytoplasma in different geographical distributions in China. Biology 2022, 11, 1611. [Google Scholar] [CrossRef] [PubMed]
- Jin, K.X.; Liang, C.J.; Deng, D.L. A study of the insect vectors of witches’ broom in paulownia trees. Linye Keji Tongxun 1981. [Google Scholar]
- Hiruki, C. Paulownia witches’ broom important in East Asia. Acta Hortic. 1999, 496, 63–68. [Google Scholar] [CrossRef]
- La, Y.J.; Park, W.C. Insect transmission of paulownia witches’ broom mycoplasma-like organism to periwinkle plant by tobacco leaf bug, Cyrtopeltis tenuis Reuter. Korean J. Plant Pathol. 1994, 10, 211–214. [Google Scholar]
- Yeo, W.H.; Bak, W.C.; Lee, J.H.; Koh, M.G.; Yi, C.K.; Kim, Y.H. Transmission of paulownia witches’ broom mycoplasma-like organisms to periwinkle by a leafhopper, Empoasca sp. J. Korean Soc. For. Sci. 1994, 83, 1–5. [Google Scholar]
- Jin, K.X.; Gao, Z.H. Insect vector of jujube witches’ broom, Hishimonoides chinensis, transmit paulownia witches’ broom. For. Sci. Technol. 1984, 15, 22–24. [Google Scholar]
- Jin, K.X.; Fu, C.S.; Li, Z.L.; Zhang, W.J. Study on the pathogen and transmission pathway of paulownia witches’ broom. Sci. Silvae Sin. 1978, 14, 1–4. [Google Scholar]
- Hoshi, A.; Oshima, K.; Kakizawa, S.; Ishii, Y.; Ozeki, J.; Hashimoto, M.; Komatsu, K.; Kagiwada, S.; Yamaji, Y.; Namba, S. A unique virulence factor for proliferation and dwarfism in plants identified from a phytopathogenic bacterium. Proc. Natl. Acad. Sci. USA 2009, 106, 6416–6421. [Google Scholar] [CrossRef] [PubMed]
- Jiang, J.P. Paulownia Cultivation Science; China Forestry Publishing House: Beijing, China, 1990. [Google Scholar]
- Yang, J.X. The uptake of phosphorus and potassium in diseased twigs and leaves of paulownia witches’ broom by using 32P and Rb86. Sci. Silvae Sin. 1989, 25, 167–170. [Google Scholar]
- Hu, Q.X.; Zhou, Y.Z.; Ding, D.M. Changes of the phenol content and enzyme of witches’ broom diseased paulownia. For. Pest Dis. 1991, 2, 9–11. [Google Scholar]
- Fan, G.Q.; Jiang, J.P. Study on the relation between witches’ broom protein and amino acid change in paulownia leaves. For. Res. 1997, 10, 570–573. [Google Scholar]
- Ju, G.S.; Wang, R.; Zhou, Y.L.; Ruan, D.J. Study on the relationship between the content of vitamin C and resistance of Paulownia spp. to witches’ broom. For. Res. 1996, 9, 431–434. [Google Scholar]
- Zhao, H.J.; Wu, G.Y.; Lin, X.W.; Huang, Z.L. Relationship between witches’ broom of paulownia and superoxide dismutase. Plant Phsiology Commun. 1995, 31, 266–267. [Google Scholar]
- Jiang, J.P.; Zhu, J.J.; Liu, T.Z.; WU, L.G. Preliminary study on the relationship between paulownia witches’ broom and peroxidase. Acta Agric. Univ. Henanensis 1993, 27, 301–304. [Google Scholar]
- Jiang, J.P.; Liu, T.Z.; Wang, Z.T. The seasonal changes of peroxidase isozyme in paulownia with witches’ broom disease. Acta Agric. Univ. Henanensis 1996, 30, 123–126. [Google Scholar]
- Song, X.B.; Zhang, X.W.; Zheng, W.F.; Ao, H.Y.; Ren, F.J. An anatomical observation of organ structure of paulownia infected by witches’ broom. Shaanxi For. Sci. Technol. 1993, 4, 38–40. [Google Scholar]
- Chen, Y.M. Detrimental effects of witches’ broom on microstructure physio-biochemical nature of leaves and wood properties of paulownia. J. Northwest For. Collge 1992, 7, 38–40. [Google Scholar]
- Zhai, X.Q.; Cao, X.B.; Fan, G.Q. Growth of paulownia witches’ broom seedlings treated with methylmethane sulphonate and SSR analysis. Sci. Silvae Sin. 2010, 46, 176–181. [Google Scholar]
- Cao, X.B.; Fan, G.Q.; Zhai, X.Q. Morphological changes of the witches’ broom seedlings of Paulownia tomentosa treated with methyl methanesulphonate and SSR analysis. Acta Phytopathol. Sin. 2012, 42, 214–218. [Google Scholar]
- Cao, X.B.; Fan, G.Q.; Deng, M.J.; Zhao, Z.L.; Dong, Y.P. Identification of genes related to paulownia witches’ broom by AFLP and MSAP. Int. J. Mol. Sci. 2014, 15, 14669–14683. [Google Scholar] [CrossRef] [PubMed]
- Cao, X.B.; Fan, G.Q.; Zhao, Z.L.; Deng, M.J.; Dong, Y.P. Morphological changes of paulownia seedlings infected phytoplasmas reveal the genes associated with witches’ broom through AFLP and MSAP. PLoS ONE 2014, 9, e112533. [Google Scholar] [CrossRef]
- Li, M.; Zhai, X.Q.; Fan, G.Q.; Zhang, B.L.; Liu, F. Effect of oxytetracycline on the morphology of seedling with witches’ broom and DNA methylation level of Paulownia tomentosa×P. Fortunei. Sci. Silvae Sin. 2008, 44, 152–156. [Google Scholar]
- Mou, H.Q.; Lu, J.; Zhu, S.F.; Lin, C.L.; Tian, G.Z.; Xu, X.; Zhao, W.J. Transcriptomic analysis of paulownia infected by paulownia witches’ broom phytoplasma. PLoS ONE 2013, 8, e77217. [Google Scholar] [CrossRef]
- Liu, R.; Dong, Y.; Fan, G.; Zhao, Z.; Deng, M.; Cao, X.; Niu, S. Discovery of genes related to witches’ broom disease in Paulownia tomentosa x Paulownia fortunei by a de novo assembled transcriptome. PLoS ONE 2013, 8, e80238. [Google Scholar] [CrossRef]
- Fan, G.; Dong, Y.; Deng, M.; Zhao, Z.; Niu, S.; Xu, E. Plant-pathogen interaction, circadian rhythm, and hormone-related gene expression provide indicators of phytoplasma infection in Paulownia fortunei. Int. J. Mol. Sci. 2014, 15, 23141. [Google Scholar] [CrossRef] [PubMed]
- Fan, G.; Xu, E.; Deng, M.; Zhao, Z.; Niu, S. Phenylpropanoid metabolism, hormone biosynthesis and signal transduction-related genes play crucial roles in the resistance of Paulownia fortunei to paulownia witches’ broom phytoplasma infection. Genes Genom. 2015, 37, 913–929. [Google Scholar] [CrossRef]
- Fan, G.; Cao, X.; Zhao, Z.; Deng, M. Transcriptome analysis of the genes related to the morphological changes of Paulownia tomentosa plantlets infected with phytoplasma. Acta Physiol. Plant. 2015, 37, 1–12. [Google Scholar] [CrossRef]
- Dong, Y.P.; Zhang, H.Y.; Fan, G.Q.; Zhai, X.Q.; Wang, Z.; Cao, Y.B. Comparative transcriptomics analysis of phytohormone-related genes and alternative splicing events related to witches’ broom in paulownia. Forests 2018, 9, 318. [Google Scholar] [CrossRef]
- Fan, G.; Cao, X.; Niu, S.; Deng, M.; Zhao, Z.; Dong, Y. Transcriptome, microRNA, and degradome analyses of the gene expression of paulownia with phytoplasma. BMC Genom. 2015, 16, 896. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Zhai, X.; Cao, Y.; Zhao, H.; Wang, Z.; Liu, H.; Fan, G. Transcriptome and small RNA sequencing analysis revealed roles of PaWB-related miRNAs and genes in Paulownia fortunei. Forests 2018, 8, 397. [Google Scholar] [CrossRef]
- Zhao, X.; Cao, X.; Cao, Y.; Zhao, Z.; Fan, G. Integrated full-length transcriptome and metabolome analysis of the early defense mechanisms in paulownia witches’ broom disease. J. Hortic. Sci. Biotechnol. 2023, 98, 342–354. [Google Scholar] [CrossRef]
- Fan, G.Q.; Niu, S.Y.; Xu, T.; Deng, M.J.; Zhao, Z.L.; Wang, Y.L.; Cao, L.; Wang, Z. Plant-Pathogen interaction-related microRNAs and their targets provide indicators of phytoplasma infection in Paulownia tomentosa x Paulownia fortunei. PLoS ONE 2015, 10, e0140590. [Google Scholar] [CrossRef] [PubMed]
- Fan, G.; Niu, S.; Zhao, Z.; Deng, M.; Xu, E.; Wang, Y.; Yang, L. Identification of microRNAs and their targets in Paulownia fortunei plants free from phytoplasma pathogen after methyl methane sulfonate treatment. Biochimie 2016, 127, 271–280. [Google Scholar] [CrossRef]
- Niu, S.Y.; Fan, G.Q.; Deng, M.J.; Zhao, Z.L.; Xu, E.K.; Cao, L. Discovery of microRNAs and transcript targets related to witches’ broom disease in Paulownia fortunei by high-throughput sequencing and degradome approach. Mol. Genet. Genom. 2016, 291, 181–191. [Google Scholar] [CrossRef]
- Cao, X.B.; Zhai, X.Q.; Zhang, Y.F.; Cheng, Z.Y.; Li, X.Y.; Fan, G.Q. Comparative analysis of microRNA expression in three paulownia species with phytoplasma infection. Forests 2018, 9, 302. [Google Scholar] [CrossRef]
- Wang, Z.; Zhai, X.Q.; Cao, Y.B.; Dong, Y.P.; Fan, G.Q. Long Non-Coding RNAs Responsive to witches’ broom disease in Paulownia tomentosa. Forests 2017, 8, 348. [Google Scholar] [CrossRef]
- Cao, Y.B.; Fan, G.Q.; Zhai, X.Q.; Dong, Y.P. Genome-wide analysis of lncRNAs in Paulownia tomentosa infected with phytoplasmas. Acta Physiol. Plant. 2018, 40, 49. [Google Scholar] [CrossRef]
- Fan, G.Q.; Cao, Y.B.; Wang, Z. Regulation of Long Noncoding RNAs Responsive to phytoplasma infection in Paulownia tomentosa. Int. J. Genom. 2018, 2018, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Fan, G.Q.; Wang, Z.; Zhai, X.Q.; Cao, Y.B. ceRNA Cross-talk in paulownia witches’ broom disease. Int. J. Mol. Sci. 2018, 19, 2463. [Google Scholar] [CrossRef]
- Xu, P.; Huang, S.; Zhai, X.; Fan, Y.; Li, X.; Yang, H.; Cao, Y.; Fan, G. N6-methyladenosine modification changes during the recovery processes for paulownia witches’ broom disease under the methyl methanesulfonate treatment. Plant Direct 2023, 7, e508. [Google Scholar] [CrossRef] [PubMed]
- Cao, X.B.; Fan, G.Q.; Dong, Y.P.; Zhao, Z.L.; Deng, M.J.; Wang, Z.; Liu, W.S. Proteome profiling of paulownia seedlings infected with phytoplasma. Front. Plant Sci. 2017, 8, 342. [Google Scholar] [CrossRef]
- Wang, Z.; Liu, W.; Fan, G.; Zhai, X.; Zhao, Z.; Dong, Y.; Deng, M.; Cao, Y. Quantitative proteome-level analysis of paulownia witches’ broom disease with methyl methane sulfonate assistance reveals diverse metabolic changes during the infection and recovery processes. PeerJ 2017, 5, e3495. [Google Scholar] [CrossRef]
- Wei, Z.; Wang, Z.; Li, X.Y.; Zhao, Z.L.; Deng, M.J.; Dong, Y.P.; Cao, X.B.; Fan, G.Q. Comparative proteomic analysis of Paulownia fortunei response to phytoplasma infection with dimethyl sulfate treatment. Int. J. Genom. 2017, 2017, 1–11. [Google Scholar] [CrossRef]
- Cao, Y.; Fan, G.; Wang, Z.; Gu, Z. Phytoplasma-induced changes in the acetylome and succinylome of Paulownia tomentosa provide evidence for involvement of acetylated proteins in witches’ broom disease. Mol. Cell. Proteom. 2019, 18, 1210–1226. [Google Scholar] [CrossRef]
- Li, B.B.; Lin, D.; Zhai, X.Q.; Fan, G.Q.; Zhao, Z.L.; Cao, X.B.; Yang, H.B.; Che, T.D.; Yuan, Z.; Liu, T. Conformational changes in three-dimensional chromatin structure in Paulownia fortunei after phytoplasma infection. Phytopathology 2022, 112, 373–386. [Google Scholar] [CrossRef] [PubMed]
- Yan, L.; Fan, G.; Li, X. Genome-wide analysis of three histone marks and gene expression in Paulownia fortunei with phytoplasma infection. BMC Genom. 2019, 20, 234. [Google Scholar] [CrossRef] [PubMed]
- Yan, L.J.; Zhai, X.Q.; Zhao, Z.L.; Fan, G.Q. Whole-genome landscape of H3K4me3, H3K36me3 and H3K9ac and their association with gene expression during paulownia witches’ broom disease infection and recovery processes. 3 Biotech 2020, 10, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Cao, X.B.; Zhai, X.Q.; Zhao, Z.L.; Deng, M.J.; Li, Y.S.; Fan, G.Q. Genome-wide DNA methylation analysis of paulownia with phytoplasma infection. Gene 2020, 755, 144905. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.F.; Deng, M.J.; Cao, Y.B.; Huang, S.M.; Zhao, X.Q.; Fan, G.Q. Identification of ARF gene family and its response to phytoplasma infection in Paulownia fortunei. Mol. Plant Breed. 2022. Available online: https://kns.cnki.net/kcms/detail/46.1068.S.20220415.2122.036.html (accessed on 19 April 2024).
- Fan, J.; Deng, M.; Li, B.; Fan, G. Genome-wide identification of the Paulownia fortunei Aux/IAA gene family and its response to witches’ broom caused by phytoplasma. Int. J. Mol. Sci. 2024, 25, 2260. [Google Scholar] [CrossRef] [PubMed]
- Zhu, P.; Fan, Y.; Xu, P.; Fan, G. Bioinformatic analysis of the BTB gene family in Paulownia fortunei and functional characterization in response to abiotic and biotic stresses. Plants 2023, 12, 4144. [Google Scholar] [CrossRef] [PubMed]
- Dong, Y.; Deng, M.J.; Mo, S.F.; Fan, G.Q. Identification of bZIP gene family of Paulownia fortunei and their response to pathogenic process of witches’ broom phytoplasmas. J. Henan Agric. Univ. 2023, 57, 216–230. [Google Scholar]
- Li, L.; Guo, N.; Cao, Y.; Zhai, X.; Fan, G. Genome-wide characterization of calmodulin and calmodulin-like protein gene families in Paulownia fortunei and identification of their potential involvement in paulownia witches’ broom. Genes 2023, 14, 1540. [Google Scholar] [CrossRef]
- Li, Y.; Cao, Y.; Fan, Y.; Fan, G. Comprehensive analysis of the GRAS gene family in Paulownia fortunei and the response of DELLA proteins to paulownia witches’ broom. Int. J. Mol. Sci. 2024, 25, 2425. [Google Scholar] [CrossRef]
- Deng, M.; Dong, Y.; Xu, S.; Huang, S.; Zhai, X.; Fan, G. Genome-wide identification and expression of the Paulownia fortunei MADS-box gene family in response to phytoplasma infection. Genes 2023, 14, 696. [Google Scholar] [CrossRef]
- Xu, S.S.; Cao, Y.; Cao, X.; Dong, Y.; Zhai, X.Q.; Fan, G.Q. Analysis of the NCED gene family in Paulownia fortunei and their response to witches’ broom phytoplasmas. J. Henan Agric. Univ. 2022, 56, 968–978. [Google Scholar]
- Lang, Y.Q.; Zhai, X.Q.; Cao, X.B.; Fan, G.Q. Analysis of paulownia NLR gene family and their response to phytoplasmas. J. Southwest For. Univ. 2024, 44, 7–20. [Google Scholar] [CrossRef]
- Zhao, Z.; Zhang, P.; Deng, M.; Cao, Y.; Fan, G. Genome-wide identification and expression analyses of the PP2C gene family in Paulownia fortunei. Forests 2023, 14, 207. [Google Scholar] [CrossRef]
- Zhao, T.; Fan, Y.; Cao, Y.; Zhao, X.; Fan, G. Identification of the SERK Gene family in Paulownia fortunei and its involvement in the response to biotic and abiotic stresses. Phyton-Int. J. Exp. Bot. 2023, 92, 2473–2488. [Google Scholar] [CrossRef]
- Yang, H.; Zhai, X.; Zhao, Z.; Fan, G. Comprehensive analyses of the SPL transcription factor family in Paulownia fortunei and their responses to biotic and abiotic stresses. Int. J. Biol. Macromol. 2023, 226, 1261–1272. [Google Scholar] [CrossRef] [PubMed]
- Han, J.X.; Cao, X.B.; Liu, H.F.; Fan, G.Q. Analysis genes in the Paulownia fortunei TCP family and their response to witches’ broom and drought stress. J. For. Environ. 2022, 42, 337–345. [Google Scholar]
- Jiang, X.Y.; Cao, X.B.; Zhao, Z.L.; Deng, M.J.; Fan, G.Q. Analysis of E2 gene family in paulownia and their response to witches’ broom phytoplasmas. J. For. Environ. 2022, 42, 174–183. [Google Scholar]
- Chang, M.Y.; Cao, X.B.; Zhao, Z.L.; Fan, G.Q. Identification of the WPR gene family in paulownia and its response to witches’ broom phytoplasma. J. For. Environ. 2022, 42, 312–319. [Google Scholar]
- Brant, E.J.; Budak, H. Plant small non-coding RNAs and their roles in biotic stresses. Front. Plant Sci. 2018, 9, 1038. [Google Scholar] [CrossRef]
- Wierzbicki, A.T.; Blevins, T.; Swiezewski, S. Long noncoding RNAs in plants. Ann. Rev. Plant Biol. 2021, 72, 245–271. [Google Scholar] [CrossRef]
- Shen, L.; Liang, Z.; Wong, C.E.; Yu, H. Messenger RNA modifications in plants. Trends Plant Sci. 2019, 24, 328–341. [Google Scholar] [CrossRef] [PubMed]
- Candela-Ferre, J.; Diego-Martin, B.; Perez-Alemany, J.; Gallego-Bartolome, J. Mind The gap: Epigenetic regulation of chromatin accessibility in plants. Plant Physiol. 2024, 194, 1998–2016. [Google Scholar] [CrossRef] [PubMed]
- Berlec, A. Novel techniques and findings in the study of plant microbiota: Search for plant probiotics. Plant Sci. 2012, 193–194, 96–102. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Li, X.Z.; Fan, G.Q. Analysis fungal endophytes community structure in paulownia witches’ broom disease based on random forest machine learning method. J. Henan Agric. Univ. 2023, 57, 776–783. [Google Scholar]
- Li, X.; Huang, J.; Zhai, X.; Zhao, Z.; Pan, Y.; Fan, G. Bacterial assembly as part of immnue system in paulownia responses to witches’ broom caused by phytoplasmas. Res. Sq. 2022. [Google Scholar] [CrossRef]
- Li, R.X.; Cheng, S.R.; Liu, T.Z.; Zhang, Z.Y. The resistant difference of paulownia on witches’ broom and natural appraisal. J. Henan Agric. Univ. 1987, 21, 170–176. [Google Scholar]
- Yang, J.X.; Zhang, G.L.; Fan, J.F.; Zhou, Y.X.; Wang, P.X.; Li, Y.Z.; Li, W.A. Investigation on phytoplasma disease in different species and provenance of the genus Paulownia. J. Northwest For. Univ. 2005, 20, 115–116. [Google Scholar]
- Ren, G.L.; Liu, T.Z.; Zheng, L.C.; Shi, X.Y.; Zheng, T.M.; Kong, L.L.; Zhang, S.S.; Wang, K.J.; Dong, X.L.; Jiao, S.L.; et al. Study on induced resistance of paulownia to witches’ broom: I resistance induced by inoculating the pathogenic MLO. J. Henan Agric. Univ. 1994, 28, 240–244. [Google Scholar]
- Ren, G.L.; Liu, T.Z.; Shi, X.Y.; Tian, G.H.; Zhang, S.S.; Wei, L.D.; Dong, X.L. Study on induced resistance of paulownia to witches’ broom. J. Henan Agric. Univ. 1995, 29, 378–381. [Google Scholar]
- Zhang, G.L.; Wang, P.X.; Li, Y.Z.; Li, W.A.; Yang, H.P.; Yang, J.X. Disease resistance selection through radiomutagenesis to the Paulownia. J. Northwestern For. Univ. 2006, 21, 130–132. [Google Scholar]
- Bertaccini, A. Containment of phytoplasma-associated plant diseases by antibiotics and other antimicrobial molecules. Antibiotics 2021, 10, 1398. [Google Scholar] [CrossRef] [PubMed]
- La, Y.J.; Shin, H.D. Field control of paulownia witches’ broom with oxytetracycline hydrochloride. J. Korean Soc. For. Sci. 1980, 49, 6–10. [Google Scholar]
- Miao, J.B.; SiMa, C.; Ge, S.X.; Huai, J.S.; Zhang, S.M. Preliminary report on treatment of paulownia witches’ broom disease by soaking root in warm water. J. Henan Agric. Sci. 1982, 01, 32. [Google Scholar]
- Tong, D.Q.; Li, Z.L. Several problems in the prevention and control of paulownia witches’ broom disease. J. Shandong For. Sci. Technol. 1990, 2, 42–44. [Google Scholar]
- Wang, X.-Y.; Zhang, R.Y.; Li, J.; Li, Y.-H.; Shan, H.-L.; Li, W.-F.; Huang, Y.-K. The diversity, distribution and status of phytoplasma diseases in China. Front. Sustain. Food Syst. 2022, 6, 943080. [Google Scholar] [CrossRef]
- Sugio, A.; Kingdom, N.-H.; MacLean, A.-M.; Grieve, V.-M.; Hogenhout, S.-A. Phytoplasma protein effector SAP11 enhances insect vector reproduction by manipulating plant development and defense hormone biosynthesis. Proc. Natl. Acad. Sci. USA 2011, 108, E1254–E1263. [Google Scholar] [CrossRef]
- Huang, W.-J.; MacLean, A.-M.; Sugio, A.; Maqbool, A.; Busscher, M.; Cho, S.-T.; Kamoun, S.; Kuo, S.-H.; Immink, R.-G.; Hogenhout, S.A. Parasitic modulation of host development by ubiquitin-independent protein degradation. Cell 2021, 184, 5201–5214.e12. [Google Scholar] [CrossRef]
Gene Family | Data Sets | Family Members | PaWB-Related Genes | References |
---|---|---|---|---|
ARF, auxin response factor | PRJNA624264 | 33 | PfARF 18, 21 | [77] |
Aux/IAA, auxin/indole-3-acetic acid | 62 | PfAux/IAA 13, 33, 45 | [78] | |
BTB, Bric-a-Bric/Tramtrack/Broad complex | PRJNA624264 | 62 | PfBTB 3, 12, 14, 16, 19, 36, 44 | [79] |
bZIP, basic leucine zipper | PRJNA624264 | 89 | PfbZIP 46 | [80] |
CaM/CML, calmodulin and calmodulin-like protein | PRJNA624264 | 63 (5 CaMs, 58 CMLs) | [81] | |
GRAS, GAI//RGA//SCL | 79 | PfGRAS 12 | [82] | |
MADS-box | PRJNA794027 | 89 | PfMADS3, 57, 87 | [83] |
NCED, 9-cis-epoxycarotenoid dioxygenase | PRJNA624264 | 28 | PfNCED16 | [84] |
NLR, nucleotide-binding leucine-rich repeat receptors | PRJNA624264 | 199 | PfNLR 181 | [85] |
PP2C, protein phosphatase 2C | 91 | PfPP2C 2, 12, 19, 80 | [86] | |
SERK, somatic embryogenesis receptor-like kinases | PRJNA624264 | 12 | PfSERK3, 11 | [87] |
SPL, SQUAMOSA-PRO-MOTER BINDING PROTEIN-LIKE | PRJNA433928, PRJNA221355, PRJNA289582, SRP060682 | 23 | PfSPL 1, 4, 5, 9, 10, 11, 12, 13, 17, 18 | [88] |
TCP, teosinte branched1, cycloidea, proliferating cell factors | 35 | PfTCP 17, 27 | [89] | |
UBC E2, ubiquitin-conjugating enzyme E2 | PRJNA624264 | 56 | PfUBC 44, 45, 51 | [90] |
WPR, WEB1/PMI2-related | 16 | PfWEB 3, PfWPRb 2, PfWPRb 3, PfPMI 2 | [91] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Qiao, Z.; Li, J.; Bertaccini, A. Paulownia Witches’ Broom Disease: A Comprehensive Review. Microorganisms 2024, 12, 885. https://doi.org/10.3390/microorganisms12050885
Zhang Y, Qiao Z, Li J, Bertaccini A. Paulownia Witches’ Broom Disease: A Comprehensive Review. Microorganisms. 2024; 12(5):885. https://doi.org/10.3390/microorganisms12050885
Chicago/Turabian StyleZhang, Yajie, Zesen Qiao, Jidong Li, and Assunta Bertaccini. 2024. "Paulownia Witches’ Broom Disease: A Comprehensive Review" Microorganisms 12, no. 5: 885. https://doi.org/10.3390/microorganisms12050885
APA StyleZhang, Y., Qiao, Z., Li, J., & Bertaccini, A. (2024). Paulownia Witches’ Broom Disease: A Comprehensive Review. Microorganisms, 12(5), 885. https://doi.org/10.3390/microorganisms12050885