Addressing Sexually Transmitted Infections Due to Neisseria gonorrhoeae in the Present and Future
Abstract
:1. Introduction
2. Virulence Factors of Neisseria gonorrhoeae
3. Antimicrobial Resistance in Neisseria gonorrhoeae: Where We Are?
3.1. Mechanisms of Resistance: Overview
3.2. Mechanisms of Resistance: Spreading and Fitness
3.3. Mechanism of Resistance: XDRs and Clones
3.4. Resistance-Guided Therapy
4. Prevention and Plans of Action to Overcome Neisseria gonorrhoeae
- -
- Improved case reporting systems, allowing more real prevalence figures to be known;
- -
- Treatment regimens that ensure greater patient adherence;
- -
- Organisation of sex education and information programmes on STIs that are oriented and easily accessible to most of the population, especially in schools and high schools.
5. Vaccine Development, the Future?
6. New Treatments and New Alternatives
6.1. New Antimicrobials
6.2. New Perspectives beyond Antimicrobials
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Keshvani, N.; Gupta, A.; Incze, M.A. I Am Worried About Gonorrhea. JAMA Intern. Med. 2019, 179, 132. [Google Scholar] [CrossRef] [PubMed]
- Rowley, J.; Vander Hoorn, S.; Korenromp, E.; Low, N.; Unemo, M.; Abu-Raddad, L.J.; Chico, R.M.; Smolak, A.; Newman, L.; Gottlieb, S.; et al. Chlamydia, gonorrhoea, trichomoniasis and syphilis: Global prevalence and incidence estimates, 2016. Bull. World Health Organ. 2019, 97, 548–562. [Google Scholar] [CrossRef] [PubMed]
- Newman, L.; Rowley, J.; Hoorn, S.V.; Wijesooriya, N.S.; Unemo, M.; Low, N.; Stevens, G.; Gottlieb, S.; Kiarie, J.; Temmerman, M. Global Estimates of the Prevalence and Incidence of Four Curable Sexually Transmitted Infections in 2012 Based on Systematic Review and Global Reporting. PLoS ONE 2015, 10, e0143304. [Google Scholar] [CrossRef] [PubMed]
- Unemo, M.; Seifert, H.S.; Hook, E.W., III; Hawkes, S.; Ndowa, F. Gonorrhoea. Nat. Rev. Dis. Primers 2019, 5, 79. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Report on Global Sexually Transmitted Infection Surveillance 2018; WHO: Geneva, Switzerland, 2018. [Google Scholar]
- Centers for Disease Control and Prevention. Sexually Transmitted Disease Surveillance 2020; Centers for Disease Control and Prevention: Atlanta, GA, USA, 2023. [Google Scholar]
- Kreisel, K.M.; Weston, E.J.; Cyr, S.B.S.; Spicknall, I.H. Estimates of the Prevalence and Incidence of Chlamydia and Gonorrhea Among US Men and Women, 2018. Sex. Transm. Dis. 2021, 48, 222–231. [Google Scholar] [CrossRef] [PubMed]
- Bruxvoort, K.J.; Lewnard, J.A.; Chen, L.H.; Tseng, H.F.; Chang, J.; Veltman, J.; Marrazzo, J.; Qian, L. Prevention of Neisseria gonorrhoeae with Meningococcal B Vaccine: A Matched Cohort Study in Southern California. Clin. Infect. Dis. 2023, 76, e1341–e1349. [Google Scholar] [CrossRef] [PubMed]
- Raccagni, A.R.; Ranzenigo, M.; Bruzzesi, E.; Maci, C.; Castagna, A.; Nozza, S. Neisseria gonorrhoeae Antimicrobial Resistance: The Future of Antibiotic Therapy. J. Clin. Med. 2023, 12, 7767. [Google Scholar] [CrossRef] [PubMed]
- Adamson, P.C.; Klausner, J.D. Diagnostic Tests for Detecting Chlamydia trachomatis and Neisseria gonorrhoeae in Rectal and Pharyngeal Specimens. J. Clin. Microbiol. 2022, 60, e0021121. [Google Scholar] [CrossRef] [PubMed]
- Otero-Guerra, L.; Fernández-Blázquez, A.; Vazquez, F. Diagnóstico rápido de las infecciones de transmisión sexual. Enfermedades Infecc. Microbiol. Clínica 2017, 35, 444–450. [Google Scholar] [CrossRef]
- Golparian, D.; Unemo, M. Antimicrobial resistance prediction in Neisseria gonorrhoeae: Current status and future prospects. Expert Rev. Mol. Diagn. 2022, 22, 29–48. [Google Scholar] [CrossRef]
- Ohnishi, M.; Golparian, D.; Shimuta, K.; Saika, T.; Hoshina, S.; Iwasaku, K.; Nakayama, S.-I.; Kitawaki, J.; Unemo, M. Is Neisseria gonorrhoeae Initiating a Future Era of Untreatable Gonorrhea? Detailed Characterization of the First Strain with High-Level Resistance to Ceftriaxone. Antimicrob. Agents Chemother. 2011, 55, 3538–3545. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. WHO Guidelines for the Treatment of Neisseria Gonorrhoeae; WHO: Geneva, Switzerland, 2016. [Google Scholar]
- Fifer, H.; Saunders, J.; Soni, S.; Sadiq, S.T.; FitzGerald, M. 2018 UK national guideline for the management of infection with Neisseria gonorrhoeae. Int. J. STD AIDS 2020, 31, 4–15. [Google Scholar] [CrossRef] [PubMed]
- Jennison, A.V.; Whiley, D.; Lahra, M.M.; Graham, R.M.; Cole, M.J.; Hughes, G.; Fifer, H.; Andersson, M.; Edwards, A.; Eyre, D. Genetic relatedness of ceftriaxone-resistant and high-level azithromycin resistant Neisseria gonorrhoeae cases, United Kingdom and Australia, February to April 2018. Eurosurveillance 2019, 24, 1900118. [Google Scholar] [CrossRef] [PubMed]
- Eyre, D.W.; Town, K.; Street, T.; Barker, L.; Sanderson, N.; Cole, M.J.; Mohammed, H.; Pitt, R.; Gobin, M.; Irish, C.; et al. Detection in the United Kingdom of the Neisseria gonorrhoeae FC428 clone, with ceftriaxone resistance and intermediate resistance to azithromycin, October to December 2018. Eurosurveillance 2019, 24, 1900147. [Google Scholar] [CrossRef] [PubMed]
- Tedijanto, C.; Grad, Y.H.; Lipsitch, M. Potential impact of outpatient stewardship interventions on antibiotic exposures of common bacterial pathogens. eLife 2020, 9, e52307. [Google Scholar] [CrossRef] [PubMed]
- Tacconelli, E.; Carrara, E.; Savoldi, A.; Harbarth, S.; Mendelson, M.; Monnet, D.L.; Pulcini, C.; Kahlmeter, G.; Kluytmans, J.; Carmeli, Y.; et al. Discovery, research, and development of new antibiotics: The WHO priority list of antibiotic-resistant bacteria and tuberculosis. Lancet Infect. Dis. 2018, 18, 318–327. [Google Scholar] [CrossRef] [PubMed]
- Jansen, K.; Steffen, G.; Potthoff, A.; Schuppe, A.-K.; Beer, D.; Jessen, H.; Scholten, S.; Spornraft-Ragaller, P.; Bremer, V.; Tiemann, C.; et al. STI in times of PrEP: High prevalence of chlamydia, gonorrhea, and mycoplasma at different anatomic sites in men who have sex with men in Germany. BMC Infect. Dis. 2020, 20, 110. [Google Scholar] [CrossRef] [PubMed]
- Dudareva-Vizule, S.; Haar, K.; Sailer, A.; Wisplinghoff, H.; Wisplinghoff, F.; Marcus, U.; PARIS Study Group. Prevalence of pharyngeal and rectal Chlamydia trachomatis and Neisseria gonorrhoeae infections among men who have sex with men in Germany. Sex. Transm. Infect. 2014, 90, 46–51. [Google Scholar] [CrossRef] [PubMed]
- Kurzyp, K.; Harrison, O.B. Bacterium of one thousand and one variants: Genetic diversity of Neisseria gonorrhoeae pathogenicity. Microb. Genom. 2023, 9, 001040. [Google Scholar] [CrossRef]
- Shafer, W.M.; Datta, A.; Kumar Kolli, V.S.; Mahbubur Rahman, M.; Balthazar, J.T.; Martin, L.E.; Veal, W.L.; Stephens, D.S.; Carlson, R. Phase variable changes in genes lgtA and lgtC within the lgtABCDE operon of Neisseria gonorrhoeae can modulate gonococcal susceptibility to normal human serum. J. Endotoxin Res. 2002, 8, 47–58. [Google Scholar] [CrossRef]
- Yang, Q.L.; Gotschlich, E.C. Variation of gonococcal lipooligosaccharide structure is due to alterations in poly-G tracts in lgt genes encoding glycosyl transferases. J. Exp. Med. 1996, 183, 323–327. [Google Scholar] [CrossRef] [PubMed]
- Mandrell, R.E.; Apicella, M.A. Lipo-oligosaccharides (LOS) of mucosal pathogens: Molecular mimicry and host-modification of LOS. Immunobiology 1993, 187, 382–402. [Google Scholar] [CrossRef]
- Putten, J.P.M.; Robertson, B.D. Molecular mechanisms and implications for infection of lipopolysaccharide variation in Neisseria. Mol. Microbiol. 1995, 16, 847–853. [Google Scholar] [CrossRef]
- Welsch, J.A.; Ram, S. Factor H and Neisserial pathogenesis. Vaccine 2008, 26, I40–I45. [Google Scholar] [CrossRef] [PubMed]
- Paz, H.D.L.; Cooke, S.J.; Heckels, J.E. Effect of sialylation of lipopolysaccharide of Neisseria gonorrhoeae on recognition and complement-mediated killing by monoclonal antibodies directed against different outer-membrane antigens. Microbiology 1995, 141, 913–920. [Google Scholar] [CrossRef]
- Lewis, L.A.; Choudhury, B.; Balthazar, J.T.; Martin, L.E.; Ram, S.; Rice, P.A.; Stephens, D.S.; Carlson, R.; Shafer, W.M. Phosphoethanolamine Substitution of Lipid A and Resistance of Neisseria gonorrhoeae to Cationic Antimicrobial Peptides and Complement-Mediated Killing by Normal Human Serum. Infect. Immun. 2009, 77, 1112–1120. [Google Scholar] [CrossRef]
- Preston, A.; Mandrell, R.E.; Gibson, B.W.; Apicella, M.A. The Lipooligosaccharides of Pathogenic Gram-Negative Bacteria. Crit. Rev. Microbiol. 1996, 22, 139–180. [Google Scholar] [CrossRef]
- Hill, S.A.; Davies, J.K. Pilin gene variation in Neisseria gonorrhoeae: Reassessing the old paradigms. FEMS Microbiol. Rev. 2009, 33, 521–530. [Google Scholar] [CrossRef]
- Jonsson, A.B.; Nyberg, G.; Normark, S. Phase variation of gonococcal pili by frameshift mutation in pilC, a novel gene for pilus assembly. EMBO J. 1991, 10, 477–488. [Google Scholar] [CrossRef]
- Ayala, P.; Wilbur, J.S.; Wetzler, L.M.; Tainer, J.A.; Snyder, A.; So, M. The pilus and porin of Neisseria gonorrhoeae cooperatively induce Ca2+ transients in infected epithelial cells. Cell. Microbiol. 2005, 7, 1736–1748. [Google Scholar] [CrossRef]
- Ilver, D.; Källström, H.; Normark, S.; Jonsson, A.-B. Transcellular Passage of Neisseria gonorrhoeae Involves Pilus Phase Variation. Infect. Immun. 1998, 66, 469–473. [Google Scholar] [CrossRef] [PubMed]
- Kirchner, M.; Meyer, T.F. The PilC adhesin of the Neisseria type IV pilus—Binding specificities and new insights into the nature of the host cell receptor. Mol. Microbiol. 2005, 56, 945–957. [Google Scholar] [CrossRef]
- Merz, A.J.; So, M.; Sheetz, M.P. Pilus retraction powers bacterial twitching motility. Nature 2000, 407, 98–102. [Google Scholar] [CrossRef]
- Alcott, A.M.; Werner, L.M.; Baiocco, C.M.; Dufrisne, M.B.; Columbus, L.; Criss, A.K. Variable Expression of Opa Proteins by Neisseria gonorrhoeae Influences Bacterial Association and Phagocytic Killing by Human Neutrophils. J. Bacteriol. 2022, 204, e0003522. [Google Scholar] [CrossRef] [PubMed]
- Virji, M.; Makepeace, K.; Ferguson, D.J.P.; Watt, S.M. Carcinoembryonic antigens (CD66) on epithelial cells and neutrophils are receptors for Opa proteins of pathogenic neisseriae. Mol. Microbiol. 1996, 22, 941–950. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.; Gotschlich, E.C. CGM1a antigen of neutrophils, a receptor of gonococcal opacity proteins. Proc. Natl. Acad. Sci. USA 1996, 93, 14851–14856. [Google Scholar] [CrossRef]
- Werner, L.M.; Alcott, A.; Mohlin, F.; Ray, J.C.; Dufrisne, M.B.; Smirnov, A.; Columbus, L.; Blom, A.M.; Criss, A.K. Neisseria gonorrhoeae co-opts C4b-binding protein to enhance complement-independent survival from neutrophils. PLoS Pathog. 2023, 19, e1011055. [Google Scholar] [CrossRef] [PubMed]
- Mosleh, I.M.; Huber, L.A.; Steinlein, P.; Pasquali, C.; Günther, D.; Meyer, T.F. Neisseria gonorrhoeae Porin Modulates Phagosome Maturation. J. Biol. Chem. 1998, 273, 35332–35338. [Google Scholar] [CrossRef]
- Jones, R.A.; Jerse, A.E.; Tang, C.M. Gonococcal PorB: A multifaceted modulator of host immune responses. Trends Microbiol. 2024, 32, 355–364. [Google Scholar] [CrossRef]
- Deo, P.; Chow, S.H.; Hay, I.D.; Kleifeld, O.; Costin, A.; Elgass, K.D.; Jiang, J.-H.; Ramm, G.; Gabriel, K.; Dougan, G.; et al. Outer membrane vesicles from Neisseria gonorrhoeae target PorB to mitochondria and induce apoptosis. PLoS Pathog. 2018, 14, e1006945. [Google Scholar] [CrossRef]
- Hauck, C.R.; Meyer, T.F. The lysosomal/phagosomal membrane protein h-lamp-1 is a target of the IgA1 protease of Neisseria gonorrhoeae. FEBS Lett. 1997, 405, 86–90. [Google Scholar] [CrossRef]
- Lin, L.; Ayala, P.; Larson, J.; Mulks, M.; Fukuda, M.; Carlsson, S.R.; Enns, C.; So, M. The Neisseria type 2 IgA1 protease cleaves LAMP1 and promotes survival of bacteria within epithelial cells. Mol. Microbiol. 1997, 24, 1083–1094. [Google Scholar] [CrossRef]
- Leuzzi, R.; Serino, L.; Scarselli, M.; Savino, S.; Fontana, M.R.; Monaci, E.; Taddei, A.; Fischer, G.; Rappuoli, R.; Pizza, M. Ng-MIP, a surface-exposed lipoprotein of Neisseria gonorrhoeae, has a peptidyl-prolyl cis/trans isomerase (PPIase) activity and is involved in persistence in macrophages. Mol. Microbiol. 2005, 58, 669–681. [Google Scholar] [CrossRef]
- Semchenko, E.A.; Mubaiwa, T.D.; Day, C.J.; Seib, K.L. Role of the Gonococcal Neisserial Heparin Binding Antigen in Microcolony Formation, and Serum Resistance and Adherence to Epithelial Cells. J. Infect. Dis. 2020, 221, 1612–1622. [Google Scholar] [CrossRef]
- Serino, L.; Nesta, B.; Leuzzi, R.; Fontana, M.R.; Monaci, E.; Mocca, B.T.; Cartocci, E.; Masignani, V.; Jerse, A.E.; Rappuoli, R.; et al. Identification of a new OmpA-like protein in Neisseria gonorrhoeae involved in the binding to human epithelial cells and in vivo colonization. Mol. Microbiol. 2007, 64, 1391–1403. [Google Scholar] [CrossRef] [PubMed]
- Humbert, M.V.; Awanye, A.M.; Lian, L.-Y.; Derrick, J.P.; Christodoulides, M. Structure of the Neisseria Adhesin Complex Protein (ACP) and its role as a novel lysozyme inhibitor. PLoS Pathog. 2017, 13, e1006448. [Google Scholar] [CrossRef]
- Zielke, R.A.; Le Van, A.; Baarda, B.I.; Herrera, M.F.; Acosta, C.J.; Jerse, A.E.; Sikora, A.E. SliC is a surface-displayed lipoprotein that is required for the anti-lysozyme strategy during Neisseria gonorrhoeae infection. PLoS Pathog. 2018, 14, e1007081. [Google Scholar] [CrossRef] [PubMed]
- Johnson, M.B.; Criss, A.K. Resistance of Neisseria Gonorrhoeae to Neutrophils. Front. Microbiol. 2011, 2, 77. [Google Scholar] [CrossRef]
- Hagman, K.E.; Pan, W.; Spratt, B.G.; Balthazar, J.T.; Judd, R.C.; Shafer, W.M. Resistance of Neisseria gonorrhoeae to antimicrobial hydrophobic agents is modulated by the mtrRCDE efflux system. Microbiology 1995, 141, 611–622. [Google Scholar] [CrossRef]
- Yadav, R.; Noinaj, N.; Ostan, N.; Moraes, T.; Stoudenmire, J.; Maurakis, S.; Cornelissen, C.N. Structural Basis for Evasion of Nutritional Immunity by the Pathogenic Neisseriae. Front. Microbiol. 2020, 10, 2981. [Google Scholar] [CrossRef] [PubMed]
- Semchenko, E.A.; Day, C.J.; Seib, K.L. MetQ of Neisseria gonorrhoeae Is a Surface-Expressed Antigen That Elicits Bactericidal and Functional Blocking Antibodies. Infect. Immun. 2017, 85, e00898-16. [Google Scholar] [CrossRef]
- Unemo, M.; Shafer, W.M. Antimicrobial Resistance in Neisseria gonorrhoeae in the 21st Century: Past, Evolution, and Future. Clin. Microbiol. Rev. 2014, 27, 587–613. [Google Scholar] [CrossRef] [PubMed]
- Habiburrahman, M.; Soetikno, V.; Sirait, W.R.; Savira, M. Solithromycin as A Potential Novel Antibiotic Against Neisseria Gonorrhoeae Resistance. Indones. J. Pharm. 2020, 31, 335–353. [Google Scholar] [CrossRef]
- Allan-Blitz, L.-T.; Adamson, P.C.; Klausner, J.D. Resistance-Guided Therapy for Neisseria gonorrhoeae. Clin. Infect. Dis. 2022, 75, 1655–1660. [Google Scholar] [CrossRef]
- Gianecini, R.A.; Poklepovich, T.; Golparian, D.; Cuenca, N.; Scocozza, L.; Bergese, S.; Canigia, L.F.; Vilches, V.; Elgart, M.J.L.; Unemo, M.; et al. Sustained Transmission of Neisseria gonorrhoeae Strains with High-Level Azithromycin Resistance (MIC ≥ 256 μg/mL) in Argentina, 2018 to 2022. Microbiol. Spectr. 2023, 11, e0097023. [Google Scholar] [CrossRef] [PubMed]
- Muhammad, I.; Golparian, D.; Dillon, J.-A.R.; Johansson, Å.; Ohnishi, M.; Sethi, S.; Chen, S.-C.; Nakayama, S.-I.; Sundqvist, M.; Bala, M.; et al. Characterisation of bla TEM genes and types of β-lactamase plasmids in Neisseria gonorrhoeae—The prevalent and conserved blaTEM-135 has not recently evolved and existed in the Toronto plasmid from the origin. BMC Infect. Dis. 2014, 14, 454. [Google Scholar] [CrossRef]
- Nokchan, N.; Nitayanon, P.; Tribuddharat, C. Molecular Epidemiology of Penicillinase-Producing Neisseria gonorrhoeae Isolates and Their blaTEM-135 Gene Variant in Bangkok, Thailand, 2015–2017. Jpn. J. Infect. Dis. 2023, 76, 126–134. [Google Scholar] [CrossRef]
- Kanesaka, I.; Ohno, A.; Katsuse, A.K.; Takahashi, H.; Kobayashi, I. The emergence of the ceftriaxone-resistant Neisseria gonorrhoeae FC428 clone by transfer of resistance from an oral Neisseria subflava reservoir of resistance. J. Antimicrob. Chemother. 2022, 77, 364–373. [Google Scholar] [CrossRef]
- Spratt, B.G.; Bowler, L.D.; Zhang, Q.-Y.; Zhou, J.; Smith, J.M. Role of interspecies transfer of chromosomal genes in the evolution of penicillin resistance in pathogenic and commensal Neisseria species. J. Mol. Evol. 1992, 34, 115–125. [Google Scholar] [CrossRef]
- Radovanovic, M.; Kekic, D.; Jovicevic, M.; Kabic, J.; Gajic, I.; Opavski, N.; Ranin, L. Current Susceptibility Surveillance and Distribution of Antimicrobial Resistance in N. gonorrheae within WHO Regions. Pathogens 2022, 11, 1230. [Google Scholar] [CrossRef]
- Goytia, M.; Wadsworth, C.B. Canary in the Coal Mine: How Resistance Surveillance in Commensals Could Help Curb the Spread of AMR in Pathogenic Neisseria. mBio 2022, 13, e01991-22. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Van Der Veen, S. Neisseria gonorrhoeae 23S rRNA A2059G mutation is the only determinant necessary for high-level azithromycin resistance and improves in vivo biological fitness. J. Antimicrob. Chemother. 2019, 74, 407–415. [Google Scholar] [CrossRef] [PubMed]
- Andrew, J.; Ambrozio, D. Insights into the Enhanced In Vivo Fitness of Neisseria gonorrhoeae Driven by a Fluoroquinolone Resistance-Conferring Mutant DNA Gyrase. Available online: https://apps.dtic.mil/sti/pdfs/AD1012700.pdf (accessed on 16 April 2024).
- Sánchez-Busó, L.; Cole, M.J.; Spiteri, G.; Day, M.; Jacobsson, S.; Golparian, D.; Sajedi, N.; A Yeats, C.; Abudahab, K.; Underwood, A.; et al. Europe-wide expansion and eradication of multidrug-resistant Neisseria gonorrhoeae lineages: A genomic surveillance study. Lancet Microbe 2022, 3, e452–e463. [Google Scholar] [CrossRef] [PubMed]
- Yahara, K.; Nakayama, S.-I.; Shimuta, K.; Lee, K.-I.; Morita, M.; Kawahata, T.; Kuroki, T.; Watanabe, Y.; Ohya, H.; Yasuda, M.; et al. Genomic surveillance of Neisseria gonorrhoeae to investigate the distribution and evolution of antimicrobial-resistance determinants and lineages. Microb. Genom. 2018, 4, e000205. [Google Scholar] [PubMed]
- Ohnishi, M.; Saika, T.; Hoshina, S.; Iwasaku, K.; Nakayama, S.-I.; Watanabe, H.; Kitawaki, J. Ceftriaxone-Resistant Neisseria gonorrhoeae, Japan. Emerg. Infect. Dis. 2011, 17, 148–149. [Google Scholar] [CrossRef] [PubMed]
- Golparian, D.; Vestberg, N.; Södersten, W.; Jacobsson, S.; Ohnishi, M.; Fang, H.; Bhattarai, K.H.; Unemo, M. Multidrug-resistant Neisseria gonorrhoeae isolate SE690: Mosaic penA-60.001 gene causing ceftriaxone resistance internationally has spread to the more antimicrobial-susceptible genomic lineage, Sweden, September 2022. Eurosurveillance 2023, 28, 2300125. [Google Scholar] [CrossRef]
- Unemo, M.; Golparian, D.; Nicholas, R.; Ohnishi, M.; Gallay, A.; Sednaoui, P. High-Level Cefixime- and Ceftriaxone-Resistant Neisseria gonorrhoeae in France: Novel penA Mosaic Allele in a Successful International Clone Causes Treatment Failure. Antimicrob. Agents Chemother. 2012, 56, 1273–1280. [Google Scholar] [CrossRef] [PubMed]
- Cámara, J.; Serra, J.; Ayats, J.; Bastida, T.; Carnicer-Pont, D.; Andreu, A.; Ardanuy, C. Molecular characterization of two high-level ceftriaxone-resistant Neisseria gonorrhoeae isolates detected in Catalonia, Spain. J. Antimicrob. Chemother. 2012, 67, 1858–1860. [Google Scholar] [CrossRef]
- Zhou, K.; Chen, S.-C.; Yang, F.; van der Veen, S.; Yin, Y.-P. Impact of the gonococcal FC428 penA allele 60.001 on ceftriaxone resistance and biological fitness. Emerg. Microbes Infect. 2020, 9, 1219–1229. [Google Scholar] [CrossRef]
- Trick, A.Y.; Melendez, J.H.; Chen, F.-E.; Chen, L.; Onzia, A.; Zawedde, A.; Nakku-Joloba, E.; Kyambadde, P.; Mande, E.; Matovu, J.; et al. A portable magnetofluidic platform for detecting sexually transmitted infections and antimicrobial susceptibility. Sci. Transl. Med. 2021, 13, eabf6356. [Google Scholar] [CrossRef]
- Yang, J.; Dhital, S.; Naderer, T. Efficacy and Safety of Injectable and Oral Antibiotics in Treating Gonorrhea: A Systematic Review and Network Meta-Analysis. J. Clin. Med. 2019, 8, 2182. [Google Scholar] [CrossRef] [PubMed]
- Lo, F.W.Y.; Kong, F.Y.S.; Hocking, J.S. Treatment efficacy for rectal Neisseria gonorrhoeae: A systematic review and meta-analysis of randomized controlled trials. J. Antimicrob. Chemother. 2021, 76, 3111–3124. [Google Scholar] [CrossRef] [PubMed]
- Williamson, D.A.; Chow, E.P.F.; Gorrie, C.L.; Seemann, T.; Ingle, D.J.; Higgins, N.; Easton, M.; Taiaroa, G.; Grad, Y.H.; Kwong, J.C.; et al. Bridging of Neisseria gonorrhoeae lineages across sexual networks in the HIV pre-exposure prophylaxis era. Nat. Commun. 2019, 10, 3988. [Google Scholar] [CrossRef] [PubMed]
- Jasek, E.; Chow, E.P.F.; Ong, J.; Bradshaw, C.; Chen, M.Y.; Hocking, J.; Lee, D.; Phillips, T.R.; Temple-Smith, M.; Fehler, G.; et al. Sexually Transmitted Infections in Melbourne, Australia from 1918 to 2016: Nearly a century of data. Commun. Dis. Intell. Q. Rep. 2017, 41, E212–E222. [Google Scholar] [PubMed]
- Chow, E.P.F.; E Grulich, A.; Fairley, C.K. Epidemiology and prevention of sexually transmitted infections in men who have sex with men at risk of HIV. Lancet HIV 2019, 6, e396–e405. [Google Scholar] [CrossRef] [PubMed]
- Torreblanca Gil, A. Epidemiología de la Infección por Neisseria gonorrhoeae en Asturias. Caracterización de las Cepas Circulantes y Estudio de Resistencias. Ph.D. Thesis, Universidad de Oviedo, Oviedo, Spain, 2015. [Google Scholar]
- Thomas, D.R.; Williams, C.J.; Andrady, U.; Anderson, V.; Humphreys, S.; Midgley, C.M.; Fina, L.; Craine, N.; Porter-Jones, G.; Wilde, A.; et al. Outbreak of syphilis in men who have sex with men living in rural North Wales (UK) associated with the use of social media. Sex. Transm. Infect. 2016, 92, 359–364. [Google Scholar] [CrossRef] [PubMed]
- Beymer, M.R.; E Weiss, R.; Bolan, R.K.; Rudy, E.T.; Bourque, L.B.; Rodriguez, J.P.; E Morisky, D. Sex on demand: Geosocial networking phone apps and risk of sexually transmitted infections among a cross-sectional sample of men who have sex with men in Los Angeles county. Sex. Transm. Infect. 2014, 90, 567–572. [Google Scholar] [CrossRef] [PubMed]
- Holt, M.; Lea, T.; Mao, L.; Kolstee, J.; Zablotska, I.; Duck, T.; Allan, B.; West, M.; Lee, E.; Hull, P.; et al. Community-level changes in condom use and uptake of HIV pre-exposure prophylaxis by gay and bisexual men in Melbourne and Sydney, Australia: Results of repeated behavioural surveillance in 2013–17. Lancet HIV 2018, 5, e448–e456. [Google Scholar] [CrossRef] [PubMed]
- Traeger, M.W.; Cornelisse, V.J.; Asselin, J.; Price, B.; Roth, N.J.; Willcox, J.; Tee, B.K.; Fairley, C.K.; Chang, C.C.; Armishaw, J.; et al. Association of HIV Preexposure Prophylaxis With Incidence of Sexually Transmitted Infections Among Individuals at High Risk of HIV Infection. JAMA 2019, 321, 1380–1390. [Google Scholar] [CrossRef]
- Gökengin, D.; Noori, T.; Alemany, A.; Bienkowski, C.; Liegon, G.; İnkaya, A.Ç.; Carrillo, J.; Stary, G.; Knapp, K.; Mitja, O.; et al. Prevention strategies for sexually transmitted infections, HIV, and viral hepatitis in Europe. Lancet Reg. Health Eur. 2023, 34, 100738. [Google Scholar] [CrossRef]
- Tuddenham, S.; Hamill, M.M.; Ghanem, K.G. Diagnosis and Treatment of Sexually Transmitted Infections. JAMA 2022, 327, 161–172. [Google Scholar] [CrossRef]
- Werner, R.N.; Schmidt, A.J.; Potthoff, A.; Spornraft-Ragaller, P.; Brockmeyer, N.H. Position statement of the German STI Society on the prophylactic use of doxycycline to prevent STIs (Doxy-PEP, Doxy-PrEP). J. Dtsch. Dermatol. Ges. 2024, 22, 466–478. [Google Scholar] [CrossRef] [PubMed]
- Luetkemeyer, A.F.; Donnell, D.; Dombrowski, J.C.; Cohen, S.; Grabow, C.; Brown, C.E.; Malinski, C.; Perkins, R.; Nasser, M.; Lopez, C.; et al. Postexposure Doxycycline to Prevent Bacterial Sexually Transmitted Infections. N. Engl. J. Med. 2023, 388, 1296–1306. [Google Scholar] [CrossRef] [PubMed]
- Wi, T.; Lahra, M.M.; Ndowa, F.; Bala, M.; Dillon, J.-A.R.; Ramon-Pardo, P.; Eremin, S.R.; Bolan, G.; Unemo, M. Antimicrobial resistance in Neisseria gonorrhoeae: Global surveillance and a call for international collaborative action. PLoS Med. 2017, 14, e1002344. [Google Scholar] [CrossRef] [PubMed]
- Beauté, J.; Cowan, S.; Hiltunen-Back, E.; Kløvstad, H.; Velicko, I.; Spiteri, G. Travel-associated gonorrhoea in four Nordic countries, 2008 to 2013. Eurosurveillance 2017, 22, 30537. [Google Scholar] [CrossRef] [PubMed]
- Cole, M.J.; Day, M.; Jacobsson, S.; Amato-Gauci, A.J.; Spiteri, G.; Unemo, M.; the European Gonorrhoea Response Plan Group. The European response to control and manage multi- and extensively drug-resistant Neisseria gonorrhoeae. Eurosurveillance 2022, 27, 2100611. [Google Scholar] [CrossRef] [PubMed]
- Kenyon, C.; Laumen, J.; Manoharan-Basil, S. Choosing New Therapies for Gonorrhoea: We Need to Consider the Impact on the Pan-Neisseria Genome. A Viewpoint. Antibiotics 2021, 10, 515. [Google Scholar] [CrossRef] [PubMed]
- Van Der Pol, B.; Taylor, S.N.; Mena, L.; Lebed, J.; McNeil, C.J.; Crane, L.; Ermel, A.; Sukhija-Cohen, A.; Gaydos, C.A. Evaluation of the Performance of a Point-of-Care Test for Chlamydia and Gonorrhea. JAMA Netw. Open 2020, 3, e204819. [Google Scholar] [CrossRef] [PubMed]
- Morris, S.R.; Bristow, C.C.; Wierzbicki, M.R.; Sarno, M.; Asbel, L.; French, A.; A Gaydos, C.; Hazan, L.; Mena, L.; Madhivanan, P.; et al. Performance of a single-use, rapid, point-of-care PCR device for the detection of Neisseria gonorrhoeae, Chlamydia trachomatis, and Trichomonas vaginalis: A cross-sectional study. Lancet Infect. Dis. 2021, 21, 668–676. [Google Scholar] [CrossRef]
- World Health Organization. Global Health Sector Strategy on Sexually Transmitted Infections, 2016–2021; WHO: Geneva, Switzerland, 2016. [Google Scholar]
- World Health Organization. Multi-Drug Resistant Gonorrhea; WHO: Geneva, Switzerland, 2023. [Google Scholar]
- World Health Organization. Gonorrhoea: Latest Antimicrobial Global Surveillance Results and Guidance for Vaccine Development Published; WHO: Geneva, Switzerland, 2021. [Google Scholar]
- World Health Organization. Global Health Sector Strategies on, Respectively, HIV, Viral Hepatitis and Sexually Transmitted Infections for the Period 2022–2030; WHO: Geneva, Switzerland, 2022. [Google Scholar]
- Figueroa-Damián, R. Uretritis Gonocócica Perinatología y reProducción Humana Artículo de Revisión. 2013. Available online: http://www.medigraphic.com/inper (accessed on 16 April 2024).
- Qasim, A.; Jaan, S.; Wara, T.U.; Shehroz, M.; Nishan, U.; Shams, S.; Shah, M.; Ojha, S.C. Computer-aided genomic data analysis of drug-resistant Neisseria gonorrhoeae for the Identification of alternative therapeutic targets. Front. Cell. Infect. Microbiol. 2023, 13, 1017315. [Google Scholar] [CrossRef]
- Tavana, A.M.; Ataee, R.A.; Jonaidi, N.; Sorouri, R. Characteristics of Neisseria Species Colonized in the Human’s Nasopharynx. Jundishapur J. Microbiol. 2020, 13, 11. [Google Scholar]
- Masignani, V.; Pizza, M.; Moxon, E.R. The Development of a Vaccine Against Meningococcus B Using Reverse Vaccinology. Front. Immunol. 2019, 10, 751. [Google Scholar] [CrossRef] [PubMed]
- Murphy, E.; Andrew, L.; Lee, K.-L.; Dilts, D.A.; Nunez, L.; Fink, P.S.; Ambrose, K.; Borrow, R.; Findlow, J.; Taha, M.-K.; et al. Sequence Diversity of the Factor H Binding Protein Vaccine Candidate in Epidemiologically Relevant Strains of Serogroup B Neisseria meningitidis. J. Infect. Dis. 2009, 200, 379–389. [Google Scholar] [CrossRef]
- Petousis-Harris, H.; Paynter, J.; Morgan, J.; Saxton, P.; McArdle, B.; Goodyear-Smith, F.; Black, S. Effectiveness of a group B outer membrane vesicle meningococcal vaccine against gonorrhoea in New Zealand: A retrospective case-control study. Lancet 2017, 390, 1603–1610. [Google Scholar] [CrossRef] [PubMed]
- Longtin, J.; Dion, R.; Simard, M.; Belinga, J.-F.B.; Longtin, Y.; Lefebvre, B.; Labbé, A.-C.; Deceuninck, G.; De Wals, P. Possible Impact of Wide-scale Vaccination Against Serogroup B Neisseria Meningitidis on Gonorrhea Incidence Rates in One Region of Quebec, Canada. Open Forum Infect. Dis. 2017, 4, S734–S735. [Google Scholar] [CrossRef]
- Rice, P.A.; Shafer, W.M.; Ram, S.; Jerse, A.E. Neisseria gonorrhoeae: Drug Resistance, Mouse Models, and Vaccine Development. Annu. Rev. Microbiol. 2017, 71, 665–686. [Google Scholar] [CrossRef] [PubMed]
- Pérez, O.; del Campo, J.; Cuello, M.; González, E.; Nuñez, N.; Cabrera, O.; Llanes, R.; Acevedo, R.; Zayas, C.; Balboa, J.; et al. Mucosal approaches in Neisseria vaccinology. eVacciMonitor 2009, 18, 53–55. [Google Scholar]
- Díaz, L.M.B.R.; González, M.d.S.L.; Cuello, M.; Sierra-González, V.G.; Pupo, R.R.; Lantero, M.I.; Harandi, A.M.; Black, S.; Pérez, O. VA-MENGOC-BC Vaccination Induces Serum and Mucosal Anti Neisseria gonorrhoeae Immune Responses and Reduces the Incidence of Gonorrhea. Pediatr. Infect. Dis. J. 2021, 40, 375–381. [Google Scholar] [CrossRef]
- Whelan, J.; Kløvstad, H.; Haugen, I.L.; van Beest Holle, M.R.-D.R.; Storsaeter, J. Ecologic Study of Meningococcal B Vaccine and Neisseria gonorrhoeae Infection, Norway. Emerg. Infect. Dis. 2016, 22, 1137–1139. [Google Scholar] [CrossRef]
- Craig, A.P.; Gray, R.T.; Edwards, J.L.; Apicella, M.A.; Jennings, M.P.; Wilson, D.P.; Seib, K.L. The potential impact of vaccination on the prevalence of gonorrhea. Vaccine 2015, 33, 4520–4525. [Google Scholar] [CrossRef]
- Paynter, J.; Goodyear-Smith, F.; Morgan, J.; Saxton, P.; Black, S.; Petousis-Harris, H. Effectiveness of a Group B Outer Membrane Vesicle Meningococcal Vaccine in Preventing Hospitalization from Gonorrhea in New Zealand: A Retrospective Cohort Study. Vaccines 2019, 7, 5. [Google Scholar] [CrossRef] [PubMed]
- Azze, R.F.O. A meningococcal B vaccine induces cross-protection against gonorrhea. Clin. Exp. Vaccine Res. 2019, 8, 110–115. [Google Scholar] [CrossRef]
- Belcher, T.; Rollier, C.S.; Dold, C.; Ross, J.D.C.; MacLennan, C.A. Immune responses to Neisseria gonorrhoeae and implications for vaccine development. Front. Immunol. 2023, 14, 1248613. [Google Scholar] [CrossRef] [PubMed]
- Greenberg, L.; Diena, B.B.; A Ashton, F.; Wallace, R.; Kenny, C.P.; Znamirowski, R.; Ferrari, H.; Atkinson, J. Gonococcal vaccine studies in Inuvik. Can. J. Public Health 1974, 65, 29–33. [Google Scholar]
- Boslego, J.W.; Tramont, E.C.; Chung, R.C.; McChesney, D.G.; Ciak, J.; Sadoff, J.C.; Piziak, M.V.; Brown, J.D.; Brintonjr, C.; Wood, S.W.; et al. Efficacy trial of a parenteral gonococcal pilus vaccine in men. Vaccine 1991, 9, 154–162. [Google Scholar] [CrossRef] [PubMed]
- A Rice, P.; E Vayo, H.; Tam, M.R.; Blake, M.S. Immunoglobulin G antibodies directed against protein III block killing of serum-resistant Neisseria gonorrhoeae by immune serum. J. Exp. Med. 1986, 164, 1735–1748. [Google Scholar] [CrossRef]
- Gulati, S.; Mattsson, A.H.; Schussek, S.; Zheng, B.; DeOliveira, R.B.; Shaughnessy, J.; Lewis, L.A.; Rice, P.A.; Comstedt, P.; Ram, S. Preclinical efficacy of a cell division protein candidate gonococcal vaccine identified by artificial intelligence. mBio 2023, 14, e02500-23. [Google Scholar] [CrossRef] [PubMed]
- Gottlieb, S.L.; Jerse, A.E.; Delany-Moretlwe, S.; Deal, C.; Giersing, B.K. Advancing vaccine development for gonorrhoea and the Global STI Vaccine Roadmap. Sex. Health 2019, 16, 426–432. [Google Scholar] [CrossRef] [PubMed]
- Harrison, O.B.; Maiden, M.C. Recent advances in understanding and combatting Neisseria gonorrhoeae: A genomic perspective. Fac. Rev. 2021, 10, 65. [Google Scholar] [CrossRef]
- Lin, E.Y.; Adamson, P.C.; Klausner, J.D. Epidemiology, Treatments, and Vaccine Development for Antimicrobial-Resistant Neisseria gonorrhoeae: Current Strategies and Future Directions. Drugs 2021, 81, 1153–1169. [Google Scholar] [CrossRef]
- Maurakis, S.A.; Cornelissen, C.N. Recent Progress Towards a Gonococcal Vaccine. Front. Cell. Infect. Microbiol. 2022, 12, 881392. [Google Scholar] [CrossRef]
- Russell, M.W.; Jerse, A.E.; Gray-Owen, S.D. Progress Toward a Gonococcal Vaccine: The Way Forward. Front. Immunol. 2019, 10, 2417. [Google Scholar] [CrossRef]
- Gala, R.P.; Zaman, R.U.; D’souza, M.J.; Zughaier, S.M. Novel Whole-Cell Inactivated Neisseria Gonorrhoeae Microparticles as Vaccine Formulation in Microneedle-Based Transdermal Immunization. Vaccines 2018, 6, 60. [Google Scholar] [CrossRef]
- Liu, Y.; Hammer, L.A.; Daamen, J.; Stork, M.; Egilmez, N.K.; Russell, M.W. Microencapsulated IL-12 Drives Genital Tract Immune Responses to Intranasal Gonococcal Outer Membrane Vesicle Vaccine and Induces Resistance to Vaginal Infection with Diverse Strains of Neisseria gonorrhoeae. mSphere 2023, 8, e0038822. [Google Scholar] [CrossRef]
- Semchenko, E.A.; Day, C.J.; Seib, K.L. The Neisseria gonorrhoeae Vaccine Candidate NHBA Elicits Antibodies That Are Bactericidal, Opsonophagocytic and That Reduce Gonococcal Adherence to Epithelial Cells. Vaccines 2020, 8, 219. [Google Scholar] [CrossRef] [PubMed]
- Jen, F.E.-C.; Semchenko, E.A.; Day, C.J.; Seib, K.L.; Jennings, M.P. The Neisseria gonorrhoeae Methionine Sulfoxide Reductase (MsrA/B) Is a Surface Exposed, Immunogenic, Vaccine Candidate. Front. Immunol. 2019, 10, 137. [Google Scholar] [CrossRef]
- Humbert, M.V.; Christodoulides, M. Immunization with recombinant truncated Neisseria meningitidis-Macrophage Infectivity Potentiator (rT-Nm-MIP) protein induces murine antibodies that are cross-reactive and bactericidal for Neisseria gonorrhoeae. Vaccine 2018, 36, 3926–3936. [Google Scholar] [CrossRef] [PubMed]
- Fegan, J.E.; Calmettes, C.; Islam, E.A.; Ahn, S.K.; Chaudhuri, S.; Yu, R.-H.; Gray-Owen, S.D.; Moraes, T.F.; Schryvers, A.B. Utility of Hybrid Transferrin Binding Protein Antigens for Protection Against Pathogenic Neisseria Species. Front. Immunol. 2019, 10, 247. [Google Scholar] [CrossRef] [PubMed]
- Gulati, S.; Pennington, M.W.; Czerwinski, A.; Carter, D.; Zheng, B.; Nowak, N.A.; DeOliveira, R.B.; Shaughnessy, J.; Reed, G.W.; Ram, S.; et al. Preclinical Efficacy of a Lipooligosaccharide Peptide Mimic Candidate Gonococcal Vaccine. mBio 2019, 10, e02552-19. [Google Scholar] [CrossRef]
- Gulati, S.; Shaughnessy, J.; Ram, S.; Rice, P.A. Targeting Lipooligosaccharide (LOS) for a Gonococcal Vaccine. Front. Immunol. 2019, 10, 321. [Google Scholar] [CrossRef]
- Jiao, H.; Yang, H.; Zheng, W.; Zhang, Q.; Zhao, D.; Li, G. Enhancement of immune responses by co-administration of bacterial ghosts-mediated Neisseria gonorrhoeae DNA vaccines. J. Appl. Microbiol. 2021, 130, 1770–1777. [Google Scholar] [CrossRef] [PubMed]
- Martinez, F.G.; Zielke, R.A.; Fougeroux, C.E.; Li, L.; Sander, A.F.; Sikora, A.E. Development of a Tag/Catcher-mediated capsid virus-like particle vaccine presenting the conserved Neisseria gonorrhoeae SliC antigen that blocks human lysozyme. Infect. Immun. 2023, 91, e0024523. [Google Scholar] [CrossRef] [PubMed]
- Zhu, W.; Thomas, C.E.; Chen, C.-J.; Van Dam, C.N.; Johnston, R.E.; Davis, N.L.; Sparling, P.F. Comparison of Immune Responses to Gonococcal PorB Delivered as Outer Membrane Vesicles, Recombinant Protein, or Venezuelan Equine Encephalitis Virus Replicon Particles. Infect. Immun. 2005, 73, 7558–7568. [Google Scholar] [CrossRef] [PubMed]
- Thomas, C.E.; Zhu, W.; Van Dam, C.N.; Davis, N.L.; Johnston, R.E.; Sparling, P.F. Vaccination of Mice with Gonococcal TbpB Expressed In Vivo from Venezuelan Equine Encephalitis Viral Replicon Particles. Infect. Immun. 2006, 74, 1612–1620. [Google Scholar] [CrossRef] [PubMed]
- Piekarowicz, A.; Kłyż, A.; Majchrzak, M.; Szczêsna, E.; Piechucki, M.; Kwiatek, A.; Maugel, T.K.; Stein, D.C. Neisseria gonorrhoeae Filamentous Phage NgoΦ6 Is Capable of Infecting a Variety of Gram-Negative Bacteria. J. Virol. 2014, 88, 1002–1010. [Google Scholar] [CrossRef] [PubMed]
- Bagwe, P.; Bajaj, L.; Gala, R.P.; D’souza, M.J.; Zughaier, S.M. Assessment of In Vitro Immunostimulatory Activity of an Adjuvanted Whole-Cell Inactivated Neisseria gonorrhoeae Microparticle Vaccine Formulation. Vaccines 2022, 10, 983. [Google Scholar] [CrossRef] [PubMed]
- Bagwe, P.; Bajaj, L.; Menon, I.; Gomes, K.B.; Kale, A.; Patil, S.; Vijayanand, S.; Gala, R.; D’Souza, M.J.; Zughaier, S.M. Gonococcal microparticle vaccine in dissolving microneedles induced immunity and enhanced bacterial clearance in infected mice. Int. J. Pharm. 2023, 642, 123182. [Google Scholar] [CrossRef]
- Song, S.; Wang, S.; Jiang, X.; Yang, F.; Gao, S.; Lin, X.; Cheng, H.; van der Veen, S. Th1-polarized MtrE-based gonococcal vaccines display prophylactic and therapeutic efficacy. Emerg. Microbes Infect. 2023, 12, 2249124. [Google Scholar] [CrossRef]
- Wang, L.; Xing, D.; Le Van, A.; Jerse, A.E.; Wang, S. Structure-based design of ferritin nanoparticle immunogens displaying antigenic loops of Neisseria gonorrhoeae. FEBS Open Bio 2017, 7, 1196–1207. [Google Scholar] [CrossRef]
- Christodoulides, M.; Humbert, M.V.; Heckels, J.E. The potential utility of liposomes for Neisseria vaccines. Expert Rev. Vaccines 2021, 20, 1235–1256. [Google Scholar] [CrossRef]
- Jiao, H.; Yang, H.; Zhao, D.; He, L.; Chen, J.; Li, G. The enhanced immune responses induced by Salmonella enteritidis ghosts loaded with Neisseria gonorrhoeae porB against Salmonella in mice. FEMS Microbiol. Lett. 2016, 363, fnw239. [Google Scholar] [CrossRef]
- Baarda, B.I.; Martinez, F.G.; Sikora, A.E. Proteomics, Bioinformatics and Structure-Function Antigen Mining For Gonorrhea Vaccines. Front. Immunol. 2018, 9, 2793. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Antibiotic-Resistant Gonorrhoea on the Rise, New Drugs Needed; WHO: Geneva, Switzerland, 2017. [Google Scholar]
- Alirol, E.; Wi, T.E.; Bala, M.; Bazzo, M.L.; Chen, X.-S.; Deal, C.; Dillon, J.-A.R.; Kularatne, R.; Heim, J.; van Huijsduijnen, R.H.; et al. Multidrug-resistant gonorrhea: A research and development roadmap to discover new medicines. PLoS Med. 2017, 14, e1002366. [Google Scholar] [CrossRef]
- Kern, G.; Palmer, T.; Ehmann, D.E.; Shapiro, A.B.; Andrews, B.; Basarab, G.S.; Doig, P.; Fan, J.; Gao, N.; Mills, S.D.; et al. Inhibition of Neisseria gonorrhoeae Type II Topoisomerases by the Novel Spiropyrimidinetrione AZD0914. J. Biol. Chem. 2015, 290, 20984–20994. [Google Scholar] [CrossRef] [PubMed]
- Bradford, P.A.; Miller, A.A.; O’donnell, J.; Mueller, J.P. Zoliflodacin: An Oral Spiropyrimidinetrione Antibiotic for the Treatment of Neisseria gonorrheae, Including Multi-Drug-Resistant Isolates. ACS Infect. Dis. 2020, 6, 1332–1345. [Google Scholar] [CrossRef]
- National Institute of Allergy and Infectious Diseases (NIAID). A Study to Evaluate the Safety, Tolerability and Plasma PK of a Single Oral Dose of Zoliflodacin in Healthy Male and Female Volunteers; NIAID: Bethesda, MD, USA, 2019. [Google Scholar]
- National Institute of Allergy and Infectious Diseases (NIAID). Randomized, Open-Label Phase 2 Study of Oral AZD0914 in the Treatment of Gonorrhea; NIAID: Bethesda, MD, USA, 2017. [Google Scholar]
- Global Antibiotics Research and Development Partnership. Zoliflodacin in Uncomplicated Gonorrhoea; Global Antibiotics Research and Development Partnership: Geneva, Switzerland, 2023. Available online: https://classic.clinicaltrials.gov/ct2/show/NCT03959527 (accessed on 16 April 2024).
- Watkins, R.R.; Thapaliya, D.; Lemonovich, T.L.; Bonomo, R.A. Gepotidacin: A novel, oral, ‘first-in-class’ triazaacenaphthylene antibiotic for the treatment of uncomplicated urinary tract infections and urogenital gonorrhoea. J. Antimicrob. Chemother. 2023, 78, 1137–1142. [Google Scholar] [CrossRef]
- Jacobsson, S.; Golparian, D.; Scangarella-Oman, N.; Unemo, M. In vitro activity of the novel triazaacenaphthylene gepotidacin (GSK2140944) against MDR Neisseria gonorrhoeae. J. Antimicrob. Chemother. 2018, 73, 2072–2077. [Google Scholar] [CrossRef]
- Taylor, S.N.; Morris, D.H.; Avery, A.K.; Workowski, K.A.; Batteiger, B.E.; Tiffany, C.A.; Perry, C.R.; Raychaudhuri, A.; Scangarella-Oman, N.E.; Hossain, M.; et al. Gepotidacin for the treatment of uncomplicated urogenital gonorrhea: A phase 2, randomized, dose-ranging, single-oral dose evaluation. Clin. Infect. Dis. 2018, 67, 504–512. [Google Scholar] [CrossRef] [PubMed]
- GlaxoSmithKline. A Study Evaluating Efficacy and Safety of Gepotidacin Compared with Ceftriaxone Plus Azithromycin in the Treatment of Uncomplicated Urogenital Gonorrhea. 2023. Available online: https://classic.clinicaltrials.gov/ct2/show/NCT04010539 (accessed on 16 April 2024).
- Owens, B. Solithromycin rejection chills antibiotic sector. Nat. Biotechnol. 2017, 35, 187–188. [Google Scholar] [CrossRef]
- Zhanel, G.G.; Hartel, E.; Adam, H.; Zelenitsky, S.; Zhanel, M.A.; Golden, A.; Schweizer, F.; Gorityala, B.; Lagacé-Wiens, P.R.S.; Walkty, A.J.; et al. Solithromycin: A Novel Fluoroketolide for the Treatment of Community-Acquired Bacterial Pneumonia. Drugs 2016, 76, 1737–1757. [Google Scholar] [CrossRef]
- Barrera, C.M.; Mykietiuk, A.; Metev, H.; Nitu, M.F.; Karimjee, N.; Doreski, P.A.; Mitha, I.; Tanaseanu, C.M.; Molina, J.M.; Antonovsky, Y.; et al. Efficacy and safety of oral solithromycin versus oral moxifloxacin for treatment of community-acquired bacterial pneumonia: A global, double-blind, multicentre, randomised, active-controlled, non-inferiority trial (SOLITAIRE-ORAL). Lancet Infect. Dis. 2016, 16, 421–430. [Google Scholar] [CrossRef]
- File, T.M.; Rewerska, B.; Vucinić-Mihailović, V.; Gonong, J.R.V.; Das, A.F.; Keedy, K.; Taylor, D.; Sheets, A.; Fernandes, P.; Oldach, D.; et al. SOLITAIRE-IV: A Randomized, Double-Blind, Multicenter Study Comparing the Efficacy and Safety of Intravenous-to-Oral Solithromycin to Intravenous-to-Oral Moxifloxacin for Treatment of Community-Acquired Bacterial Pneumonia. Clin. Infect. Dis. 2016, 63, 1007–1016. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.Y.; McNulty, A.; Avery, A.; Whiley, D.; Tabrizi, S.N.; Hardy, D.; Das, A.F.; Nenninger, A.; Fairley, C.K.; Hocking, J.S.; et al. Solithromycin versus ceftriaxone plus azithromycin for the treatment of uncomplicated genital gonorrhoea (SOLITAIRE-U): A randomised phase 3 non-inferiority trial. Lancet Infect. Dis. 2019, 19, 833–842. [Google Scholar] [CrossRef] [PubMed]
- Mariner, K.; McPhillie, M.; Trowbridge, R.; Smith, C.; O’Neill, A.J.; Fishwick, C.W.G.; Chopra, I. Activity of and Development of Resistance to Corallopyronin A, an Inhibitor of RNA Polymerase. Antimicrob. Agents Chemother. 2011, 55, 2413–2416. [Google Scholar] [CrossRef] [PubMed]
- Edwards, J.L.; Balthazar, J.T.; Esposito, D.L.A.; Ayala, J.C.; Schiefer, A.; Pfarr, K.; Hoerauf, A.; Alt, S.; Hesterkamp, T.; Grosse, M.; et al. Potent In Vitro and Ex Vivo Anti-Gonococcal Activity of the RpoB Inhibitor Corallopyronin A. mSphere 2022, 7, e0036222. [Google Scholar] [CrossRef] [PubMed]
- Jen, F.E.-C.; Edwards, J.L.; El-Deeb, I.M.; Walker, M.J.; von Itzstein, M.; Jennings, M.P. Repurposing the Ionophore, PBT2, for Treatment of Multidrug-Resistant Neisseria gonorrhoeae Infections. Antimicrob. Agents Chemother. 2022, 66, e0231821. [Google Scholar] [CrossRef] [PubMed]
- Jacobsson, S.; Mason, C.; Khan, N.; Meo, P.; Unemo, M. In vitro activity of the novel oral antimicrobial SMT-571, with a new mechanism of action, against MDR and XDR Neisseria gonorrhoeae: Future treatment option for gonorrhoea? J. Antimicrob. Chemother. 2019, 74, 1591–1594. [Google Scholar] [CrossRef]
- Jacobsson, S.; Mason, C.; Khan, N.; Meo, P.; Unemo, M. High in vitro activity of DIS-73285, a novel antimicrobial with a new mechanism of action, against MDR and XDR Neisseria gonorrhoeae. J. Antimicrob. Chemother. 2020, 75, 3244–3247. [Google Scholar] [CrossRef] [PubMed]
- Yedery, R.D.; Jerse, A.E. Augmentation of Cationic Antimicrobial Peptide Production with Histone Deacetylase Inhibitors as a Novel Epigenetic Therapy for Bacterial Infections. Antibiotics 2015, 4, 44–61. [Google Scholar] [CrossRef]
- Ram, S.; Shaughnessy, J.; DeOliveira, R.B.; Lewis, L.A.; Gulati, S.; Rice, P.A. Utilizing complement evasion strategies to design complement-based antibacterial immunotherapeutics: Lessons from the pathogenic Neisseriae. Immunobiology 2016, 221, 1110–1123. [Google Scholar] [CrossRef]
- Gulati, S.; Schoenhofen, I.C.; Lindhout-Djukic, T.; A Lewis, L.; Moustafa, I.Y.; Saha, S.; Zheng, B.; Nowak, N.; A Rice, P.; Varki, A.; et al. Efficacy of Antigonococcal CMP-Nonulosonate Therapeutics Require Cathelicidins. J. Infect. Dis. 2020, 222, 1641–1650. [Google Scholar] [CrossRef] [PubMed]
- Piekarowicz, A.; Kłyż, A.; Majchrzak, M.; Stein, D.C. Oral Immunization of Rabbits with S. enterica Typhimurium Expressing Neisseria gonorrhoeae Filamentous Phage Φ6 Induces Bactericidal Antibodies against N. gonorrhoeae. Sci. Rep. 2016, 6, 22549. [Google Scholar] [CrossRef] [PubMed]
- Lucío, M.I.; Kyriazi, M.-E.; Hamilton, J.; Batista, D.; Sheppard, A.; Sams-Dodd, E.; Humbert, M.V.; Hussain, I.; Christodoulides, M.; Kanaras, A.G. Bactericidal Effect of 5-Mercapto-2-nitrobenzoic Acid-Coated Silver Nanoclusters against Multidrug-Resistant Neisseria gonorrhoeae. ACS Appl. Mater. Interfaces 2020, 12, 27994–28003. [Google Scholar] [CrossRef]
- Li, L.-H.; Yen, M.-Y.; Ho, C.-C.; Wu, P.; Wang, C.-C.; Maurya, P.K.; Chen, P.-S.; Chen, W.; Hsieh, W.-Y.; Chen, H.-W. Non-Cytotoxic Nanomaterials Enhance Antimicrobial Activities of Cefmetazole against Multidrug-Resistant Neisseria gonorrhoeae. PLoS ONE 2013, 8, e64794. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Ferrer-Espada, R.; Baglo, Y.; Goh, X.S.; Held, K.D.; Grad, Y.H.; Gu, Y.; A Gelfand, J.; Dai, T. Photoinactivation of Neisseria gonorrhoeae: A Paradigm-Changing Approach for Combating Antibiotic-Resistant Gonococcal Infection. J. Infect. Dis. 2019, 220, 873–881. [Google Scholar] [CrossRef] [PubMed]
- Churchward, C.P.; Alany, R.G.; Kirk, R.S.; Walker, A.J.; Snyder, L.A.S. Prevention of Ophthalmia Neonatorum Caused by Neisseria gonorrhoeae Using a Fatty Acid-Based Formulation. mBio 2017, 8, e00534-17. [Google Scholar] [CrossRef] [PubMed]
- Jurado, P.; Uruén, C.; Martínez, S.; Lain, E.; Sánchez, S.; Rezusta, A.; López, V.; Arenas, J. Essential oils of Pinus sylvestris, Citrus limon and Origanum vulgare exhibit high bactericidal and anti-biofilm activities against Neisseria gonorrhoeae and Streptococcus suis. Biomed. Pharmacother. 2023, 168, 115703. [Google Scholar] [CrossRef]
- Sun, Y.; Zhang, J.; Zhang, Y.; Liu, J.; van der Veen, S.; Duttwyler, S. The closo-Dodecaborate Dianion Fused with Oxazoles Provides 3D Diboraheterocycles with Selective Antimicrobial Activity. Chem. Eur. J. 2018, 24, 10364–10371. [Google Scholar] [CrossRef]
Virulence Factor | Pathogenic Mechanisms | Role in Infection |
---|---|---|
Lipooligosaccharide(LOS) | Immune evasion | LOS produced by NG can rapidly change its structure due to the production of certain enzymes involved in the biosynthesis of the lacto-N-neotetraose structure [23,24]. Variable oligosaccharide moieties of LOS can mimic host glycosphingolipids [25,26]. LOS can be sialylated, promoting the recruitment of FH to the gonococcal surface and thus rendering the bacteria resistant to serum killing [27,28]. Surface binding of cationic antimicrobial proteins (CAMPs) is reduced by chemical modifications of LOS (PEA-decorated lipid A) [29]. |
Adhesion | The LOS of NG can act as a ligand of human receptors, promoting the invasion of host cells [30] | |
Type IV pili (Tfp) | Immune evasion | PilE C-terminal domain undergoes antigenic variation, allowing the bacteria to evade recognition by the human host’s immune cells [31]. pilC expression is subject to RecA-independent phase variation (on/off switching) due to frequent frameshift mutations occurring within G tracts located within its signal peptide region [32]. The pilus and porin act in concert to induce calcium fluctuations in the host cell [33] |
Invasion | Altered sequence of the pilE gene in transmigrants implies a variation in the pilin sequence in the transcellular passage of the NG [34]. | |
Adhesion | Pili attaches to the human mucosal epithelial cells, fallopian tube mucosa, and vaginal epithelial cells, as well as to human polymorphonuclear leukocytes (PMNs; neutrophils). The PilC proteins have been characterised as the major pilus-associated adhesin [35]. NG multiple nonpolar retractile Tfp to elicit adhesive plaque formation in the epithelial cells and requires the protein synthesis and function of the PilT protein [36]. Gonococcal pilus retraction triggers a tight association between gonococcal Opa and host cell receptors [36]. | |
Opa | Immune evasion (Phase variation) | A single cell of NG can express none to several Opa proteins, allowing for phase variation that contributes to bacterial resistance to neutrophil clearance [37]. |
Adhesion | Opa proteins been shown to interact with CEACAMs on neutrophils and epithelial cells [38,39]. | |
PorB | Immune evasion | Suppresses neutrophil oxidative burst and neutrophil apoptosis by binding complement factors C4bp and H [40,41].Delay phagosome maturation and oxidative killing mechanisms [42]. PorB can enter the mitochondria of infected cells via OMVs and form porin channels in the inner membrane. This leads to the release of cytochrome c and other proteins, triggering cell apoptosis [43]. PorB and pili induce calcium transients in host cells, leading to the cleavage of Lamp1 (lysosome-associated membrane protein) by the Neisseria IgA1 protease, and consequently to a reduction in the number of lysosomes in infected cells [33]. |
Gonococcal IgA1 | Immune evasion | Reduce mucosal antibody levels by cleaving the hinge region of secretory IgA1. Neisseria IgA1 protease cleaves LAMP1 [44,45]. |
Mip | Immune evasion | Protects bacteria from macrophage killing, probably through mechanisms involving peptidylprolyl cis/trans isomerase (PPIase) activity [46]. |
Neisserial Heparin Binding Antigen (NHBA) | Immune evasion and adhesion | Role in serum resistance, microcolony formation, and adherence to epithelial cells [47]. |
OmpA | Adhesion and invasion | Important for adhesion and invasion in cervical and endometrial cells, as well as entry into macrophages and intracellular survival [48]. |
Adhesin Complex Protein (ACP) and SilC | Immune evasion | Surface-exposed inhibitors of human c-type lysozyme [49,50]. |
KatA, cytochrome c, and MsrA and MsrB | Detoxification and repair of oxidative damage | Catalase KatA and cytochrome c are crucial to Gc defense against ROS. Methionine sulfoxide reductase, MsrA and MsrB, reverses the oxidation of methionine residues in proteins [51]. |
RecA and RecN | Repair oxidative damage | Gc defence against ROS repairing oxidative damage to DNA [51]. |
MtrCDE | Export of antimicrobial components | Efflux pump which enables the bacteria to export various compounds, such as antibiotics, detergents, and antimicrobial peptides, out of the cell [52]. |
TbpA, TbpB, LbpA, LbpB, HpuA, FetA, CbpA, ZnuD | Evasion of Nutritional Immunity | These virulence factors allow bacteria to extract metals like iron and zinc from human innate immune proteins [53]. |
MetQ | Adhesion | Involved in gonococcal adherence to cervical epithelial cells [54]. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Colón Pérez, J.; Villarino Fernández, R.-A.; Domínguez Lago, A.; Treviño Castellano, M.M.; Pérez del Molino Bernal, M.L.; Sánchez Poza, S.; Torres-Sangiao, E. Addressing Sexually Transmitted Infections Due to Neisseria gonorrhoeae in the Present and Future. Microorganisms 2024, 12, 884. https://doi.org/10.3390/microorganisms12050884
Colón Pérez J, Villarino Fernández R-A, Domínguez Lago A, Treviño Castellano MM, Pérez del Molino Bernal ML, Sánchez Poza S, Torres-Sangiao E. Addressing Sexually Transmitted Infections Due to Neisseria gonorrhoeae in the Present and Future. Microorganisms. 2024; 12(5):884. https://doi.org/10.3390/microorganisms12050884
Chicago/Turabian StyleColón Pérez, Julia, Rosa-Antía Villarino Fernández, Adrián Domínguez Lago, María Mercedes Treviño Castellano, María Luisa Pérez del Molino Bernal, Sandra Sánchez Poza, and Eva Torres-Sangiao. 2024. "Addressing Sexually Transmitted Infections Due to Neisseria gonorrhoeae in the Present and Future" Microorganisms 12, no. 5: 884. https://doi.org/10.3390/microorganisms12050884
APA StyleColón Pérez, J., Villarino Fernández, R. -A., Domínguez Lago, A., Treviño Castellano, M. M., Pérez del Molino Bernal, M. L., Sánchez Poza, S., & Torres-Sangiao, E. (2024). Addressing Sexually Transmitted Infections Due to Neisseria gonorrhoeae in the Present and Future. Microorganisms, 12(5), 884. https://doi.org/10.3390/microorganisms12050884