Effects of Thermally-Assisted and High-Pressure Processing on Background Microbiota and the Listeria monocytogenes Load of a Minimally Processed Commodity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bacterial Cell Preparation
2.2. Sample Preparation, Inoculation, and Thermally-Assisted and High-Pressure Processing
2.3. Microbial and Physiochemical Analyses
2.4. Design, Descriptive and Inferential Statistics
3. Results and Discussion
3.1. Impact of High-Pressure Processing for Inactivation of L. monocytogenes
3.2. Impact of Thermally-Assisted High-Pressure Processing for Inactivation of L. monocytogenes
3.3. Inactivation Indices for Pressure-Based Reduction of L. monocytogenes
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Scallan, E.; Hoekstra, R.M.; Angulo, F.J.; Tauxe, R.V.; Widdowson, M.A.; Roy, S.L.; Jones, J.L.; Griffin, P.M. Foodborne illness acquired in the United States—Major pathogens. Emerg. Infect. Dis. 2011, 17, 7–15. [Google Scholar] [CrossRef]
- Wiktorczyk-Kapischke, N.; Skowron, K.; Grudlewska-Buda, K.; Wałecka-Zacharska, E.; Korkus, J.; Gospodarek-Komkowska, E. Adaptive Response of Listeria monocytogenes to the Stress Factors in the Food Processing Environment. Front. Microbiol. 2021, 12, 710085. [Google Scholar] [CrossRef]
- Byun, K.H.; Kim, H.J. Survival Strategies of Listeria monocytogenes to Environmental Hostile Stress: Biofilm Formation and Stress Responses. Food Sci. Biotechnol. 2023, 32, 1631–1651. [Google Scholar] [CrossRef]
- Naik, B.P.; Ram Raju, T.; Ruban, J.; Vignesh, K.; Manikandan, K. A Food Borne Pathogen: Listeria monocytogenes. Pharma Innov. J. 2023, 12, 3334–3338. [Google Scholar]
- Food and Drug Administration. Listeria (Listeriosis). Available online: https://www.fda.gov/food/foodborne-pathogens/listeria-listeriosis (accessed on 20 May 2024).
- Datta, A.; Burall, L. Current Trends in Foodborne Human Listeriosis. Food Saf. 2018, 6, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Feng, Y.; Yao, H.; Chen, S.; Sun, X.; Yin, Y.; Jiao, X. Rapid Detection of Hypervirulent Serovar 4 h Listeria monocytogenes by Multiplex PCR. Front. Microbiol. 2020, 11, 530052. [Google Scholar] [CrossRef] [PubMed]
- Brown, P.; Kucerova, Z.; Gorski, L.; Chen, Y.; Ivanova, M.; Leekitcharoenphon, P.; Parsons, C.; Niedermeyer, J.; Jackson, J.; Kathariou, S. Horizontal Gene Transfer and Loss of Serotype-Specific Genes in Listeria monocytogenes Can Lead to Incorrect Serotype Designations with a Commonly-Employed Molecular Serotyping Scheme. Microbiol. Spectr. 2023, 11, e02745-22. [Google Scholar] [CrossRef] [PubMed]
- Erkan, N.; Üretener, G.; Alpas, H.; Selçuk, A.; Özden, Ö.; Buzrul, S. The Effect of Different High Pressure Conditions on the Quality and Shelf Life of Cold Smoked Fish. Innov. Food Sci. Emerg. Technol. 2011, 12, 104–110. [Google Scholar] [CrossRef]
- Pellegrini, M.; Iacumin, L.; Pleadin, J.; Krešić, G.; Orecchia, E.; Colautti, A.; Vulić, A.; Kudumija, N.; Bernardi, C.; Comi, G. Microbial and Physico-Chemical Characterization of Cold Smoked Sea Bass (Dicentrarchus labrax), a New Product of Fishery. Foods 2023, 12, 2685. [Google Scholar] [CrossRef]
- European Food Safety Authority (EFSA); Panel on Biological Hazards (BIOHAZ); Ricci, A.; Allende, A.; Bolton, D.; Chemaly, M.; Davies, R.; Fernández Escámez, P.S.; Girones, R.; Herman, L.; et al. Listeria monocytogenes contamination of ready-to-eat foods and the risk for human health in the EU. EFSA J. 2018, 16, 05134. [Google Scholar]
- European Food Safety Authority (EFSA). Multi-Country Outbreak of Listeria monocytogenes Linked to Fish Products. Available online: https://www.efsa.europa.eu/en/news/multi-country-outbreak-listeria-monocytogenes-linked-fish-products (accessed on 10 June 2024).
- Balasubramaniam, V.B.; Martínez-Monteagudo, S.I.; Gupta, R. Principles and Application of High Pressure–Based Technologies in the Food Industry. Annu. Rev. Food Sci. Technol. 2015, 6, 435–462. [Google Scholar] [CrossRef] [PubMed]
- Kabir, M.N.; Aras, S.; George, J.; Wadood, S.; Chowdhury, S.; Fouladkhah, A.C. High-pressure and thermal-assisted pasteurization of habituated, wild-type, and pressure-stressed Listeria monocytogenes, Listeria innocua, and Staphylococcus aureus. LWT 2021, 137, 110445. [Google Scholar] [CrossRef]
- Allison, A.; Chowdhury, S.; Fouladkhah, A. Synergism of mild heat and high-pressure pasteurization against Listeria monocytogenes and natural microflora in phosphate-buffered saline and raw milk. Microorganisms 2018, 6, 102. [Google Scholar] [CrossRef]
- George, J.; Aras, S.; Kabir, M.N.; Wadood, S.; Chowdhury, S.; Fouladkhah, A.C. Sensitivity of planktonic cells of Staphylococcus aureus to elevated hydrostatic pressure as affected by mild heat, carvacrol, nisin, and caprylic acid. Int. J. Environ. Res. Public Health 2020, 17, 7033. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.; Shalini, R. Effect of hurdle technology in food preservation: A review. Crit. Rev. Food Sci. Nutr. 2016, 56, 641–649. [Google Scholar] [CrossRef]
- Ishaq, A.; Syed, Q.A.; Ebner, P.D.; ur Rahman, H.U. Multiple hurdle technology to improve microbial safety, quality and oxidative stability of refrigerated raw beef. LWT 2021, 138, 110529. [Google Scholar] [CrossRef]
- Aras, S.; Kabir, M.N.; Allison, A.; George, J.; Fouladkhah, A. Inactivation of Shiga toxin-producing Escherichia coli O157:H7 and mesophilic background microbiota of meat homogenate using elevated hydrostatic pressure, mild heat, and thymol. J. Food Sci. 2020, 85, 4335–4341. [Google Scholar] [CrossRef]
- Fouladkhah, A.; Geornaras, I.; Sofos, J.C. Effects of reheating against Listeria monocytogenes inoculated on cooked chicken breast meat stored aerobically at 7 °C. Food Prot. Trends 2012, 32, 697–704. [Google Scholar]
- Fouladkhah, A.; Geornaras, I.; Nychas, G.J.; Sofos, J.N. Antilisterial properties of marinades during refrigerated storage and microwave oven reheating against post-cooking inoculated chicken breast meat. J. Food Sci. 2013, 78, M285–M289. [Google Scholar] [CrossRef]
- United States Department of Agriculture, Food Safety Inspection Service. What Is the Danger Zone? 2013. Available online: https://ask.usda.gov/s/article/What-is-the-Danger-Zone#:~:text=The%20Danger%20Zone%20is%20the,%C2%B0F%20(60%20%C2%BAC) (accessed on 10 June 2024).
- Bigi, F.; Maurizzi, E.; Quartieri, A.; De Leo, R.; Gullo, M.; Pulvirenti, A. Non-thermal techniques and the “hurdle” approach: How is food technology evolving? Trends Food Sci. Technol. 2023, 132, 11–39. [Google Scholar] [CrossRef]
- Lott, T.T.; Wiedmann, M.; Martin, N.H. Shelf-life storage temperature has a considerably larger effect than high-temperature, short-time pasteurization temperature on the growth of spore-forming bacteria in fluid milk. J. Dairy Sci. 2023, 106, 3838–3855. [Google Scholar] [CrossRef]
- U.S. Food and Drug Administration. Key Temperatures for Egg Safety in Food Service Operations and Retail Food Stores. 2020. Available online: https://www.fda.gov/food/retail-food-industryregulatory-assistance-training/key-temperatures-egg-safety-food-service-operations-and-retail-food-stores (accessed on 10 June 2024).
- Knabel, S.J.; Walker, H.W.; Hartman, P.A.; Mendonca, A.F. Effects of growth temperature and strictly anaerobic recovery on the survival of Listeria monocytogenes during pasteurization. Appl. Environ. Microbiol. 1990, 56, 370–376. [Google Scholar] [CrossRef] [PubMed]
- Aras, S.; Kabir, N.; Wadood, S.; George, J.; Chowdhury, S.; Fouladkhah, A.C. Synergistic effects of nisin, lysozyme, lactic acid, and Citricidal™ for enhancing pressure-based inactivation of Bacillus amyloliquefaciens, Geobacillus stearothermophilus, and Bacillus atrophaeus endospores. Microorganisms 2021, 9, 653. [Google Scholar] [CrossRef] [PubMed]
- He, H.; Adams, R.M.; Farkas, D.F.; Morrissey, M.T. Use of high-pressure processing for oyster shucking and shelf-life extension. J. Food Sci. 2002, 67, 640–645. [Google Scholar] [CrossRef]
- Büyükcan, M.; Bozoglu, F.; Alpas, H. Preservation and shelf-life extension of shrimps and clams by high hydrostatic pressure. Int. J. Food Sci. Technol. 2009, 44, 1495–1502. [Google Scholar] [CrossRef]
- Li, C.; Huang, L.; Hwang, C.A. Effect of temperature and salt on thermal inactivation of Listeria monocytogenes in salmon roe. Food Control 2017, 73, 406–410. [Google Scholar] [CrossRef]
- Harvard, T.H. Chan School of Public Health. The Nutrition Source: Processed Foods and Health. Available online: https://nutritionsource.hsph.harvard.edu/processed-foods/#:~:text=Unprocessed%20foods%20include%20the%20natural,nutritional%20content%20of%20the%20food (accessed on 10 June 2024).
- Fakruddin, M.; Mannan, K.S.B.; Andrews, S. Viable but nonculturable bacteria: Food safety and public health perspective. Int. Sch. Res. Not. 2013, 2013, 703813. [Google Scholar] [CrossRef]
- Basaran-Akgul, N.; Mousavi-Hesary, M.; Basaran, P.; Shin, J.H.; Swanson, B.G.; Rasco, B.A. High pressure processing inactivation of Listeria innocua in minced trout (Oncorhynchus mykiss). J. Food Process. Preserv. 2020, 34, 191–206. [Google Scholar] [CrossRef]
- Mengden, R.; Röhner, A.; Sudhaus, N.; Klein, G. High-pressure processing of mild smoked rainbow trout fillets (Oncorhynchus mykiss) and fresh European catfish fillets (Silurus glanis). Innov. Food Sci. Emerg. Technol. 2015, 32, 9–15. [Google Scholar] [CrossRef]
- Riekkinen, K.; Martikainen, K.; Korhonen, J. Effectiveness of High-Pressure Processing Treatment for Inactivation of Listeria monocytogenes in Cold-Smoked and Warm-Smoked Rainbow Trout. Appl. Sci. 2023, 13, 3735. [Google Scholar] [CrossRef]
- Ekonomou, S.I.; Bulut, S.; Karatzas, K.A.G.; Boziaris, I.S. Inactivation of Listeria monocytogenes in raw and hot smoked trout fillets by high hydrostatic pressure processing combined with liquid smoke and freezing. Innov. Food Sci. Emerg. Technol. 2020, 64, 102427. [Google Scholar] [CrossRef]
- Possas, A.; Pérez-Rodríguez, F.; Valero, A.; García-Gimeno, R.M. Modelling the inactivation of Listeria monocytogenes by high hydrostatic pressure processing in foods: A review. Trends Food Sci. Technol. 2017, 70, 45–55. [Google Scholar] [CrossRef]
- Wiśniewski, P.; Chajęcka-Wierzchowska, W.; Zadernowska, A. Impact of High-Pressure Processing (HPP) on Listeria monocytogenes—An Overview of Challenges and Responses. Foods 2023, 13, 14. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kafle, R.; Fouladkhah, A.C. Effects of Thermally-Assisted and High-Pressure Processing on Background Microbiota and the Listeria monocytogenes Load of a Minimally Processed Commodity. Microorganisms 2024, 12, 1858. https://doi.org/10.3390/microorganisms12091858
Kafle R, Fouladkhah AC. Effects of Thermally-Assisted and High-Pressure Processing on Background Microbiota and the Listeria monocytogenes Load of a Minimally Processed Commodity. Microorganisms. 2024; 12(9):1858. https://doi.org/10.3390/microorganisms12091858
Chicago/Turabian StyleKafle, Ranju, and Aliyar Cyrus Fouladkhah. 2024. "Effects of Thermally-Assisted and High-Pressure Processing on Background Microbiota and the Listeria monocytogenes Load of a Minimally Processed Commodity" Microorganisms 12, no. 9: 1858. https://doi.org/10.3390/microorganisms12091858
APA StyleKafle, R., & Fouladkhah, A. C. (2024). Effects of Thermally-Assisted and High-Pressure Processing on Background Microbiota and the Listeria monocytogenes Load of a Minimally Processed Commodity. Microorganisms, 12(9), 1858. https://doi.org/10.3390/microorganisms12091858