Improving Surfactin Production in Bacillus subtilis 168 by Metabolic Engineering
Abstract
:1. Introduction
2. Materials and Methods
2.1. Microorganisms, Media and Culture Conditions
2.2. Construction of B. subtilis Knockout Mutants
2.3. Construction of B. subtilis Overexpression Mutants
2.4. In Situ Substitution of the Native Promoter of the srfA Operon
2.5. Extraction and Detection of Surfactin
2.6. Quantitative Real-Time PCR (qRT-PCR)
2.7. Fed-Batch Fermentation
2.8. Statistical Analysis
3. Results and Discussion
3.1. Overexpression of Active PPTase to Endow B. subtilis 168 with the Ability to Synthesise Surfactin
3.2. Effects of Plipastatin Synthetase and Phosphotransferase Deficiency on Surfactin Synthesis
3.3. Overexpression and Identification of a Surfactin Transporter to Enhance Surfactin Synthesis
3.4. Enhancing Transcription of the srfA Operon to Promote Surfactin Synthesis
3.5. Increasing Surfactin Production through Fed-Batch Fermentation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sumi, C.D.; Yang, B.W.; Yeo, I.C.; Hahm, Y.T. Antimicrobial peptides of the genus Bacillus: A new era for antibiotics. Can. J. Microbiol. 2015, 61, 93–103. [Google Scholar] [CrossRef] [PubMed]
- C, F.C.; Kumar, P.S.; Ngueagni, P.T. A review on new aspects of lipopeptide biosurfactant: Types, production, properties and its application in the bioremediation process. J. Hazard. Mater. 2021, 407, 124827. [Google Scholar]
- Bonmatin, J.M.; Laprevote, O.; Peypoux, F. Diversity among microbial cyclic lipopeptides: Iturins and surfactins. Activity-structure relationships to design new bioactive agents. Comb. Chem. High Throughput Screen. 2003, 6, 541–556. [Google Scholar] [CrossRef]
- Zhao, F.; Zhu, H.B.; Cui, Q.F.; Wang, B.X.; Su, H.; Zhang, Y. Anaerobic production of surfactin by a new Bacillus subtilis isolate and the in situ emulsification and viscosity reduction effect towards enhanced oil recovery applications. J. Petrol. Sci. Eng. 2021, 201, 108508. [Google Scholar] [CrossRef]
- Datta, P.; Tiwari, P.; Pandey, L.M. Experimental investigation on suitability of surfactin for enhanced oil recovery: Stability, adsorption equilibrium and kinetics studies. J. Environ. Chem. Eng. 2022, 10, 107083. [Google Scholar] [CrossRef]
- Liu, Q.; Niu, J.J.; Yu, Y.; Wang, C.Y.; Lu, S.J.; Zhang, S.W.; Lv, J.; Peng, B. Production, characterization and application of biosurfactant produced by Bacillus licheniformis L20 for microbial enhanced oil recovery. J. Clean. Prod. 2021, 307, 127193. [Google Scholar] [CrossRef]
- Ferreira, A.; Vecino, X.; Ferreira, D.; Cruz, J.M.; Moldes, A.B.; Rodrigues, L.R. Novel cosmetic formulations containing a biosurfactant from Lactobacillus paracasei. Colloids Surf. B Biointerfaces 2017, 155, 522–529. [Google Scholar] [CrossRef]
- Fei, D.; Zhou, G.W.; Yu, Z.Q.; Gang, H.Z.; Liu, J.F.; Yang, S.Z.; Ye, R.Q.; Mu, B.Z. Low-toxic and nonirritant biosurfactant surfactin and its performances in detergent formulations. J. Surfactants Deterg. 2020, 23, 109–118. [Google Scholar] [CrossRef]
- Deleu, M.; Lorent, J.; Lins, L.; Brasseur, R.; Braun, N.; Kirat, K.E.; Nylander, T.; Dufrêne, Y.F.; Mingeot-Leclercq, M.P. Effects of surfactin on membrane models displaying lipid phase separation. BBA Biomembr. 2013, 1828, 801–815. [Google Scholar] [CrossRef] [PubMed]
- Lilge, L.; Ersig, N.; Hubel, P.; Aschern, M.; Pillai, E.; Klausmann, P.; Pfannstiel, J.; Henkel, M.; Heravi, K.M.; Hausmann, R. Surfactin shows relatively low antimicrobial activity against Bacillus subtilis and other bacterial model organisms in the absence of synergistic metabolites. Microorganisms 2022, 10, 779. [Google Scholar] [CrossRef] [PubMed]
- Jung, M.; Lee, S.; Kim, H. Recent studies on natural products as anti-HIV agents. Curr. Med. Chem. 2000, 7, 649–661. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.Q.; Gao, X.P.; Zheng, L.Y.; Hao, G.Z. Optimization of sterilization of Salmonella enteritidis in meat by surfactin and iturin using a response surface method. Int. J. Pept. Res. Ther. 2009, 15, 61–67. [Google Scholar] [CrossRef]
- Zouari, R.; Moalla-Rekik, D.; Sahnoun, Z.; Rebai, T.; Ellouze-Chaabouni, S.; Ghribi-Aydi, D. Evaluation of dermal wound healing and in vitro antioxidant efficiency of Bacillus subtilis SPB1 biosurfactant. Biomed. Pharmacother. 2016, 84, 878–891. [Google Scholar] [CrossRef] [PubMed]
- Kisil, O.V.; Trefilov, V.S.; Sadykova, V.S.; Zvereva, M.E.; Kubareva, E.A. Surfactin: Its biological activity and possibility of application in agriculture. Appl. Biochem. Microbiol. 2023, 59, 1–13. [Google Scholar] [CrossRef]
- Leconte, A.; Tournant, L.; Muchembled, J.; Paucellier, J.; Héquet, A.; Deracinois, B.; Deweer, C.; Krier, F.; Deleu, M.; Oste, S.; et al. Assessment of lipopeptide mixtures produced by Bacillus subtilis as biocontrol products against apple scab (Venturia inaequalis). Microorganisms 2022, 10, 1810. [Google Scholar] [CrossRef] [PubMed]
- Mgbechidinma, C.L.; Akan, O.D.; Zhang, C.F.; Huang, M.Z.; Linus, N.; Zhu, H.; Wakil, S.M. Integration of green economy concepts for sustainable biosurfactant production-a review. Bioresour. Technol. 2022, 364, 128021. [Google Scholar] [CrossRef] [PubMed]
- Gaur, V.K.; Sharma, P.; Sirohi, R.; Varjani, S.; Taherzadeh, M.J.; Chang, J.S.; Ng, H.Y.; Wong, J.W.C.; Kim, S.H. Production of biosurfactants from agro-industrial waste and waste cooking oil in a circular bioeconomy: An overview. Bioresour. Technol. 2022, 343, 126059. [Google Scholar] [CrossRef] [PubMed]
- Xia, L.; Hou, Z.J.; Zhu, F.Z.; Wen, J.P. Enhancing surfactin production in Bacillus subtilis: Insights from proteomic analysis of nitrate-induced overproduction and strategies for combinatorial metabolic engineering. Bioresour. Technol. 2024, 397, 130499. [Google Scholar] [CrossRef] [PubMed]
- Arima, K.; Kakinuma, A.; Tamura, G. Surfactin, a crystalline peptidelipid surfactant produced by Bacillus subtilis: Isolation, characterization and its inhibition of fibrin clot formation. Biochem. Biophys. Res. Commun. 1968, 31, 488–494. [Google Scholar] [CrossRef] [PubMed]
- Su, Y.; Liu, C.; Fang, H.; Zhang, D.W. Bacillus subtilis: A universal cell factory for industry, agriculture, biomaterials and medicine. Microb. Cell Fact. 2020, 19, 173. [Google Scholar] [CrossRef]
- Wu, Q.; Zhi, Y.; Xu, Y. Systematically engineering the biosynthesis of a green biosurfactant surfactin by Bacillus subtilis 168. Metab. Eng. 2019, 52, 87–97. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.M.; Yu, H.M.; Li, X.; Shen, Z.Y. Single-gene regulated non-spore-forming Bacillus subtilis: Construction, transcriptome responses, and applications for producing enzymes and surfactin. Metab. Eng. 2020, 62, 235–248. [Google Scholar] [CrossRef] [PubMed]
- Schwarzer, D.; Finking, R.; Marahiel, M.A. Nonribosomal peptides: From genes to products. Nat. Prod. Rep. 2003, 20, 275–287. [Google Scholar] [CrossRef] [PubMed]
- Nakano, M.M.; Marahiel, M.A.; Zuber, P. Identification of a genetic locus required for biosynthesis of the lipopeptide antibiotic surfactin in Bacillus subtilis. J. Bacteriol. 1988, 170, 5662–5668. [Google Scholar] [CrossRef] [PubMed]
- Marahiel, M.A.; Stachelhaus, T.; Mootz, H.D. Modular peptide synthases involved in nonribosomal peptide synthesis. Chem. Rev. 1997, 97, 2651–2674. [Google Scholar] [CrossRef] [PubMed]
- Tran, L.S.; Nagai, T.; Itoh, Y. Divergent structure of the ComQXPA quorum-sensing components: Molecular basis of strain-specific communication mechanism in Bacillus subtilis. Mol. Microbiol. 2010, 37, 1159–1171. [Google Scholar] [CrossRef]
- Comella, N.; Grossman, A.D. Conservation of genes and processes controlled by the quorum response in bacteria: Characterization of genes controlled by the quorum-sensing transcription factor ComA in Bacillus subtilis. Mol. Microbiol. 2005, 57, 1159–1174. [Google Scholar] [CrossRef]
- Reuter, K.; Mofid, M.R.; Marahiel, M.A.; Ficner, R. Crystal structure of the surfactin synthetase-activating enzyme sfp: A prototype of the 4′-phosphopantetheinyl transferase superfamily. EMBO J. 1999, 18, 6823–6831. [Google Scholar] [CrossRef]
- Wang, C.Y.; Cao, Y.X.; Wang, Y.P.; Sun, L.M.; Song, H. Enhancing surfactin production by using systematic CRISPRi repression to screen amino acid biosynthesis genes in Bacillus subtilis. Microb. Cell Fact. 2019, 18, 90. [Google Scholar] [CrossRef]
- Hu, F.X.; Liu, Y.Y.; Lin, J.Z.; Wang, W.D.; Li, S. Efficient production of surfactin from xylose-rich corncob hydrolysate using genetically modified Bacillus subtilis 168. Appl. Microbiol. Biotechnol. 2020, 104, 4017–4026. [Google Scholar] [CrossRef]
- Li, X.; Yang, H.; Zhang, D.L.; Li, X.; Yu, H.M.; Shen, Z.Y. Overexpression of specific proton motive force-dependent transporters facilitate the export of surfactin in Bacillus subtilis. J. Ind. Microbiol. Biotechnol. 2015, 42, 93–103. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.H.; Endo, K.; Ara, K.; Ozaki, K.; Ogasawara, N. Introduction of marker-free deletions in Bacillus subtilis using the AraR repressor and the ara promoter. Microbiology 2008, 154, 2562–2570. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.M.; Li, J.C.; Meng, R.; Yu, T.T.; Wang, Z.J.; Xiong, P.; Gao, Z.Q. Screening and identification of genes involved in β-alanine biosynthesis in Bacillus subtilis. Arch. Biochem. Biophys. 2023, 743, 109664. [Google Scholar] [CrossRef] [PubMed]
- Anagnostopoulos, C.; Spizizen, J. Requirements for transformation in Bacillus subtilis. J. Bacteriol. 1961, 81, 741–746. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.Y.; Mao, Z.T.; Guo, J.X.; Wei, L.Y.; Ma, H.W.; Tand, Y.J.; Chen, T.; Wang, Z.W.; Zhao, X.M. Construction, model-based analysis and characterization of a promoter library for fine-tuned gene expression in Bacillus subtilis. ACS Synth. Biol. 2018, 7, 1785–1797. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.M.; Wang, Y.P.; Cai, Z.G.; Zhang, G.Y.; Song, H. Metabolic engineering of Bacillus subtilis for high-titer production of menaquinone-7. AIChE J. 2020, 66, e16754. [Google Scholar] [CrossRef]
- Song, B.H.; Neuhard, J. Chromosomal location, cloning and nucleotide sequence of the Bacillus subtilis cdd gene encoding cytidine/deoxycytidine deaminase. Mol. Gen. Genet. 1989, 216, 462–468. [Google Scholar] [CrossRef] [PubMed]
- Zhu, H.; Yang, S.M.; Yuan, Z.M.; Ban, R. Metabolic and genetic factors affecting the productivity of pyrimidine nucleoside in Bacillus subtilis. Microb. Cell Fact. 2015, 14, 54. [Google Scholar] [CrossRef] [PubMed]
- Pfaffl, M.W. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 2001, 29, e45. [Google Scholar] [CrossRef] [PubMed]
- Norusis, M.J. SPSS Statistics 17.0: Guide to Data Analysis; Prentice Hall: Englewood Cliffs, NJ, USA, 2008. [Google Scholar]
- Quadri, L.E.; Weinreb, P.H.; Lei, M.; Nakano, M.M.; Zuber, P.; Walsh, C.T. Characterization of Sfp, a Bacillus subtilis phosphopantetheinyl transferase for peptidyl carrier protein domains in peptide synthetases. Biochemistry 1998, 37, 1585–1595. [Google Scholar] [CrossRef] [PubMed]
- Kimura, K.; Tran, L.S.P.; Itoh, Y. Roles and regulation of the glutamate racemase isogenes, racE and yrpC, in Bacillus subtilis. Microbiology 2004, 150, 2911–2920. [Google Scholar] [CrossRef] [PubMed]
- Gao, L.; Guo, J.P.; Fan, Y.; Ma, Z.; Lu, Z.X.; Zhang, C.; Zhao, H.Z.; Bie, X.M. Module and individual domain deletions of NRPS to produce plipastatin derivatives in Bacillus subtilis. Microb. Cell Fact. 2018, 17, 84. [Google Scholar] [CrossRef] [PubMed]
- Coutte, F.; Leclère, V.; Béchet, M.; Guez, J.S.; Lecouturier, D.; Chollet-Imbert, M.; Dhulster, P.; Jacques, P. Effect of pps disruption and constitutive expression of srfA on surfactin productivity, spreading and antagonistic properties of Bacillus subtilis 168 derivatives. J. Appl. Microbiol. 2010, 109, 480–491. [Google Scholar] [CrossRef] [PubMed]
- Hsu, C.; Tsai, H.Y.; Chang, C.F.; Yang, C.C.; Su, N.W. Discovery of a novel phosphotransferase from Bacillus subtilis that phosphorylates a broad spectrum of flavonoids. Food Chem. 2023, 400, 134001. [Google Scholar] [CrossRef] [PubMed]
- Tsuge, K.; Ohata, Y.; Shoda, M. Gene yerP, involved in surfactin self-resistance in Bacillus subtilis. Antimicrob. Agents Chemother. 2001, 45, 3566–3573. [Google Scholar] [CrossRef] [PubMed]
- Saier, M.H., Jr.; Goldman, S.R.; Maile, R.R.; Moreno, M.S.; Weyler, W.; Yang, N.; Paulsen, I.T. Transport capabilities encoded within the Bacillus subtilis genome. J. Mol. Microbiol. Biotechnol. 2002, 4, 37–67. [Google Scholar] [PubMed]
- Béchet, M.; Caradec, T.; Hussein, W.; Abderrahmani, A.; Chollet, M.; Leclère, V.; Dubois, T.; Lereclus, D.; Pupin, M.; Jacques, P. Structure, biosynthesis, and properties of kurstakins, nonribosomal lipopeptides from Bacillus spp. Appl. Microbiol. Biotechnol. 2012, 95, 593–600. [Google Scholar] [CrossRef] [PubMed]
- Doerfel, L.K.; Wohlgemuth, I.; Kothe, C.; Peske, F.; Urlaub, H.; Rodnina, M.V. EF-P is essential for rapid synthesis of proteins containing consecutive proline residues. Science 2013, 339, 85–88. [Google Scholar] [CrossRef]
- Willenbacher, J.; Mohr, T.; Henkel, M.; Gebhard, S.; Mascher, T.; Syldatk, C.; Hausmann, R. Substitution of the native srfA promoter by constitutive Pveg in two B. subtilis strains and evaluation of the effect on surfactin production. J. Biotechnol. 2016, 224, 14–17. [Google Scholar] [CrossRef] [PubMed]
- Jiao, S.; Li, X.; Yu, H.M.; Yang, H.; Li, X.; Shen, Z.Y. In situ enhancement of surfactin biosynthesis in Bacillus subtilis using novel artificial inducible promoters. Biotechnol. Bioeng. 2017, 114, 832–842. [Google Scholar] [CrossRef] [PubMed]
- Han, A.R.; Kang, H.R.; Son, J.; Kwon, D.H.; Kim, S.; Lee, W.C.; Song, H.K.; Song, M.J.; Hwang, K.Y. The structure of the pleiotropic transcription regulator CodY provides insight into its GTP-sensing mechanism. Nucleic Acids Res. 2016, 44, 9483–9493. [Google Scholar] [CrossRef] [PubMed]
- Serror, P.; Sonenshein, A.L. CodY is required for nutritional repression of Bacillus subtilis genetic competence. J. Bacteriol. 1996, 178, 5910–5915. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.M.; Wang, A.L.; Li, J.C.; Shao, Y.H.; Sun, F.J.; Li, S.C.; Cao, K.; Liu, H.L.; Xiong, P.; Gao, Z.G. Improved biosynthesis of heme in Bacillus subtilis through metabolic engineering assisted fed-batch fermentation. Microb. Cell Fact. 2023, 22, 102. [Google Scholar] [CrossRef] [PubMed]
- Yang, N.; Wu, Q.; Xu, Y. Fe nanoparticles enhanced surfactin production in Bacillus amyloliquefaciens. ACS Omega 2020, 5, 6321–6329. [Google Scholar] [CrossRef] [PubMed]
- Mei, Y.W.; Yang, Z.Y.; Kang, Z.H.; Yu, F.; Long, X.W. Enhanced surfactin fermentation via advanced repeated fed-batch fermentation with increased cell density stimulated by EDTA–Fe (II). Food Bioprod. Process. 2021, 127, 288–294. [Google Scholar] [CrossRef]
- Brück, H.L.; Coutte, F.; Dhulster, P.; Gofflot, S.; Jacques, P.; Delvigne, F. Growth dynamics of bacterial populations in a two-compartment biofilm bioreactor designed for continuous surfactin biosynthesis. Microorganisms 2020, 8, 679. [Google Scholar] [CrossRef] [PubMed]
- Klausmann, P.; Hennemann, K.; Hoffmann, M.; Treinen, C.; Aschern, M.; Lilge, L.; Heravi, K.M.; Henkel, M.; Hausmann, R. Bacillus subtilis high cell density fermentation using a sporulation-deficient strain for the production of surfactin. Appl. Microbiol. Biotechnol. 2021, 105, 4141–4151. [Google Scholar] [CrossRef]
Name | Genotype | Source |
---|---|---|
Strain | ||
Bacillus subtilis 168 (BS168) | trpC2 | Provided by Tianjin University |
BS168N | trpC2, ΔaraR::Para-neo | Provided by Tianjin University |
BSD1-ΔyrpCm | BS168N, ΔyrpC::cat-araR, pHY300PLK-P43-panD | [33] |
BSD1-ΔyvkCm | BS168N, ΔyvkC::cat-araR, pHY300PLK-P43-panD | [33] |
BSΔ6-AD1m | BSΔ6, ΔyvkC::P43-pfkA::cat-araR, pHY300PLK-P43-panD | [33] |
BSSF1 | BS168N, ΔyrpC | This study |
BSSF2 | BS168N, ΔyrpC::TP2-sfp* | This study |
BSSF3 | BS168N, ΔyrpC::TP2-sfp*, ΔppsD | This study |
BSSF4 | BS168N, ΔyrpC::TP2-sfp*, ΔppsD, ΔyvkC | This study |
BSSF51 | BS168N, ΔyrpC::TP2-sfp*, ΔppsD, ΔyvkC::P43-yerP | This study |
BSSF51m | BS168N, ΔyrpC::TP2-sfp*, ΔppsD, ΔyvkC::P43-yerP::cat-araR | This study |
BSSF52 | BS168N, ΔyrpC::TP2-sfp*, ΔppsD, ΔyvkC::P43-yfiS | This study |
BSSF53 | BS168N, ΔyrpC::TP2-sfp*, ΔppsD, ΔyvkC::P43-ycxA | This study |
BSSF53m | BS168N, ΔyrpC::TP2-sfp*, ΔppsD, ΔyvkC::P43-ycxA::cat-araR | This study |
BSSF54 | BS168N, ΔyrpC::TP2-sfp*, ΔppsD, ΔyvkC::P43-ycxA-efp | This study |
BSSF61 | BS168N, ΔyrpC::TP2-sfp*, ΔppsD, ΔyvkC::P43-yfiS, PHpaII-srfA | This study |
BSSF62 | BS168N, ΔyrpC::TP2-sfp*, ΔppsD, ΔyvkC::P43-yfiS, P43-srfA | This study |
BSSF63 | BS168N, ΔyrpC::TP2-sfp*, ΔppsD, ΔyvkC::P43-yfiS, PSB-srfA | This study |
BSSF64 | BS168N, ΔyrpC::TP2-sfp*, ΔppsD, ΔyvkC::P43-yfiS, ΔcodY | This study |
Plasmid | ||
pUC57-simple-VHb | AmpR, containing the constitutive promoter TP2 expression cassette | [34] |
pMA5 | AmpR, containing the constitutive PHpaII promoter | Laboratory stock |
pUC57-simple-PyrGE156K | AmpR, containing the constitutive promoter PSB expression cassette | [34] |
Primer | Sequence (5′→3′) |
---|---|
Knockout of the yrpC gene | |
yrpC-U1 | CTTACGCCAGACCTCCTA |
yrpC-G2 | ATCCTAACACAATCCTTCCAT |
yrpC-D2 | GTTGCCTGAGACTGTTACT |
Overexpression of the sfp* gene | |
yrpC-U2q | ACCATCAACGCAACCATAAACTCGCATCCTATCAATGTGA |
TP2-1 | GTTTATGGTTGCGTTGATGG |
TP2-2 | CATTCTTTACCCTCTCCTTTTAA |
sfp1-1q | TTAAAAGGAGAGGGTAAAGAATGAAGATTTACGGAATTTATATGGAC |
sfp1-2 | TGAAAAGGAATCAGCGGAAG |
sfp2-1 | CTTCCGCTGATTCCTTTTCA |
sfp2-2 | ACTGTTGATGAGCCATTTATA |
yrpC-D1q | TATAAATGGCTCATCAACAGTAACGGGCTCAATCACCTT |
Knockout of the ppsD gene | |
ppsD-U1 | TTGCTCATCCGACTGTTG |
ppsD-U2 | GCAGTTCCATATTCTGAAGG |
ppsD-D1q | TCCTTCAGAATATGGAACTGCTGTTGCCAGAGGTTATTTGA |
ppsD-D2 | AATAGGTGCCGCTCATCT |
ppsD-CR1q | CAGATGAGCGGCACCTATTTCTTCAACTAAAGCACCCAT |
ppsD-CR2 | TTATTCATTCAGTTTTCGTG |
ppsD-G1q | CGCACGAAAACTGAATGAATAATTGAACGAACAGGCTACC |
ppsD-G2 | GCATCCGCTGATTCTGAT |
Knockout of the yvkC gene | |
yvkC-U1 | CAATGGCTTTCGGCTGAT |
yvkC-G2 | TCTCCTTGAATGTCCTGATAC |
yvkC-D2 | AGTGGAGACGGTGAATGA |
Overexpression of genes yerP, yfiS, ycxA and ycxA-efp | |
yvkC-P2 | TTGTAAATTCCTCTCTTACCTAT |
yerP-1q | TATAGGTAAGAGAGGAATTTACACATGACCAGTCAGTCAATAAAAA |
yerP-2 | GCAGACCAGACAACGAAT |
yvkC-yerP-D1q | CATTCGTTGTCTGGTCTGCTGCTGTGATAGAGGATGAA |
yvkC-yerP-G2 | TGTCCTGATACATCGCTTG |
CX-P43-1 | ATACAGCCTTTGAACATACG |
CX-yerP-2 | ATCACAACGATGGAGTCAT |
CX-yerP-3 | GCCATCTTCGGTGCTATT |
CX-yerP-5 | AAGCGAAAGAACACAAACC |
yfiS-1q | TATAGGTAAGAGAGGAATTTACAAATGGAAAAACCGTTGTTTCG |
yfiS-2 | ACATCCTTCATCGTCGTTAA |
yvkC-yfiS-D1q | ATTAACGACGATGAAGGATGTATGAAGTATTGGCGAAGTTC |
yvkC-yfiS-G2 | GGGAGGTATGTGTGATTGAT |
ycxA-1q | TATAGGTAAGAGAGGAATTTACAAATGCGCACGTCTCCCAGGT |
ycxA-2 | CATATACACTGAACCAAGAAGG |
ycxA-D1q | TCCTTCTTGGTTCAGTGTATATGATTCGTTGTCTGGTCTGC |
2-ycxA-2 | TTTTATATTGAATGGTGGGTTTCT |
efp-1q | AAGAAACCCACCATTCAATATAAAATGTGATTGGAATATAGGAGGAC |
efp-2 | GCTTGCTGAAGTAGTCTTGT |
yvkC-efp-D1q | GACAAGACTACTTCAGCAAGCATTCCTTCGTGGTTCAGTGT |
CX-efp1 | TTACTGATTGTCGCTGTGT |
In situ substitution of promoter of srfA operon | |
srf-U1 | GAGTTATCCTTGGACAATCAG |
srf-U2 | ACTGCTGCGTTGAATCTT |
srf-C1q | AAAGATTCAACGCAGCAGTTCATCAAGTAAAGCACCCAT |
srf-C2 | ACAGTCGGCATTATCACATA |
srf-P1-1q | ATATGTGATAATGCCGACTGTAATACTTCCTGTCCCTTGCT |
srf-P1-2 | TTGTAAATCGCTCCTTTTTAGG |
srf-D1q | CCTAAAAAGGAGCGATTTACAAATGGAAATAACTTTTTACCCTTTAAC |
srf-D2 | CCGTCACAACATCATTCTG |
CX-P1-1 | AATACTTCCTGTCCCTTGCT |
2-srf-C2 | ACAGTCGGCATTATCACTTA |
srf-P2-1q | ATAAGTGATAATGCCGACTGTATTCAGCCATAGAACATACG |
srf-P2-2 | TTGTAAATTCCTCTCTTTCCTAT |
2-srf-D1q | TATAGGAAAGAGAGGAATTTACAAATGGAAATAACTTTTTACCCTTTAAC |
CX-P2-1 | ATTCAGCCATAGAACATACG |
srf-P3-1q | ATAAGTGATAATGCCGACTGTAAAACGAAGAGAGAACATAGTAG |
srf-P3-2 | TTTGAAATCCTCCTTTTGTCC |
3-srf-D1q | GGACAAAAGGAGGATTTCAAAATGGAAATAACTTTTTACCCATTAAC |
CX-P3-1 | ACCCATTATTACAGCAGGAA |
Knockout of the codY gene | |
codY-U1 | GAGACTTCTGTTCGGCTTAT |
codY-U2 | ACCTCCTAAACATTCCTCAT |
codY-D1q | TATGAGGAATGTTTAGGAGGTGCTTTATTTGCTGGGTTGAA |
codY-D2 | TATGATCTAGTGCTGCTGAC |
codY-CR1q | TGTCAGCAGCACTAGATCATAACTTCAACTAAAGCACCCAT |
codY-CR2 | GTCTTCTTCCACCACTTG |
codY-G1q | TCAAGTGGTGGAAGAAGACGGTAAACTACAAGGAAATGG |
codY-G2 | TTCTGAGTGCGTTCACAATA |
Quantitative RT-PCR | |
RT-ccpA1 | ACGAGCATGTGGCGGAATT |
RT-ccpA2 | CGATAGCGACTGACGGTGTT |
RT-sfp1 | ATAAGCAGGCAGTATCAGTT |
RT-sfp2 | CGGAGTGAGAAATGTTGAAA |
RT-yerP1 | ATGACTCCATCGTTGTGAT |
RT-yerP2 | ATTTCCTTCGTCGCTTCA |
RT-yfiS1 | TTCTTTCTTTCCGCTGTCA |
RT-yfiS2 | TAGAAGTAAGTGCTGCTGTT |
RT-ycxA1 | GCAGAGCACCTATACCATT |
RT-ycxA2 | ACGCCGAAGTACAGGATA |
RT-efp1 | GGATGAAACACTTGGTATCG |
RT-efp2 | CTGACGCTGTATCACCTT |
RT-srfAA1 | GGTCAGCAATACGGAAGTA |
RT-srfAA2 | TCTGGACGGTTGTAATAGC |
RT-srfAB1 | GCTCCATATCGTCCAGAAG |
RT-srfAB2 | GGCGGTGTTCACTATTGT |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, Z.; Sun, J.; Ma, Q.; Li, M.; Dou, Y.; Yang, S.; Gao, X. Improving Surfactin Production in Bacillus subtilis 168 by Metabolic Engineering. Microorganisms 2024, 12, 998. https://doi.org/10.3390/microorganisms12050998
Guo Z, Sun J, Ma Q, Li M, Dou Y, Yang S, Gao X. Improving Surfactin Production in Bacillus subtilis 168 by Metabolic Engineering. Microorganisms. 2024; 12(5):998. https://doi.org/10.3390/microorganisms12050998
Chicago/Turabian StyleGuo, Zihao, Jiuyu Sun, Qinyuan Ma, Mengqi Li, Yamin Dou, Shaomei Yang, and Xiuzhen Gao. 2024. "Improving Surfactin Production in Bacillus subtilis 168 by Metabolic Engineering" Microorganisms 12, no. 5: 998. https://doi.org/10.3390/microorganisms12050998
APA StyleGuo, Z., Sun, J., Ma, Q., Li, M., Dou, Y., Yang, S., & Gao, X. (2024). Improving Surfactin Production in Bacillus subtilis 168 by Metabolic Engineering. Microorganisms, 12(5), 998. https://doi.org/10.3390/microorganisms12050998