Adaptive Evolution for the Efficient Production of High-Quality d-Lactic Acid Using Engineered Klebsiella pneumoniae
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bacterial Strains and Growth Conditions
Strain and Plasmid | Description | Source |
---|---|---|
Strains | ||
E. coli DH5α | F− supE44 ΔlacU169 (ϕ80 lacZ ΔM15) hsdR17 recA1 endA1 gyrA96 thi-1 relA1 | lab collection |
E. coli χ7213 | thi-1 thr-1 leuB6 glnV44 fhuA21 lacY1 recA1 RP4-2-Tc::Mu λpir ΔasdA4 Δzhf-2::Tn10 | [25] |
E.coli CC118 (λpir+) | araD139 Δ(ara, leu)7697 ΔlacX74 phoAΔ20 galE galK thi rpsE rpoB argEam recA1 | University of Pennsylvania. Dieter M. Schifferli |
Q1188 | K. pneumoniae ATCC25955 | ATCC |
Q4441 | K. pneumoniae ATCC25955 evolved strain A1 | this study |
Q4442 | K. pneumoniae ATCC25955 evolved strain A2 | this study |
Q4443 | K. pneumoniae ATCC25955 evolved strain A3 | this study |
Q4444 | K. pneumoniae ATCC25955 evolved strain A4 | this study |
Q4445 | K. pneumoniae ATCC25955 evolved strain A8 | this study |
Q4446 | K. pneumoniae ATCC25955 evolved strain B1 | this study |
Q4447 | K. pneumoniae ATCC25955 evolved strain C8 | this study |
Q4448 | K. pneumoniae ATCC25955 evolved strain D3 | this study |
Q4589 | K. pneumoniae ATCC25955 ΔrcsA | this study |
Q4590 | K. pneumoniae ATCC25955 1780734 SNP mutation (A<->G) | this study |
Q4607 | K. pneumoniae ATCC25955 ΔgalU | this study |
Q4608 | K. pneumoniae ATCC25955 ΔydhS | this study |
Q4616 | K. pneumoniae ATCC25955 ΔgalU/pACYCDuet1-Plac1-6lacO | this study |
Q4601 | K. pneumoniae ATCC25955/pACYCDuet1-Plac1-6lacO-galU | this study |
Q4609 | K. pneumoniae ATCC25955ΔgalU/pACYCDuet1-Plac1-6lacO-galU | this study |
Q2702 | K. pneumoniae ATCC25955 ΔbudB ΔackA ΔadhE | this study |
Q5221 | K. pneumoniae ATCC25955 A1 ΔbudB ΔackA ΔadhE | this study |
Q5224 | K. pneumoniae ATCC25955 A4 ΔbudB ΔackA ΔadhE | this study |
Q5227 | K. pneumoniae ATCC25955 B1 ΔbudB ΔackA ΔadhE | this study |
Plasmids | ||
pACYCDuet1-Plac1-6lacO | repp15A CmR lacI Plac1-6 | lab collection |
pRE112 | oriT oriV sacB CmR | lab collection |
2.2. Susceptibility Assay of Lactic Acid and Hydrogen Chloride
2.3. Adaptive Evolution of K. pneumoniae Strain
2.4. Quantitative Real-Time PCR
2.5. Analysis of d-Lactic Acid Production
3. Results
3.1. ALE of K. pneumoniae in a High Concentration of Lactic Acid
3.2. Whole-Genome Sequence Analysis of K. pneumoniae (ATCC25955)
3.3. Genome Resequencing Analysis of Evolved Strains
3.4. Intergenic SNP Mutations in Evolved Strains Affect Gene Transcription
3.5. galU Is Associated with Increased Lactic Acid Tolerance
3.6. High d-Lactic Acid Production in Evolved Strains
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- In, S.; Khunnonkwao, P.; Wong, N.; Phosiran, C.; Jantama, S.S.; Jantama, K. Combining metabolic engineering and evolutionary adaptation in Klebsiella oxytoca KMS004 to significantly improve optically pure D-(-)-lactic acid yield and specific productivity in low nutrient medium. Appl. Microbiol. Biotechnol. 2020, 104, 9565–9579. [Google Scholar] [CrossRef]
- Tian, X.; Liu, X.; Zhang, Y.; Chen, Y.; Hang, H.; Chu, J.; Zhuang, Y. Metabolic engineering coupled with adaptive evolution strategies for the efficient production of high-quality L-lactic acid by Lactobacillus paracasei. Bioresour. Technol. 2021, 323, 124549. [Google Scholar] [CrossRef]
- Gao, C.; Ma, C.; Xu, P. Biotechnological routes based on lactic acid production from biomass. Biotechnol. Adv. 2011, 29, 930–939. [Google Scholar] [CrossRef]
- Klotz, S.; Kaufmann, N.; Kuenz, A.; Prüße, U. Biotechnological production of enantiomerically pure D-lactic acid. Appl. Microbiol. Biotechnol. 2016, 100, 9423–9437. [Google Scholar] [CrossRef]
- Paswan, M.; Adhikary, S.; Salama, H.H.; Rusu, A.V.; Zuorro, A.; Dholakiya, B.Z.; Trif, M.; Bhattacharya, S. Microbial Synthesis of Lactic Acid from Cotton Stalk for Polylactic Acid Production. Microorganisms 2023, 11, 1931. [Google Scholar] [CrossRef]
- Feng, X.; Jiang, L.; Han, X.; Liu, X.; Zhao, Z.; Liu, H.; Xian, M.; Zhao, G. Production of D-lactate from glucose using Klebsiella pneumoniae mutants. Microb. Cell Factories 2017, 16, 209. [Google Scholar] [CrossRef]
- Wu, S.; Zhao, P.; Li, Q.; Tian, P. Intensifying niacin-based biosynthesis of NAD(+) to enhance 3-hydroxypropionic acid production in Klebsiella pneumoniae. Biotechnol. Lett. 2021, 43, 223–234. [Google Scholar] [CrossRef]
- Zhou, S.; Huang, Y.; Mao, X.; Li, L.; Guo, C.; Gao, Y.; Qin, Q. Impact of acetolactate synthase inactivation on 1,3-propanediol fermentation by Klebsiella pneumoniae. PLoS ONE 2019, 14, e0200978. [Google Scholar] [CrossRef]
- Ahmed, R.M.; Enan, G.; Saed, S.; Askora, A. Hyaluronic acid production by Klebsiella pneumoniae strain H15 (OP354286) under different fermentation conditions. BMC Microbiol. 2023, 23, 295. [Google Scholar] [CrossRef]
- Wang, Q.; Jiang, W.; Cai, Y.; Tišma, M.; Baganz, F.; Shi, J.; Lye, G.J.; Xiang, W.; Hao, J. 2-Hydroxyisovalerate production by Klebsiella pneumoniae. Enzym. Microb. Technol. 2024, 172, 110330. [Google Scholar] [CrossRef]
- Feng, X.; Ding, Y.; Xian, M.; Xu, X.; Zhang, R.; Zhao, G. Production of optically pure D-lactate from glycerol by engineered Klebsiella pneumoniae strain. Bioresour. Technol. 2014, 172, 269–275. [Google Scholar] [CrossRef]
- Rossi, D.M.; de Souza, E.A.; Ayub, M.A. Biodiesel residual glycerol metabolism by Klebsiella pneumoniae: Pool of metabolites under anaerobiosis and oxygen limitation as a function of feeding rates. Appl. Biochem. Biotechnol. 2013, 169, 1952–1964. [Google Scholar] [CrossRef]
- van de Guchte, M.; Serror, P.; Chervaux, C.; Smokvina, T.; Ehrlich, S.D.; Maguin, E. Stress responses in lactic acid bacteria. Antonie Van Leeuwenhoek 2002, 82, 187–216. [Google Scholar] [CrossRef]
- Mazzoli, R. Current Progress in Production of Building-Block Organic Acids by Consolidated Bioprocessing of Lignocellulose. Fermentation 2021, 7, 248. [Google Scholar] [CrossRef]
- Broadbent, J.R.; Larsen, R.L.; Deibel, V.; Steele, J.L. Physiological and transcriptional response of Lactobacillus casei ATCC 334 to acid stress. J. Bacteriol. 2010, 192, 2445–2458. [Google Scholar] [CrossRef]
- Lambert, R.J.; Stratford, M. Weak-acid preservatives: Modelling microbial inhibition and response. J. Appl. Microbiol. 1999, 86, 157–164. [Google Scholar] [CrossRef]
- Booth, I.R. Regulation of cytoplasmic pH in bacteria. Microbiol. Rev. 1985, 49, 359–378. [Google Scholar] [CrossRef]
- Baek, S.H.; Kwon, E.Y.; Bae, S.J.; Cho, B.R.; Kim, S.Y.; Hahn, J.S. Improvement of d-Lactic Acid Production in Saccharomyces cerevisiae Under Acidic Conditions by Evolutionary and Rational Metabolic Engineering. Biotechnol. J. 2017, 12, 1700015. [Google Scholar] [CrossRef]
- Carpenter, C.E.; Broadbent, J.R. External concentration of organic acid anions and pH: Key independent variables for studying how organic acids inhibit growth of bacteria in mildly acidic foods. J. Food Sci. 2009, 74, R12–R15. [Google Scholar] [CrossRef]
- Roe, A.J.; O’Byrne, C.; McLaggan, D.; Booth, I.R. Inhibition of Escherichia coli growth by acetic acid: A problem with methionine biosynthesis and homocysteine toxicity. Microbiology 2002, 148, 2215–2222. [Google Scholar] [CrossRef]
- Sui, X.; Wang, J.; Zhao, Z.; Liu, B.; Liu, M.; Liu, M.; Shi, C.; Feng, X.; Fu, Y.; Shi, D.; et al. Phenolic compounds induce ferroptosis-like death by promoting hydroxyl radical generation in the Fenton reaction. Commun. Biol. 2024, 7, 199. [Google Scholar] [CrossRef]
- Mazzoli, R.; Olson, D.G.; Concu, A.M.; Holwerda, E.K.; Lynd, L.R. In vivo evolution of lactic acid hyper-tolerant Clostridium thermocellum. New Biotechnol. 2022, 67, 12–22. [Google Scholar] [CrossRef]
- Svetlitchnyi, V.A.; Svetlichnaya, T.P.; Falkenhan, D.A.; Swinnen, S.; Knopp, D.; Läufer, A. Direct conversion of cellulose to l-lactic acid by a novel thermophilic Caldicellulosiruptor strain. Biotechnol. Biofuels Bioprod. 2022, 15, 44. [Google Scholar] [CrossRef]
- Edwards, R.A.; Keller, L.H.; Schifferli, D.M. Improved allelic exchange vectors and their use to analyze 987P fimbria gene expression. Gene 1998, 207, 149–157. [Google Scholar] [CrossRef]
- Roland, K.; Curtiss, R., 3rd; Sizemore, D. Construction and evaluation of a delta cya delta crp Salmonella typhimurium strain expressing avian pathogenic Escherichia coli O78 LPS as a vaccine to prevent airsacculitis in chickens. Avian Dis. 1999, 43, 429–441. [Google Scholar] [CrossRef]
- Zhao, Z.; Xu, Y.; Jiang, B.; Qi, Q.; Tang, Y.J.; Xian, M.; Wang, J.; Zhao, G. Systematic Identification of CpxRA-Regulated Genes and Their Roles in Escherichia coli Stress Response. mSystems 2022, 7, e0041922. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
- Liiv, A.; Karitkina, D.; Maiväli, U.; Remme, J. Analysis of the function of E. coli 23S rRNA helix-loop 69 by mutagenesis. BMC Mol. Biol. 2005, 6, 18. [Google Scholar] [CrossRef]
- Martini, M.C.; Hicks, N.D.; Xiao, J.; Alonso, M.N.; Barbier, T.; Sixsmith, J.; Fortune, S.M.; Shell, S.S. Loss of RNase J leads to multi-drug tolerance and accumulation of highly structured mRNA fragments in Mycobacterium tuberculosis. PLoS Pathog. 2022, 18, e1010705. [Google Scholar] [CrossRef]
- Pham, C.D.; Nash, E.; Liu, H.; Schmerer, M.W.; Sharpe, S.; Woods, G.; Roland, B.; Schlanger, K.; St Cyr, S.B.; Carlson, J.; et al. Atypical Mutation in Neisseria gonorrhoeae 23S rRNA Associated with High-Level Azithromycin Resistance. Antimicrob. Agents Chemother. 2021, 65, e00885-20. [Google Scholar] [CrossRef]
- Navasa, N.; Ferrero, M.; Rodríguez-Aparicio, L.B.; Monteagudo-Mera, A.; Gutiérrez, S.; Martínez-Blanco, H. The role of RcsA in the adaptation and survival of Escherichia coli K92. FEMS Microbiol. Lett. 2019, 366, fnz082. [Google Scholar] [CrossRef]
- Bonofiglio, L.; García, E.; Mollerach, M. Biochemical Characterization of the Pneumococcal Glucose 1-Phosphate Uridylyltransferase (GalU) Essential for Capsule Biosynthesis. Curr. Microbiol. 2005, 51, 217–221. [Google Scholar] [CrossRef]
- Berbís, M.; Sánchez-Puelles, J.M.; Cañada, F.J.; Jiménez-Barbero, J. Structure and Function of Prokaryotic UDP-Glucose Pyrophosphorylase, A Drug Target Candidate. Curr. Med. Chem. 2015, 22, 1687–1697. [Google Scholar] [CrossRef]
- Zou, Y.; Feng, S.; Xu, C.; Zhang, B.; Zhou, S.; Zhang, L.; He, X.; Li, J.; Yang, Z.; Liao, M. The role of galU and galE of Haemophilus parasuis SC096 in serum resistance and biofilm formation. Vet. Microbiol. 2013, 162, 278–284. [Google Scholar] [CrossRef]
- Guo, L.; Dai, H.; Feng, S.; Zhao, Y. Contribution of GalU to biofilm formation, motility, antibiotic and serum resistance, and pathogenicity of Salmonella Typhimurium. Front. Cell. Infect. Microbiol. 2023, 13, 1149541. [Google Scholar] [CrossRef]
- Kurushima, J.; Tomita, H. Inactivation of GalU Leads to a Cell Wall-Associated Polysaccharide Defect That Reduces the Susceptibility of Enterococcus faecalis to Bacteriolytic Agents. Appl. Environ. Microbiol. 2021, 87, e02875-20. [Google Scholar] [CrossRef]
- Gambino, M.; Cappitelli, F. Mini-review: Biofilm responses to oxidative stress. Biofouling 2016, 32, 167–178. [Google Scholar] [CrossRef]
- Yin, W.; Wang, Y.; Liu, L.; He, J. Biofilms: The Microbial “Protective Clothing” in Extreme Environments. Int. J. Mol. Sci. 2019, 20, 3423. [Google Scholar] [CrossRef]
- Martínez, B.; Rodríguez, A.; Kulakauskas, S.; Chapot-Chartier, M.P. Cell wall homeostasis in lactic acid bacteria: Threats and defences. FEMS Microbiol. Rev. 2020, 44, 538–564. [Google Scholar] [CrossRef]
- Cao, L.; Liang, D.; Hao, P.; Song, Q.; Xue, E.; Caiyin, Q.; Cheng, Z.; Qiao, J. The increase of O-acetylation and N-deacetylation in cell wall promotes acid resistance and nisin production through improving cell wall integrity in Lactococcus lactis. J. Ind. Microbiol. Biotechnol. 2018, 45, 813–825. [Google Scholar] [CrossRef]
- Rigottier-Gois, L.; Alberti, A.; Houel, A.; Taly, J.F.; Palcy, P.; Manson, J.; Pinto, D.; Matos, R.C.; Carrilero, L.; Montero, N.; et al. Large-scale screening of a targeted Enterococcus faecalis mutant library identifies envelope fitness factors. PLoS ONE 2011, 6, e29023. [Google Scholar] [CrossRef]
- Dale Jennifer, L.; Cagnazzo, J.; Phan Chi, Q.; Barnes Aaron, M.T.; Dunny Gary, M. Multiple Roles for Enterococcus faecalis Glycosyltransferases in Biofilm-Associated Antibiotic Resistance, Cell Envelope Integrity, and Conjugative Transfer. Antimicrob. Agents Chemother. 2015, 59, 4094–4105. [Google Scholar] [CrossRef]
- Korir Michelle, L.; Dale Jennifer, L.; Dunny Gary, M. Role of epaQ, a Previously Uncharacterized Enterococcus faecalis Gene, in Biofilm Development and Antimicrobial Resistance. J. Bacteriol. 2019, 201, e00078-19. [Google Scholar] [CrossRef]
- Chatterjee, A.; Johnson Cydney, N.; Luong, P.; Hullahalli, K.; McBride Sara, W.; Schubert Alyxandria, M.; Palmer Kelli, L.; Carlson Paul, E.; Duerkop Breck, A. Bacteriophage Resistance Alters Antibiotic-Mediated Intestinal Expansion of Enterococci. Infect. Immun. 2019, 87, e00085-19. [Google Scholar] [CrossRef]
- Xu, Y.; Zhao, Z.; Tong, W.; Ding, Y.; Liu, B.; Shi, Y.; Wang, J.; Sun, S.; Liu, M.; Wang, Y.; et al. An acid-tolerance response system protecting exponentially growing Escherichia coli. Nat. Commun. 2020, 11, 1496. [Google Scholar] [CrossRef]
- Wang, J.; Sui, X.; Ding, Y.; Fu, Y.; Feng, X.; Liu, M.; Zhang, Y.; Xian, M.; Zhao, G. A fast and robust iterative genome-editing method based on a Rock-Paper-Scissors strategy. Nucleic Acids Res. 2021, 49, e12. [Google Scholar] [CrossRef]
- Watcharawipas, A.; Sae-tang, K.; Sansatchanon, K.; Sudying, P.; Boonchoo, K.; Tanapongpipat, S.; Kocharin, K.; Runguphan, W. Systematic engineering of Saccharomyces cerevisiae for D-lactic acid production with near theoretical yield. FEMS Yeast Res. 2021, 21, foab024. [Google Scholar] [CrossRef]
- Yamada, R.; Wakita, K.; Mitsui, R.; Ogino, H. Enhanced d-lactic acid production by recombinant Saccharomyces cerevisiae following optimization of the global metabolic pathway. Biotechnol. Bioeng. 2017, 114, 2075–2084. [Google Scholar] [CrossRef]
- Zhou, L.; Niu, D.D.; Tian, K.M.; Chen, X.Z.; Prior, B.A.; Shen, W.; Shi, G.Y.; Singh, S.; Wang, Z.X. Genetically switched D-lactate production in Escherichia coli. Metab. Eng. 2012, 14, 560–568. [Google Scholar] [CrossRef]
- Alexandri, M.; Hübner, D.; Schneider, R.; Fröhling, A.; Venus, J. Towards efficient production of highly optically pure d-lactic acid from lignocellulosic hydrolysates using newly isolated lactic acid bacteria. New Biotechnol. 2022, 72, 1–10. [Google Scholar] [CrossRef]
- Zaini, N.; Chatzifragkou, A.; Charalampopoulos, D. Microbial production of d-lactic acid from dried distiller’s grains with solubles. Eng. Life Sci. 2019, 19, 21–30. [Google Scholar] [CrossRef]
- Sansatchanon, K.; Sudying, P.; Promdonkoy, P.; Kingcha, Y.; Visessanguan, W.; Tanapongpipat, S.; Runguphan, W.; Kocharin, K. Development of a Novel D-Lactic Acid Production Platform Based on Lactobacillus saerimneri TBRC 5746. J. Microbiol. 2023, 61, 853–863. [Google Scholar] [CrossRef]
- Park, H.J.; Bae, J.H.; Ko, H.J.; Lee, S.H.; Sung, B.H.; Han, J.I.; Sohn, J.H. Low-pH production of d-lactic acid using newly isolated acid tolerant yeast Pichia kudriavzevii NG7. Biotechnol. Bioeng. 2018, 115, 2232–2242. [Google Scholar] [CrossRef]
- Qiu, Z.; Han, X.; He, J.; Jiang, Y.; Wang, G.; Wang, Z.; Liu, X.; Xia, J.; Xu, N.; He, A.; et al. One-pot d-lactic acid production using undetoxified acid-pretreated corncob slurry by an adapted Pediococcus acidilactici. Bioresour. Technol. 2022, 363, 127993. [Google Scholar] [CrossRef]
Gene ID | Gene Name | Protein Description | Position | Nucleotide Alteration | Amino Acid Alteration | Strain |
---|---|---|---|---|---|---|
GL000448 | - | hypothetical protein | 464716 | C→T | Intergenic SNP mutation | A1, A2, A3, A4, A8, B1, C8, D3 |
GL000449 | - | hypothetical protein | ||||
GL001697 | rcsA | transcriptional regulator RcsA | 1780734 | A→G | Intergenic SNP mutation | C8, D3 |
GL001698 | yedD | lipoprotein | ||||
GL001910 | galU | UTP-glucose-1-phosphate uridylyltransferase GalU | 2002430 | C→A | A→E | A1 |
GL002357 | ydhS | FAD-NAD(P)-binding protein | 2455010 | C→A | P→Q | A2, A3, A4, A8, B1 |
Organism | Minimal Medium | Carbon Source | d-Lactic Acid Production (g/L) | Optical Purity (%) | References |
---|---|---|---|---|---|
Klebsiella pneumoniae | Yes | Glucose | 19.56 | ~100 | This study |
Klebsiella pneumoniae | No | Glucose | 14.08 | ~100 | [46] |
Klebsiella pneumoniae | No | Glycerol | 8.33 | ~100 | [11] |
Saccharomyces cerevisiae | Yes | Glucose | 17.09 | ~100 | [47] |
Saccharomyces cerevisiae | No | Glucose | 11.14 | ~100 | [48] |
Escherichia coli | No | Glucose | 16.20 | NA | [49] |
Lactobacillus coryniformis | No | Sugar beet pulp | 19.30 | 99.5 | [50] |
Lactobacillus coryniformis | No | Glucose | 19.70 | ~100 | [51] |
Lactobacillus saerimneri | No | Sucrose | ~15.00 | NA | [52] |
Leuconostoc | No | Sugar beet pulp | 14.00 | 93.9 | [50] |
Pichia kudriavzevii | No | Glucose | 62.00 | NA | [53] |
Pediococcus acidilactici | No | Corncob slurry | 61.90 | NA | [54] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, B.; Liu, J.; Wang, J.; Zhao, G.; Zhao, Z. Adaptive Evolution for the Efficient Production of High-Quality d-Lactic Acid Using Engineered Klebsiella pneumoniae. Microorganisms 2024, 12, 1167. https://doi.org/10.3390/microorganisms12061167
Jiang B, Liu J, Wang J, Zhao G, Zhao Z. Adaptive Evolution for the Efficient Production of High-Quality d-Lactic Acid Using Engineered Klebsiella pneumoniae. Microorganisms. 2024; 12(6):1167. https://doi.org/10.3390/microorganisms12061167
Chicago/Turabian StyleJiang, Bo, Jiezheng Liu, Jingnan Wang, Guang Zhao, and Zhe Zhao. 2024. "Adaptive Evolution for the Efficient Production of High-Quality d-Lactic Acid Using Engineered Klebsiella pneumoniae" Microorganisms 12, no. 6: 1167. https://doi.org/10.3390/microorganisms12061167
APA StyleJiang, B., Liu, J., Wang, J., Zhao, G., & Zhao, Z. (2024). Adaptive Evolution for the Efficient Production of High-Quality d-Lactic Acid Using Engineered Klebsiella pneumoniae. Microorganisms, 12(6), 1167. https://doi.org/10.3390/microorganisms12061167