Bioactive Phyto-Compounds with Antimicrobial Effects and AI: Results of a Desk Research Study
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. AI and Eos
3.2. Network Pharmacology and EOs
4. Discussion
- Endorsement of AMR and the One Health initiative as fundamental responsibilities of academic educators by providing appropriate training and raising community awareness about the judicious use of antibiotics.
- Augmentation of interdisciplinary collaboration, fostering innovative methodologies and instruments for the prophylaxis and management of infectious maladies.
- Expansion of expertise in efficacious infection control strategies, encompassing novel diagnostic techniques.
- Exploration and development of innovative or alternative therapeutic agents and vaccinations.
- Integration of holistic medical approaches to diminish antibiotic prescription dependency.
- Provision of expert recommendations for legislative amendments to restrict antibiotic sales.
- Establishment of a cross-sectoral One Health framework to facilitate coordination among veterinary, food, and health regulatory bodies.
- Implementation of comprehensive surveillance mechanisms for AMR and antimicrobial utilization at the community and hospital levels.
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Golkar, T.; Bassenden, A.V.; Maiti, K.; Arya, D.P.; Schmeing, T.M.; Berghuis, A.M. Structural basis for plazomicin antibiotic action and resistance. Commun. Biol. 2021, 4, 729. [Google Scholar] [CrossRef]
- Chukwuma, M.O.; Mba, T.; Chikeokwu, I. Basics and Fundamentals of Natural Product Research. Trends Nat. Prod. Res. 2024, 5, 1–15. [Google Scholar] [CrossRef]
- Stringaro, A.; Colone, M.; Angiolella, L. Antioxidant, antifungal, antibiofilm, and cytotoxic activities of Mentha spp. essential oils. Medicines 2018, 5, 112. [Google Scholar] [CrossRef]
- Wińska, K.; Mączka, W.; Łyczko, J.; Grabarczyk, M.; Czubaszek, A.; Szumny, A. Essential Oils as Antimicrobial Agents—Myth or Real Alternative? Molecules 2019, 24, 2130. [Google Scholar] [CrossRef]
- Mansuri, A.; Lokhande, K.; Kore, S.; Gaikwad, S.; Nawani, N.; Swamy, K.V.; Junnarkar, M.; Pawar, S. Antioxidant, anti-quorum sensing, biofilm inhibitory activities and chemical composition of Patchouli essential oil: In vitro and in silico approach. J. Biomol. Struct. Dyn. 2022, 40, 154–165. [Google Scholar] [CrossRef]
- Talat, A.; Khan, A.U. Artificial intelligence as a smart approach to develop antimicrobial drug molecules: A paradigm to combat drug-resistant infections. Drug Discov. Today 2023, 28, 103491. [Google Scholar] [CrossRef]
- Hopkins, A.L. Network pharmacology. Nat. Biotechnol. 2007, 25, 1110–1111. [Google Scholar] [CrossRef]
- Hopkins, A. Network pharmacology: The next paradigm in drug discovery. Nat. Chem. Biol. 2008, 4, 682–690. [Google Scholar] [CrossRef]
- Daynac, M.; Cortes-Cabrera, A.; Prieto, J.M. Application of artifcial intelligence to the prediction of the antimicrobial activity of essential oils. Evid.-Based Complement. Altern. Med. 2015, 2015, 561024. [Google Scholar] [CrossRef]
- El-Attar, N.E.; Hassan, M.K.; Alghamdi, O.A.; Awad, W.A. Deep learning model for classification and bioactivity prediction of essential oil-producing plants from Egypt. Sci. Rep. 2020, 10, 21349. [Google Scholar] [CrossRef]
- Artini, M.; Patsilinakos, A.; Papa, R.; Božović, M.; Sabatino, M.; Garzoli, S.; Vrenna, G.; Tilotta, M.; Pepi, F.; Ragno, R.; et al. Antimicrobial and Antibiofilm Activity and Machine Learning Classification Analysis of Essential Oils from Different Mediterranean Plants against Pseudomonas aeruginosa. Molecules 2018, 23, 482. [Google Scholar] [CrossRef]
- Patsilinakos, A.; Artini, M.; Papa, R.; Sabatino, M.; Božović, M.; Garzoli, S.; Vrenna, G.; Buzzi, R.; Manfredini, S.; Selan, L.; et al. Machine Learning Analyses on Data including Essential Oil Chemical Composition and In Vitro Experimental Antibiofilm Activities against Staphylococcus Species. Molecules 2019, 24, 890. [Google Scholar] [CrossRef]
- Patsilinakos, A. Machine Learning Applications to Essential Oils and Natural Extracts. Ph.D. Thesis, Sapienza University of Rome, Rome, Italy, 2020. Available online: https://iris.uniroma1.it/retrieve/handle/11573/1467718/1624924/Tesi_dottorato_Patsilinakos.pdf (accessed on 1 March 2024).
- Papa, R.; Garzoli, S.; Vrenna, G.; Sabatino, M.; Sapienza, F.; Relucenti, M.; Donfrancesco, O.; Fiscarelli, E.V.; Artini, M.; Selan, L.; et al. Essential Oils Biofilm Modulation Activity, Chemical and Machine Learning Analysis. Application on Staphylococcus aureus Isolates from Cystic Fibrosis Patients. Int. J. Mol. Sci. 2020, 21, 9258. [Google Scholar] [CrossRef]
- Ragno, R.; Papa, R.; Patsilinakos, A.; Vrenna, G.; Garzoli, S.; Tuccio, V.; Fiscarelli, E.; Selan, L.; Artini, M. Essential oils against bacterial isolates from cystic fibrosis patients by means of antimicrobial and unsupervised machine learning approaches. Sci. Rep. 2020, 10, 2653. [Google Scholar] [CrossRef]
- Zhang, Y.; Tang, J.; Liu, Q.; Ge, J.; Ma, Z.; Mou, J.; Wang, L. Biological, Functional and Network Pharmacological Exploration of Essential Oils in Treatment and Healthcare of Human Diseases. Future Integr. Med. 2023, 2, 23–31. [Google Scholar] [CrossRef]
- Buriani, A.; Fortinguerra, S.; Sorrenti, V.; Caudullo, G.; Carrara, M. Essential Oil Phytocomplex Activity, a Review with a Focus on Multivariate Analysis for a Network Pharmacology-Informed Phytogenomic Approach. Molecules 2020, 25, 1833. [Google Scholar] [CrossRef]
- You, J.S.; He, S.C.; Chen, L.; Guo, Z.H.; Gao, F.; Zhang, M.Y.; Dan, L.; Chen, W. Analysis of Pharmacological Activities and Mechanisms of Essential Oil in Leaves of C. grandis ‘Tomentosa’ by GC-MS/MS and Network Pharmacology. Comb. Chem. High Throughput Screen. 2023, 26, 1689–1700. [Google Scholar] [CrossRef]
- Yuan, Y.; Sun, J.; Song, Y.; Raka, R.N.; Xiang, J.; Wu, H.; Xiao, J.; Jin, J.; Hui, X. Antibacterial activity of oregano essential oils against Streptococcus mutans in vitro and analysis of active components. BMC Complement. Med. Ther. 2023, 23, 61. [Google Scholar] [CrossRef]
- Carev, I.; Gelemanović, A.; Glumac, M.; Tutek, K.; Dželalija, M.; Paiardini, A.; Prosseda, G. Centaurea triumfetii essential oil chemical composition, comparative analysis, and antimicrobial activity of selected compounds. Sci. Rep. 2023, 13, 7475. [Google Scholar] [CrossRef]
- Zhao, W.; Yang, C.; Zhang, N.; Peng, Y.; Ma, Y.; Gu, K.; Liu, X.; Liu, X.; Liu, X.; Liu, Y.; et al. Menthone Exerts its Antimicrobial Activity Against Methicillin Resistant Staphylococcus aureus by Affecting Cell Membrane Properties and Lipid Profile. Drug Des. Dev. Ther. 2023, 17, 219–236. [Google Scholar] [CrossRef]
- Yabuuchi, H.; Hayashi, K.; Shigemoto, A.; Fujiwara, M.; Nomura, Y.; Nakashima, M.; Ogusu, T.; Mori, M.; Tokumoto, S.I.; Miyai, K. In vitro and in silico prediction of antibacterial interaction between essential oils via graph embedding approach. Sci. Rep. 2023, 13, 18947. [Google Scholar] [CrossRef] [PubMed]
- Gates, B. The Age of AI Has Begun. Artificial Intelligence Is as Revolutionary as Mobile Phones and the Internet 2023. Available online: https://www.gatesnotes.com/The-Age-of-AI-Has-Begun (accessed on 31 March 2024).
- Ermenlieva, N.; Georgieva, E.; Mihaylova, S.; Stamova, S.; Laleva, K.; Tsankova, G.; Tsvetkova, A. Synergistic interaction between Lamiaceae essential oils and antifungal drugs against Candida albicans ATCC 10231. Farm. J. 2022, 70, 720–772. [Google Scholar] [CrossRef]
- Vankova, D.; Kapincheva, I.; Micheva, I.; Boncheva, P.; Mihaylova, S.; Kanalev, R.; Ivanov, D.; Veleva, N.; Vladimirova, M.; Paunov, T. One Health strategies for addressing antimicrobial resistance: An exclusive emphasis on Bulgaria. Eur. J. Public Health 2023, 33 (Suppl. S2), 1026. [Google Scholar] [CrossRef]
- WHO. Lack of Innovation Set to Undermine Antibiotic Performance and Health Gains. 2022. Available online: https://www.who.int/news/item/22-06-2022-22-06-2022-lack-of-innovation-set-to-undermine-antibiotic-performance-and-health-gains (accessed on 2 March 2024).
- Doron, S.; Davidson, L.E. Antimicrobial stewardship. Mayo Clin. Proc. 2011, 86, 1113–1123. [Google Scholar] [CrossRef] [PubMed]
- Shrestha, J.; Zahra, F.; Cannady, P., Jr. Antimicrobial Stewardship. In StatPearls [Internet]; [Updated 20 January 2023]; StatPearls Publishing: Treasure Island, FL, USA, 2024. Available online: https://www.ncbi.nlm.nih.gov/books/NBK572068/ (accessed on 14 March 2024).
- Zampaloni, C.; Mattei, P.; Bleicher, K.; Winther, L.; Thäte, C.; Bucher, C.; Adam, J.M.; Alanine, A.; Amrein, K.E.; Baidin, V.; et al. A novel antibiotic class targeting the lipopolysaccharide transporter. Nature 2024, 625, 566–571. [Google Scholar] [CrossRef] [PubMed]
- WHO. Global Strategy on Traditional Medicine. 2023. Available online: https://apps.who.int/gb/ebwha/pdf_files/EB152/B152_CONF9-en.pdf (accessed on 9 March 2024).
- Álvarez-Martínez, F.J.; Barrajón-Catalán, E.; Herranz-López, M.; Micol, V. Antibacterial plant compounds, extracts and essential oils: An updated review on their effects and putative mechanisms of action. Phytomed. Int. J. Phytother. Phytopharm. 2021, 90, 153626. [Google Scholar] [CrossRef] [PubMed]
- EU One Health Action Plan against AMR. Available online: https://health.ec.europa.eu/system/files/2020-01/amr_2017_action-plan_0.pdf (accessed on 1 April 2024).
- European Commission; European Health and Digital Executive Agency; Dates, M.; Davies, M.; Kobilsky, A.; Gutheil, M.; Alvarez, A.; Aldasoro, E. Study on the Barriers to Effective Development and Implementation of National Policies on Antimicrobial Resistance—Final Report; Publications Office of the European Union: Luxembourg, 2023; Available online: https://data.europa.eu/doi/10.2925/826400 (accessed on 15 April 2024).
- Singh, V.; Singh, S.K. A separable temporal convolutional networks based deep learning technique for discovering antiviral medicines. Sci. Rep. 2023, 13, 13722. [Google Scholar] [CrossRef] [PubMed]
- Lin, S.; Li, X.W.; Liu, J.L.; Ou-Yang, Y.Y.; Zhang, B.; Zhao, S.J.; Chai, X.Q.; Ma, Y.L.; Liu, J. The immune response mechanism of Nilaparvata lugens against a combined infection of rice ragged stunt virus and Metarhizium anisopliae. Pest Manag. Sci. 2024, 80, 1193–1205. [Google Scholar] [CrossRef] [PubMed]
- Geng, L.; Qian, L.X.; Shao, R.X.; Liu, Y.Q.; Liu, S.S.; Wang, X.W. Transcriptome profiling of whitefly guts in response to Tomato yellow leaf curl virus infection. Virol. J. 2018, 15, 14. [Google Scholar] [CrossRef]
- Naveed, Z.A.; Ali, G.S. Comparative Transcriptome Analysis between a Resistant and a Susceptible Wild Tomato Accession in Response to Phytophthora parasitica. Int. J. Mol. Sci. 2018, 19, 3735. [Google Scholar] [CrossRef]
- Howlader, J.; Robin, A.H.K.; Natarajan, S.; Biswas, M.K.; Sumi, K.R.; Song, C.Y.; Park, J.I.; Nou, I.S. Transcriptome Analysis by RNA-Seq Reveals Genes Related to Plant Height in Two Sets of Parent-hybrid Combinations in Easter Lily (Lilium longiflorum). Sci. Rep. 2020, 10, 9082. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.; Zeng, X.; Feng, Y.; Li, S.; Wang, Y.; Liu, Y.; Chen, F.; Guan, Z.; Chen, T.; Wei, F. Inhibitory effects of Jasminum grandiflorum L. essential oil on lipopolysaccharide-induced microglia activation-integrated characteristic analysis of volatile compounds, network pharmacology, and BV-2 cell. Front. Pharmacol. 2023, 14, 1180618. [Google Scholar] [CrossRef] [PubMed]
- Olcay, B.; Ozdemir, G.D.; Ozdemir, M.A.; Ercan, U.K.; Guren, O.; Karaman, O. Prediction of the synergistic effect of antimicrobial peptides and antimicrobial agents via supervised machine learning. BMC Biomed. Eng. 2024, 6, 1. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mihaylova, S.; Tsvetkova, A.; Georgieva, E.; Vankova, D. Bioactive Phyto-Compounds with Antimicrobial Effects and AI: Results of a Desk Research Study. Microorganisms 2024, 12, 1055. https://doi.org/10.3390/microorganisms12061055
Mihaylova S, Tsvetkova A, Georgieva E, Vankova D. Bioactive Phyto-Compounds with Antimicrobial Effects and AI: Results of a Desk Research Study. Microorganisms. 2024; 12(6):1055. https://doi.org/10.3390/microorganisms12061055
Chicago/Turabian StyleMihaylova, Silviya, Antoaneta Tsvetkova, Emiliya Georgieva, and Desislava Vankova. 2024. "Bioactive Phyto-Compounds with Antimicrobial Effects and AI: Results of a Desk Research Study" Microorganisms 12, no. 6: 1055. https://doi.org/10.3390/microorganisms12061055
APA StyleMihaylova, S., Tsvetkova, A., Georgieva, E., & Vankova, D. (2024). Bioactive Phyto-Compounds with Antimicrobial Effects and AI: Results of a Desk Research Study. Microorganisms, 12(6), 1055. https://doi.org/10.3390/microorganisms12061055