Antimicrobial Potential of Cannabinoids: A Scoping Review of the Past 5 Years
Abstract
:1. Introduction
2. Methods
2.1. Search Strategy
2.2. Inclusion and Exclusion Criteria
2.3. Overview of Included Studies
2.4. Data Extraction
3. Results
3.1. Antibacterial Activity of Cannabinoids
Author (Year) | Type of Study | Aims | Main Results |
---|---|---|---|
Abichabki et al. [30] | In vitro study | To evaluate the antibacterial activity of CBD against a wide diversity of bacteria and of the combination CBD + polymyxin B (PB) against Gram-negative bacteria, including PB-resistant Gram-negative bacilli. |
|
Aqawi et al. [31] | In vitro study | To evaluate the anti-quorum sensing (anti-QS) and anti-biofilm formation potential of CBG on Gram-negative Vibrio harveyi. |
|
Aqawi et al. [32] | In vitro study | To study the antibacterial activity of CBG against Streptococcus mutans. |
|
Aqawi et al. [33] | In vitro study | To evaluate the potential use of CBG against S. mutans biofilms as a means to combat dental plaque. |
|
Avraham et al. [34] | In vitro study | To study the anti-biofilm activity of CBD combined with triclosan against Streptococcus mutans. |
|
Barak et al. [35] | In vitro study | To study the antibacterial and anti-biofilm activities of CBD against Streptococcus mutans. |
|
Blaskovich et al. [36] | In vitro, ex vivo, and in vivo studies | To evaluate the antibacterial activity of CBD against Gram-positive and Gram-negative bacteria. |
|
Cham et al. [37] | In vitro study | To evaluate the antibacterial potential of a semisynthetic phytocannabinoid, tetrahydrocannabidiol (THCBD, 4) against sensitive and resistant strains of Staphylococcus aureus. |
|
Cohen et al. [38] | In vitro, ex vivo, and clinical studies | To evaluate the efficacy of a newly developed natural topical formulation based on CBD for the treatment of acne. |
|
Farha et al. [39] | In vitro and in vivo studies | To study the antibacterial activity of cannabinoids against MRSA. |
|
Galletta et al. [40] | In vitro study | To study the ability of the phytocannabinoid CBCA and its related synthetic analogs to successfully inhibit the growth of MRSA and other clinically relevant pathogenic bacteria. |
|
Garzón et al. [41] | In vitro study | To evaluate the antimicrobial and antibiofilm properties and the immune modulatory activities of CBD and CBG on oral bacteria and periodontal ligament fibroblasts. |
|
Gildea et al. [42] | In vitro study | To evaluate the antibacterial potential of CBD against Salmonella newington and Salmonella typhimurium. |
|
Gildea et al. [43] | In vitro study | To evaluate the potential synergy between CBD and three broad-spectrum antibiotics (ampicillin, kanamycin, and polymyxin B) for potential CBD-antibiotic co-therapy. |
|
Hongsing et al. [44] | In vitro and in vivo studies | To evaluate the antimicrobial efficacy of CBD against clinical isolates of multi-drug resistant Enterococcus faecalis bacterial infections in vitro and in vivo. |
|
Hussein et al. [45] | In vitro study | To study the mechanisms of the antibacterial killing synergy of the combination of polymyxin B with CBD against A. baumannii ATCC 19606. The antibacterial synergy of the combination against a panel of Gram-negative pathogens (Acinetobacter baumannii, Klebsiella pneumoniae, and Pseudomonas aeruginosa) was also explored using checkerboard and static time–kill assays. |
|
Jackson et al. [46] | In vitro study | To test the antibiotic potential of CBD, CBC, CBG, and their acidic counterparts (CBDA, CBGA, and CBCA) against Gram-positive bacteria and explore the additive or synergistic effects with silver nitrate or silver nanoparticles. |
|
Kesavan Pillai et al. [47] | In vitro study | To evaluate the antimicrobial activity of solubilized CBD against Gram-negative and Gram-positive bacterial strains. |
|
Luz-Veiga et al. [48] | In vitro study | To study CBD and CBG interaction and their potential antimicrobial activity against selected microorganisms (human-skin-specific microorganisms commonly associated with inflammatory skin conditions). |
|
Martinena et al. [49] | In vitro study | To investigate the antimicrobial effect of CBD on Mycobacterium tuberculosis intracellular infection. |
|
Martinenghi et al. [50] | In vitro study | To evaluate the antimicrobial effect of CBDA and CBD. |
|
Poulsen et al. [51] | In vitro study | To investigate the antibacterial activities of CBD, CBN, and THC against MRSA strains. |
|
Russo et al. [52] | In vitro study | To compare the antibacterial activities of CBD and CBDV against E. coli and S. aureus. |
|
Shi et al. [53] | In vitro study | To determine the anti-inflammatory activity of dihydrocannabidiol, (H2CBD) and its antibacterial properties against E. faecalis and B. cereus. |
|
Stahl & Vasudevan [54] | In vitro study | To compare the efficacy of oral care products and cannabinoids (CBD, CBC, CBN, CBG, and CBGA) in reducing the bacterial content of dental plaques. |
|
Valh et al. [55] | In vitro study | To determine the antioxidant and antibacterial activities of microencapsulated CBD against E. coli and S. aureus. |
|
Vasudevan & Stahl [56] | In vitro study | To evaluate CBD and CBG-infused mouthwash products against aerobic bacterial content from dental plaque samples. |
|
Wassmann et al. [57] | In vitro study | To characterize CBD as a helper compound against resistant bacteria. |
|
Wu et al. [58] | In vitro study | To determine the antibacterial, bactericidal, and antioxidant activities of 8,9-dihydrocannabidiol against S. aureus and E. coli. |
|
Zhang et al. [59] | In vitro study | To study the antibacterial activities of a series of novel CBD derivatives against MRSA. |
|
3.2. Antiviral Activity of Cannabinoids
Author (Year) | Type of Study | Aims | Main Results |
---|---|---|---|
Classen et al. [60] | In vitro study | To test synthetic CBG and CBL for potential antiviral effects against SARS-CoV-2. |
|
Marques et al. [61] | In vitro study | To evaluate the effect of three derivatives and an analog of CBD on non-infected VERO cell viability and antiviral activities against SARS-CoV-2. |
|
Marquez et al. [62] | In vitro study | To explore the in vitro antiviral activity of CBD against ZIKV, as well as expanding to other dissimilar viruses. |
|
Nguyen et al. [63] | In vitro study | To determine CBD’s potential to inhibit infection of cells by SARS-CoV-2 |
|
Pawełczyk et al. [64] | In vitro study | To explore the potential of the molecular consortia of CBD and NSAIDs (ibuprofen, ketoprofen, and naproxen) as novel antiviral dual-target agents against SARS-CoV-2. |
|
Pitakbut et al. [65] | In vitro study | To determine the mechanism of action of THC, CBD, and CBN against SARS-CoV2 infection. |
|
Polat et al. [66] | In vivo study | To determine the antiviral activity of CBD against SARS-CoV-2 infection in K18-hACE2 transgenic mice. |
|
Raj et al. [67] | In vitro study | To estimate the antiviral activity of cannabinoids (CBD, CBN, CBDA, Δ9-THC, Δ9-THCA) against SARS-CoV-2. |
|
Santos et al. [68] | In vitro study | To evaluate the combination of CBD and terpenes in reducing SARS-CoV-2 infectivity. |
|
Tamburello et al. [69] | In vitro study | To evaluate the antiviral activity of CBDA against SARS-CoV-2. |
|
Van Breemen et al. [70] | In vitro study | To determine the antibacterial activities of cannabinoid acids against SARS-CoV-2. |
|
Zargari et al. [71] | In vitro study | To test the antiviral activity of 7α-acetoxyroyleanone, curzerene, incensole, harmaline, and CBD against SARS-CoV-2. |
|
3.3. Antifungal Activity of Cannabinoids
Author (Year) | Type of Study | Aims | Main Results |
---|---|---|---|
Bahraminia et al. [72] | In vitro study | To determine the antifungal activity of CBD against Candida albicans. |
|
Feldman et al. [73] | In vitro study | To determine the potential anti-biofilm activity of CBD and to investigate its mode of action against C. albicans. |
|
Feldman et al. [74] | Ex vivo and in vivo studies | To investigate the possibility of incorporating CBD, triclosan, and CBD/triclosan into a sustained-release varnish SRV (SRV-CBD, SRV-triclosan) to increase the pharmaceutical potential against C. albicans biofilm. |
|
Kesavan Pillai et al. [47] | In vitro study | To evaluate the antimicrobial activity of solubilized CBD against fungal strains (C. albicans, M. furfur). |
|
Ofori et al. [75] | In vitro study | To assess the anti-Candida properties of newly synthesized abnormal CBD derivatives (AbnCBD) |
|
4. Discussion
4.1. Antibacterial Activity of Cannabinoids—Recent Findings and Interpretation
4.2. Antiviral Activity of Cannabinoids—Recent Findings and Interpretation
4.3. Antifungal Activity of Cannabinoids–Recent Findings and Interpretation
5. Conclusions and Future Opportunities
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kim, D.-Y.; Patel, S.K.S.; Rasool, K.; Lone, N.; Bhatia, S.K.; Seth, C.S.; Ghodake, G.S. Bioinspired silver nanoparticle-based nanocomposites for effective control of plant pathogens: A review. Sci. Total Environ. 2024, 908, 168318. [Google Scholar] [CrossRef] [PubMed]
- Khan, I.; Saeed, K.; Khan, I. Nanoparticles: Properties, applications and toxicities. Arab. J. Chem. 2019, 12, 908–931. [Google Scholar] [CrossRef]
- Jha, N.K.; Arfin, S.; Jha, S.K.; Kar, R.; Dey, A.; Gundamaraju, R.; Ashraf, G.M.; Gupta, P.K.; Dhanasekaran, S.; Abomughaid, M.M.; et al. Re-establishing the comprehension of phytomedicine and nanomedicine in inflammation mediated cancer signaling. Semin. Cancer Biol. 2022, 86, 1086–1104. [Google Scholar] [CrossRef] [PubMed]
- Alhadrami, H.A.; Orfali, R.; Hamed, A.A.; Ghoneim, M.M.; Hassan, H.M.; Hassane, A.S.I.; Rateb, M.E.; Sayed, A.M.; Gamaleldin, N.M. Flavonoid-coated gold nanoparticles as efficient antibiotics against Gram-negative bacteria—Evidence from in silico-supported in vitro studies. Antibiotics 2021, 10, 968. [Google Scholar] [CrossRef] [PubMed]
- Kutawa, A.B.; Ahmad, K.; Ali, A.; Hussein, M.Z.; Abdul Wahab, M.A.; Adamu, A.; Ismaila, A.A.; Gunasena, M.T.; Rahman, M.Z.; Hossain, M.I. Trends in nanotechnology and its potentialities to control plant pathogenic fungi: A review. Biology 2021, 10, 881. [Google Scholar] [CrossRef] [PubMed]
- Farooq, T.; Adeel, M.; He, Z.; Umar, M.; Shakoor, N.; da Silva, W.; Elmer, W.; White, J.C.; Rui, Y. Nanotechnology and plant viruses: An emerging disease management approach for resistant pathogens. ACS Nano 2021, 15, 6030–6037. [Google Scholar] [CrossRef] [PubMed]
- Ocsoy, I.; Paret, M.I.; Ocsoy, M.A.; Kunwar, S.; Chen, T.; You, M.; Tan, W. Nanotechnology in plant disease management: DNA-directed silver nanoparticles on graphene oxide as an antibacterial against Xanthomonas perforans. ACS Nano 2013, 7, 8972–8980. [Google Scholar] [CrossRef] [PubMed]
- Greatti, V.R.; Oda, F.; Sorrechia, R.; Kapp, B.R.; Seraphim, C.M.; Weckwerth, A.C.V.B.; Chorilli, M.; Silva, P.B.D.; Eloy, J.O.; Kogan, M.J.; et al. Poly-ε-caprolactone nanoparticles loaded with 4-Nerolidylcatechol (4-NC) for growth inhibition of Microsporum canis. Antibiotics 2020, 9, 894. [Google Scholar] [CrossRef] [PubMed]
- Preethi, A.M.; Bellare, J.R. Concomitant effect of quercetin- and magnesium-doped calcium silicate on the osteogenic and antibacterial activity of scaffolds for bone regeneration. Antibiotics 2021, 10, 1170. [Google Scholar] [CrossRef]
- Lin, H.-L.; Chiang, C.-E.; Lin, M.-C.; Kau, M.-L.; Lin, Y.-T.; Chen, C.-S. Aerosolized hypertonic saline hinders biofilm formation to enhance antibiotic susceptibility of multidrug-resistant Acinetobacter baumannii. Antibiotics 2021, 10, 1115. [Google Scholar] [CrossRef]
- Kamaraj, C.; Vimal, S.; Ragavendran, C.; Priyadharsan, A.; Marimuthu, K.; Malafaia, G. Traditionally used medicinal plants mediate the biosynthesis of silver nanoparticles: Methodological, larvicidal, and ecotoxicological approach. Sci. Total Environ. 2023, 873, 162402. [Google Scholar] [CrossRef]
- Han, H.-W.; Kwak, J.-H.; Jang, T.-S.; Knowles, J.C.; Kim, H.-W.; Lee, H.-H.; Lee, J.-H. Grapefruit seed extract as a natural derived antibacterial substance against multidrug-resistant bacteria. Antibiotics 2021, 10, 85. [Google Scholar] [CrossRef] [PubMed]
- Lakkim, V.; Reddy, M.C.; Pallavali, R.R.; Reddy, K.R.; Reddy, C.V.; Inamuddin; Bilgrami, A.L.; Lomada, D. Green synthesis of silver nanoparticles and evaluation of their antibacterial activity against multidrug-resistant bacteria and wound healing efficacy using a murine model. Antibiotics 2020, 9, 902. [Google Scholar] [CrossRef]
- Ahmadi, F.; Lackner, M. Green synthesis of silver nanoparticles from Cannabis sativa: Properties, synthesis, mechanistic aspects, and applications. Chem. Eng. 2024, 8, 64. [Google Scholar] [CrossRef]
- Singh, P.; Pandit, S.; Garnaes, J.; Tunjic, S.; Mokkapati, V.R.S.S.; Sultan, A.; Thygesen, A.; Mackevica, A.; Mateiu, R.V.; Daugaard, A.E.; et al. Green synthesis of gold and silver nanoparticles from Cannabis sativa (industrial hemp) and their capacity for biofilm inhibition. Int. J. Nanomed. 2018, 13, 3571–3591. [Google Scholar] [CrossRef]
- Chouhan, S.; Guleria, S. Green synthesis of AgNPs using Cannabis sativa leaf extract: Characterization, antibacterial, anti-yeast and α-amylase inhibitory activity. Mat. Sci. Energy Technol. 2020, 3, 536–544. [Google Scholar] [CrossRef]
- Saleh, N.M.; Moemen, Y.S.; Mohamed, S.H.; Fathy, G.; Ahmed, A.A.S.; Al-Ghamdi, A.A.; Ullah, S.; El Sayed, I.E.-T. Experimental and molecular docking studies of cyclic diphenyl phosphonates as DNA gyrase inhibitors for fluoroquinolone-resistant pathogens. Antibiotics 2022, 11, 53. [Google Scholar] [CrossRef]
- Mokhtary, P.; Pourhashem, Z.; Mehrizi, A.A.; Sala, C. Recent progress in the discovery and development of monoclonal antibodies against viral infections. Biomedicines 2022, 10, 1861. [Google Scholar] [CrossRef] [PubMed]
- Zurawski, D.V.; McLendon, M.K. Monoclonal antibodies as an antibacterial approach against bacterial pathogens. Antibiotics 2020, 9, 155. [Google Scholar] [CrossRef] [PubMed]
- Kharga, K.; Kumar, L.; Patel, S.K.S. Recent advances in monoclonal antibody-based approaches in the management of bacterial sepsis. Biomedicines 2023, 11, 765. [Google Scholar] [CrossRef] [PubMed]
- Śledziński, P.; Zeyland, J.; Słomski, R.; Nowak, A. The current state and future perspectives of cannabinoids in cancer biology. Cancer Med. 2018, 7, 765–775. [Google Scholar] [CrossRef] [PubMed]
- Bukowska, B. Current and Potential Use of Biologically Active Compounds Derived from Cannabis sativa L. in the Treatment of Selected Diseases. Int. J. Mol. Sci. 2024, 25, 12738. [Google Scholar] [CrossRef]
- Lee, S.; Lee, Y.; Kim, Y.; Kim, H.; Rhyu, H.; Yoon, K.; Lee, C.-D.; Lee, S. Beneficial effects of cannabidiol from Cannabis. Appl. Biol. Chem. 2024, 67, 32. [Google Scholar] [CrossRef]
- Schofs, L.; Sparo, M.D.; Sanchez Bruni, S.F. The antimicrobial effect behind Cannabis sativa. Pharmacol. Res. Perspect. 2021, 9, e00761. [Google Scholar] [CrossRef] [PubMed]
- Karas, J.A.; Wong, L.J.M.; Paulin, O.K.A.; Mazeh, A.C.; Hussein, M.H.; Li, J.; Velkov, T. The antimicrobial activity of cannabinoids. Antibiotics. 2020, 9, 406. [Google Scholar] [CrossRef] [PubMed]
- Bow, E.W.; Rimoldi, J.M. The Structure-function relationships of classical cannabinoids: CB1/CB2 modulation. Perspect Med. Chem. 2016, 8, 17–39. [Google Scholar] [CrossRef]
- Scott, C.; Neira Agonh, D.; Lehmann, C. Antibacterial effects of Phytocannabinoids. Life 2022, 12, 1394. [Google Scholar] [CrossRef] [PubMed]
- PRISMA. Preferred Reporting Items for Systematic Reviews and Meta-Analysis Website. 2024. Available online: https://www.prisma-statement.org/ (accessed on 29 October 2024).
- Peters, M.D.J.; Godfrey, C.; McInerney, P.; Khalil, H.; Larsen, P.; Marnie, C.; Pollock, D.; Tricco, A.C.; Munn, Z. Best practice guidance and reporting items for the development of scoping review protocols. JBI Evid. Synth. 2022, 20, 953–968. [Google Scholar] [CrossRef] [PubMed]
- Abichabki, N.; Zacharias, L.V.; Moreira, N.C.; Bellissimo-Rodrigues, F.; Moreira, F.L.; Benzi, J.R.L.; Ogasawara, T.M.C.; Ferreira, J.C.; Ribeiro, C.M.; Pavan, F.R.; et al. Potential cannabidiol (CBD) repurposing as antibacterial and promising therapy of CBD plus polymyxin B (PB) against PB-resistant gram-negative bacilli. Sci. Rep. 2022, 12, 6454. [Google Scholar] [CrossRef] [PubMed]
- Aqawi, M.; Gallily, R.; Sionov, R.V.; Zaks, B.; Friedman, M.; Steinberg, D. Cannabigerol prevents quorum sensing and biofilm formation of Vibrio harveyi. Front. Microbiol. 2020, 11, 858. [Google Scholar] [CrossRef] [PubMed]
- Aqawi, M.; Sionov, R.V.; Gallily, R.; Friedman, M.; Steinberg, D. Anti-bacterial properties of Cannabigerol toward Streptococcus mutans. Front. Microbiol. 2021, 12, 656471. [Google Scholar] [CrossRef] [PubMed]
- Aqawi, M.; Sionov, R.V.; Gallily, R.; Friedman, M.; Steinberg, D. Anti-Biofilm Activity of Cannabigerol against Streptococcus mutans. Microorganisms 2021, 9, 2031. [Google Scholar] [CrossRef]
- Avraham, M.; Steinberg, D.; Barak, T.; Shalish, M.; Feldman, M.; Sionov, R.V. Improved anti-biofilm effect against the oral cariogenic Streptococcus mutans by combined triclosan/CBD treatment. Biomedicines 2023, 11, 521. [Google Scholar] [CrossRef] [PubMed]
- Barak, T.; Sharon, E.; Steinberg, D.; Feldman, M.; Sionov, R.V.; Shalish, M. Anti-bacterial effect of cannabidiol against the cariogenic Streptococcus mutans bacterium: An in vitro study. Int. J. Mol. Sci. 2022, 23, 15878. [Google Scholar] [CrossRef] [PubMed]
- Blaskovich, M.A.T.; Kavanagh, A.M.; Elliott, A.G.; Zhang, B.; Ramu, S.; Amado, M.; Lowe, G.J.; Hinton, A.O.; Pham, D.M.T.; Zuegg, J.; et al. The antimicrobial potential of cannabidiol. Commun. Biol. 2021, 7. [Google Scholar] [CrossRef]
- Cham, P.S.; Deepika; Bhat, R.; Raina, D.; Manhas, D.; Kotwal, P.; Mindala, D.P.; Pandey, N.; Ghosh, A.; Saran, S.; et al. Exploring the antibacterial potential of semisynthetic phytocannabinoid: Tetrahydrocannabidiol (THCBD) as a potential antibacterial agent against sensitive and resistant strains of Staphylococcus aureus. ACS Infect. Dis. 2024, 10, 64–78. [Google Scholar] [CrossRef] [PubMed]
- Cohen, G.; Jakus, J.; Baroud, S.; Gvirtz, R.; Rozenblat, S. Development of an effective acne treatment based on CBD and herbal extracts: Preliminary in vitro, ex vivo, and clinical evaluation. Evid.-Based Complement. Altern. Med. 2023, 2023, 4474255. [Google Scholar] [CrossRef]
- Farha, M.A.; El-Halfawy, O.M.; Gale, R.T.; MacNair, C.R.; Carfrae, L.A.; Zhang, X.; Jentsch, N.G.; Magolan, J.; Brown, E.D. Uncovering the hidden antibiotic potential of Cannabis. ACS Infect. Dis. 2020, 6, 338–346. [Google Scholar] [CrossRef] [PubMed]
- Galletta, M.; Reekie, T.A.; Nagalingam, G.; Bottomley, A.L.; Harry, E.J.; Kassiou, M.; Triccas, J.A. Rapid antibacterial activity of cannabichromenic acid against Methicillin-Resistant Staphylococcus aureus. Antibiotics 2020, 9, 523. [Google Scholar] [CrossRef]
- Garzón, H.S.; Loaiza-Oliva, M.; Martínez-Pabón, M.C.; Puerta-Suárez, J.; Téllez Corral, M.A.; Bueno-Silva, B.; Suárez, D.R.; Díaz-Báez, D.; Suárez, L.J. Antibiofilm and immune-modulatory activity of cannabidiol and cannabigerol in oral environments—In vitro study. Antibiotics 2024, 13, 342. [Google Scholar] [CrossRef] [PubMed]
- Gildea, L.; Ayariga, J.A.; Ajayi, O.S.; Xu, J.; Villafane, R.; Samuel-Foo, M. Cannabis sativa CBD extract shows promising antibacterial activity against Salmonella typhimurium and S. newington. Molecules 2022, 27, 2669. [Google Scholar] [CrossRef] [PubMed]
- Gildea, L.; Ayariga, J.A.; Xu, J.; Villafane, R.; Robertson, B.K.; Samuel-Foo, M.; Ajayi, O.S. Cannabis sativa CBD extract exhibits synergy with broad-spectrum antibiotics against Salmonella enterica subsp. Enterica serovar typhimurium. Microorganisms 2022, 10, 2360. [Google Scholar] [CrossRef] [PubMed]
- Hongsing, P.; Ngamwongsatit, N.; Kongart, C.; Nuiden, N.; Phairoh, K.; Wannigama, D.L. Cannabidiol demonstrates remarkable efficacy in treating multidrug-resistant Enterococcus faecalis infections in vitro and in vivo. Trends Sci. 2024, 21, 8150. [Google Scholar] [CrossRef]
- Hussein, M.; Allobawi, R.; Levou, I.; Blaskovich, M.A.T.; Rao, G.G.; Li, J.; Velkov, T. Mechanisms underlying synergistic killing of polymyxin B in combination with cannabidiol against Acinetobacter baumannii: A metabolomic study. Pharmaceutics 2022, 14, 786. [Google Scholar] [CrossRef] [PubMed]
- Jackson, J.; Shademani, A.; Dosanjh, M.; Dietrich, C.; Pryjma, M.; Lambert, D.M.; Thompson, C.J. Combinations of Cannabinoids with silver salts or silver nanoparticles for synergistic antibiotic effects against Methicillin-Resistant Staphylococcus aureus. Antibiotics 2024, 13, 473. [Google Scholar] [CrossRef]
- Kesavan Pillai, S.; Hassan Kera, N.; Kleyi, P.; de Beer, M.; Magwaza, M.; Ray, S.S. Stability, biofunctional, and antimicrobial characteristics of cannabidiol isolate for the design of topical formulations. Soft Matter 2024, 20, 2348–2360. [Google Scholar] [CrossRef] [PubMed]
- Luz-Veiga, M.; Amorim, M.; Pinto-Ribeiro, I.; Oliveira, A.L.S.; Silva, S.; Pimentel, L.L.; Rodríguez-Alcalá, L.M.; Madureira, R.; Pintado, M.; Azevedo-Silva, J.; et al. Cannabidiol and cannabigerol exert antimicrobial activity without compromising skin microbiota. Int. J. Mol. Sci. 2023, 24, 2389. [Google Scholar] [CrossRef] [PubMed]
- Martinena, C.B.; Corleto, M.; Martínez, M.M.B.; Amiano, N.O.; García, V.E.; Maffia, P.C.; Tateosian, N.L. Antimicrobial effect of cannabidiol on intracellular Mycobacterium tuberculosis. Cannabis Cannabinoid Res. 2024, 9, 464–469. [Google Scholar] [CrossRef] [PubMed]
- Martinenghi, L.D.; Jonsson, R.; Lund, T.; Jenssen, H. Isolation, purification, and antimicrobial characterization of cannabidiolic acid and cannabidiol from Cannabis sativa L. Biomolecules 2020, 10, 900. [Google Scholar] [CrossRef] [PubMed]
- Poulsen, J.S.; Nielsen, C.K.; Pedersen, N.A.; Wimmer, R.; Sondergaard, T.E.; de Jonge, N.; Nielsen, J.L. Proteomic changes in Methicillin-Resistant Staphylococcus aureus exposed to cannabinoids. J. Nat. Prod. 2023, 86, 1690–1697. [Google Scholar] [CrossRef]
- Russo, C.; Lavorgna, M.; Nugnes, R.; Orlo, E.; Isidori, M. Comparative assessment of antimicrobial, antiradical and cytotoxic activities of cannabidiol and its propyl analogue cannabidivarin. Sci. Rep. 2021, 11, 22494. [Google Scholar] [CrossRef] [PubMed]
- Shi, Q.; Wu, Q.; Wang, Q.; Zhu, S.; Guo, M.; Xia, Y. Cannabidiol finds dihydrocannabidiol as its twin in anti-inflammatory activities and the mechanism. J. Ethnopharmacol. 2024, 337 Pt 2, 118911. [Google Scholar] [CrossRef] [PubMed]
- Stahl, V.; Vasudevan, K. Comparison of efficacy of Cannabinoids versus commercial oral care products in reducing bacterial content from dental plaque: A preliminary observation. Cureus 2020, 12, e6809. [Google Scholar] [CrossRef] [PubMed]
- Valh, J.V.; Peršin, Z.; Vončina, B.; Vrezner, K.; Tušek, L.; Zemljič, L.F. Microencapsulation of cannabidiol in liposomes as coating for cellulose for potential advanced sanitary material. Coatings 2021, 11, 3. [Google Scholar] [CrossRef]
- Vasudevan, K.; Stahl, V. Cannabinoids infused mouthwash products are as effective as chlorhexidine on inhibition of total-culturable bacterial content in dental plaque samples. J. Cannabis Res. 2020, 2, 20. [Google Scholar] [CrossRef] [PubMed]
- Wassmann, C.S.; Højrup, P.; Klitgaard, J.K. Cannabidiol is an effective helper compound in combination with bacitracin to kill Gram-positive bacteria. Sci. Rep. 2020, 10, 4112. [Google Scholar] [CrossRef]
- Wu, Q.; Guo, M.; Zou, L.; Wang, Q.; Xia, Y. 8,9-Dihydrocannabidiol, an alternative of cannabidiol, its preparation, antibacterial and antioxidant ability. Molecules 2023, 28, 445. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Luo, Z.; Sun, Y.; Deng, D.; Su, K.; Li, J.; Yan, Z.; Wang, X.; Cao, J.; Zheng, W.; et al. Discovery of novel cannabidiol derivatives with augmented antibacterial agents against methicillin-resistant Staphylococcus aureus. Bioorg. Chem. 2023, 141, 106911. [Google Scholar] [CrossRef]
- Classen, N.; Pitakbut, T.; Schöfbänker, M.; Kühn, J.; Hrincius, E.R.; Ludwig, S.; Hensel, A.; Kayser, O. Cannabigerol and cannabicyclol block SARS-CoV-2 cell fusion. Planta Med. 2024, 90, 717–725. [Google Scholar] [CrossRef]
- Marques, G.V.L.; Marques, D.P.A.; Clarindo, F.A.; Avendaño-Villarreal, J.A.; Guerra, F.S.; Fernandes, P.D.; dos Santos, E.N.; Gusevskaya, E.V.; Kohlhoff, M.; Moreira, F.A.; et al. Synthesis of cannabidiol-based compounds as ACE2 inhibitors with potential application in the treatment of COVID-Eur. J. Med. Chem. 2023, 260, 115760. [Google Scholar] [CrossRef]
- Marquez, A.B.; Vicente, J.; Castro, E.; Vota, D.; Rodríguez-Varela, M.S.; Lanza Castronuovo, P.A.; Fuentes, G.M.; Parise, A.R.; Romorini, L.; Alvarez, D.E.; et al. Broad-spectrum antiviral effect of cannabidiol against enveloped and nonenveloped viruses. Cannabis Cannabinoid Res. 2024, 9, 751–765. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, L.C.; Yang, D.; Nicolaescu, V.; Best, T.J.; Gula, H.; Saxena, D.; Gabbard, J.D.; Chen, S.-N.; Ohtsuki, T.; Friesen, J.B.; et al. Cannabidiol inhibits SARSCoV-2 replication through induction of the host ER stress and innate immune responses. Sci. Adv. 2022, 8, eabi6110. [Google Scholar] [CrossRef] [PubMed]
- Pawełczyk, A.; Nowak, R.; Gazecka, M.; Jelińska, A.; Zaprutko, L.; Zmora, P. Novel molecular consortia of cannabidiol with nonsteroidal anti-inflammatory drugs inhibit emerging Coronaviruses’ entry. Pathogens 2023, 12, 951. [Google Scholar] [CrossRef]
- Pitakbut, T.; Nguyen, G.N.; Kayser, O. Activity of THC, CBD, and CBN on human ACE2 and SARS-CoV1/2 main protease to understand antiviral defense mechanism. Planta Med. 2022, 88, 1047–1059. [Google Scholar] [CrossRef]
- Polat, H.U.; Yalcin, H.A.; Köm, D.; Aksoy, Ö.; Abaci, I.; Ekiz, A.T.; Serhatli, M.; Onarici, S. Antiviral effect of cannabidiol on K18-hACE2 transgenic mice infected with SARS-CoV-J. Cell Mol. Med. 2024, 28, e70030. [Google Scholar] [CrossRef]
- Raj, V.; Park, J.G.; Cho, K.H.; Choi, P.; Kim, T.; Ham, J.; Lee, J. Assessment of antiviral potencies of cannabinoids against SARS-CoV-2 using computational and in vitro approaches. Int. J. Biol. Macromol. 2021, 168, 474–485. [Google Scholar] [CrossRef] [PubMed]
- Santos, S.; Barata, P.; Charmier, A.; Lehmann, I.; Rodrigues, S.; Melosini, M.M.; Pais, P.J.; Sousa, A.P.; Teixeira, C.; Santos, I.; et al. Cannabidiol and terpene formulation reducing SARS-CoV-2 infectivity tackling a therapeutic strategy. Front. Immunol. 2022, 13, 841459. [Google Scholar] [CrossRef] [PubMed]
- Tamburello, M.; Salamone, S.; Anceschi, L.; Governa, P.; Brighenti, V.; Morellini, A.; Rossini, G.; Manetti, F.; Gallinella, G.; Pollastro, F.; et al. Antiviral activity of cannabidiolic acid and its methyl ester against SARS-CoV-2. J. Nat. Prod. 2023, 86, 1698–1707. [Google Scholar] [CrossRef]
- van Breemen, R.B.; Muchiri, R.N.; Bates, T.A.; Weinstein, J.B.; Leier, H.C.; Farley, S.; Tafesse, F.G. Cannabinoids block Cellular entry of SARS-CoV-2 and the emerging variants. J. Nat. Prod. 2022, 85, 176–184. [Google Scholar] [CrossRef]
- Zargari, F.; Mohammadi, M.; Nowroozi, A.; Morowvat, M.H.; Nakhaei, E.; Rezagholi, F. The inhibitory effects of the herbals secondary metabolites (7α-acetoxyroyleanone, curzerene, incensole, harmaline, and cannabidiol) on COVID-19: A molecular docking study. Recent Pat. Biotechnol. 2024, 18, 316–331. [Google Scholar] [CrossRef] [PubMed]
- Bahraminia, M.; Cui, S.; Zhang, Z.; Semlali, A.; Le Roux, É.; Giroux, K.A.; Lajoie, C.; Béland, F.; Rouabhia, M. Effect of cannabidiol (CBD), a cannabis plant derivative, against Candida albicans growth and biofilm formation. Can. J. Microbiol. 2024. [Google Scholar] [CrossRef]
- Feldman, M.; Sionov, R.V.; Mechoulam, R.; Steinberg, D. Anti-biofilm activity of cannabidiol against Candida albicans. Microorganisms 2021, 9, 441. [Google Scholar] [CrossRef] [PubMed]
- Feldman, M.; Gati, I.; Sionov, R.V.; Sahar-Helft, S.; Friedman, M.; Steinberg, D. Potential combinatory effect of cannabidiol and triclosan incorporated into sustained release delivery system against oral candidiasis. Pharmaceutics 2022, 14, 1624. [Google Scholar] [CrossRef]
- Ofori, P.; Zemliana, N.; Zaffran, I.; Etzion, T.; Sionov, R.V.; Steinberg, D.; Mechoulam, R.; Kogan, N.M.; Levi-Schaffer, F. Antifungal properties of abnormal cannabinoid derivatives: Disruption of biofilm formation and gene expression in Candida species. Pharmacol. Res. 2024, 209, 107441. [Google Scholar] [CrossRef]
- Lee, A.S.; Lencastre, H.; Garau, J.; Kluytmans, J.; Malhotra-Kumar, S.; Peschel, A.; Harbarth, S. Methicillin-resistant Staphylococcus aureus. Nat. Rev. Dis. Primers 2018, 4, 18033. [Google Scholar] [CrossRef] [PubMed]
- Yin, W.; Wang, Y.; Liu, L.; He, J. Biofilms: The microbial “Protective Clothing” in extreme environments. Int. J. Mol. Sci. 2019, 20, 3423. [Google Scholar] [CrossRef] [PubMed]
- Hajiagha, M.N.; Kafil, H.S. Efflux pumps and microbial biofilm formation. Infect. Genet. Evol. 2023, 112, 105459. [Google Scholar] [CrossRef]
- Shatri, G.; Tadi, P. Polymyxin; StatPearls Publishing: Treasure Island, FL, USA, 2024. [Google Scholar]
- Lucaciu, O.; Aghiorghiesei, O.; Petrescu, N.B.; Mirica, I.C.; Benea, H.R.C.; Apostu, D. In quest of a new therapeutic approach in COVID-19: The endocannabinoid system. Drug Metab. Rev. 2021, 53, 478–490. [Google Scholar] [CrossRef]
- Mahmud, S.; Hossain, M.S.; Faiz Ahmed, A.T.M.; Islam, Z.; Sarker, E.; Islam, R. Antimicrobial and antiviral (SARS-CoV-2) potential of cannabinoids and Cannabis sativa: A comprehensive review. Molecules 2022, 26, 7216. [Google Scholar] [CrossRef] [PubMed]
- Van Der Poorten, D.; Shahidi, M.; Tay, E.; Sesha, J.; Tran, K.; McLeod, D.; Milliken, J.S.; Ho, V.; Hebbard, L.W.; Douglas, M.W.; et al. Hepatitis C virus induces the cannabinoid receptor 1. PLoS ONE 2010, 5, e12841. [Google Scholar] [CrossRef]
- Nichols, J.M.; Kaplan, B.L. Immune responses regulated by cannabidiol. Cannabis Cannabinoid Res. 2020, 5, 12–31. [Google Scholar] [CrossRef]
- Sea, Y.L.; Gee, Y.J.; Lal, S.K.; Choo, W.S. Cannabis as antivirals. J. Appl. Microbiol. 2023, 134, lxac036. [Google Scholar] [CrossRef]
- Znaidia, M.; Demeret, C.; van der Werf, S.; Komarova, A.V. Characterization of SARS-CoV-2 evasion: Interferon pathway and therapeutic options. Viruses 2022, 14, 1247. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Coelho, M.J.; Araújo, M.D.; Carvalho, M.; Cardoso, I.L.; Manso, M.C.; Pina, C. Antimicrobial Potential of Cannabinoids: A Scoping Review of the Past 5 Years. Microorganisms 2025, 13, 325. https://doi.org/10.3390/microorganisms13020325
Coelho MJ, Araújo MD, Carvalho M, Cardoso IL, Manso MC, Pina C. Antimicrobial Potential of Cannabinoids: A Scoping Review of the Past 5 Years. Microorganisms. 2025; 13(2):325. https://doi.org/10.3390/microorganisms13020325
Chicago/Turabian StyleCoelho, Maria João, Maria Duarte Araújo, Márcia Carvalho, Inês Lopes Cardoso, Maria Conceição Manso, and Cristina Pina. 2025. "Antimicrobial Potential of Cannabinoids: A Scoping Review of the Past 5 Years" Microorganisms 13, no. 2: 325. https://doi.org/10.3390/microorganisms13020325
APA StyleCoelho, M. J., Araújo, M. D., Carvalho, M., Cardoso, I. L., Manso, M. C., & Pina, C. (2025). Antimicrobial Potential of Cannabinoids: A Scoping Review of the Past 5 Years. Microorganisms, 13(2), 325. https://doi.org/10.3390/microorganisms13020325