Post-COVID-19 Small Fiber Neuropathy as a New Emerging Quality of Life-Threatening Disease: A Systematic Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Search Strategy and Inclusion/Exclusion Criteria
2.2. Literature Data Collection
3. Results
3.1. PRISMA Literature Selection
3.2. Clinical Characteristics and Diagnosis of PASC-SFN
3.3. Accompanying Disorders in PASC-SFN Patients
3.4. Biomarkers for PASC-SFN
3.5. Evolution and Possible Treatments of PASC-SFN
4. Discussion
5. Conclusions and Clinical Implications
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Di Carlo, M.; Cesaroni, P.; Salaffi, F. Neuropathic pain features suggestive of small fibre neuropathy in fibromyalgia syndrome: A clinical and ultrasonographic study on female patients. Clin. Exp. Rheumatol. 2021, 39 (Suppl. S130), 102–107. [Google Scholar] [CrossRef] [PubMed]
- Di Carlo, M.; Bianchi, B.; Salaffi, F.; Pellegrino, G.; Iannuccelli, C.; Giorgi, V.; Sarzi-Puttini, P. Fibromyalgia: One year in review 2024. Clin. Exp. Rheumatol. 2024, 42, 1141–1149. [Google Scholar] [CrossRef]
- Di Carlo, M.; Di Battista, J.; Cipolletta, E.; Okano, T.; Chiorrini, R.; Smerilli, G.; Bandinelli, F.; Filippucci, E.; Salaffi, F. Is Active Synovitis of Metacarpophalangeal Joints a Neuropathic Condition in Rheumatoid Arthritis Patients? Results from an Ultrasound Study of Palmar Digital Nerves. J. Clin. Med. 2024, 13, 1599. [Google Scholar] [CrossRef]
- Salaffi, F.; Di Carlo, M.; Carotti, M.; Sarzi-Puttini, P. The Effect of Neuropathic Pain Symptoms on Remission in Patients with Early Rheumatoid Arthritis. Curr. Rheumatol. Rev. 2019, 15, 154–161. [Google Scholar] [CrossRef] [PubMed]
- Seeliger, T.; Dreyer, H.N.; Siemer, J.M.; Bönig, L.; Gingele, S.; Dohrn, M.F.; Prenzler, N.; Ernst, D.; Witte, T.; Skripuletz, T. Clinical and paraclinical features of small fiber neuropathy in Sjögren’s syndrome. J. Neurol. 2023, 270, 1004–1010. [Google Scholar] [CrossRef]
- Tekatas, A.; Tekatas, D.D.; Solmaz, V.; Karaca, T.; Pamuk, O.N. Small fiber neuropathy and related factors in patients with systemic lupus erythematosus; the results of cutaneous silent period and skin biopsy. Adv. Rheumatol. 2020, 60, 31. [Google Scholar] [CrossRef] [PubMed]
- Marshall, J.C.; Murthy, S.; Diaz, J.; Adhikari, N.; Angus, D.C.; Arabi, Y.M.; Baillie, K.; Bauer, M.; Berry, S.; Blackwood, B. A Minimal Common Outcome Measure Set for COVID-19 Clinical Research. Lancet Infect. Dis. 2020, 20, e192–e197. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization—A Clinical Case Definition of Post COVID-19 Condition by a Delphi Consensus. 2021. Available online: https://www.who.int/publications/i/item/WHO-2019-nCoV-Post_COVID-19_condition-Clinical_case_definition-2021.1 (accessed on 1 October 2021).
- Pinzon, R.T.; Wijaya, V.O.; Jody, A.A.; Nunsio, P.N.; Buana, R.B. Persistent neurological manifestations in long COVID-19 syndrome: A systematic review and meta-analysis. J. Infect. Public Health 2022, 15, 856–869. [Google Scholar] [CrossRef]
- Nalbandian, A.; Sehgal, K.; Gupta, A.; Madhavan, M.V.; McGroder, C.; Stevens, J.S.; Cook, J.R.; Nordvig, A.S.; Shalev, D.; Sehrawat, T.S.; et al. Post-acute COVID-19 syndrome. Nat. Med. 2021, 27, 601–615. [Google Scholar] [CrossRef]
- Bandinelli, F.; Pagano, M.; Vallecoccia, M.S. Post-COVID-19 and Post-COVID-19 Vaccine Arthritis, Polymyalgia Rheumatica and Horton’s Arteritis: A Single-Center Assessment of Clinical, Serological, Genetic, and Ultrasonographic Biomarkers. J. Clin. Med. 2023, 12, 7563. [Google Scholar] [CrossRef] [PubMed]
- Gemignani, F.; Bellanova, M.F.; Saccani, E. Long-COVID phenotypes and small fiber neuropathy. J. Neurol. Sci. 2023, 444, 120490. [Google Scholar] [CrossRef]
- Falco, P.; Litewczuk, D.; Di Stefano, G.; Galosi, E.; Leone, C.; De Stefano, G.; Di Pietro, G.; Tramontana, L.; Ciardi, M.R.; Pasculli, P.; et al. Small fibre neuropathy frequently underlies the painful long-COVID syndrome. Pain 2024, 165, 2002–2010. [Google Scholar] [CrossRef]
- Bandinelli, F.; Nassini, R.; Gherardi, E.; Chiocchetti, B.; Manetti, M.; Cincotta, M.; Nozzoli, F.; Nucci, E.; De Logu, F.; Pimpinelli, N. Small Fiber Neuropathy Associated with Post-COVID-19 and Post-COVID-19 Vaccination Arthritis: A Rare Post-Infective Syndrome or a New-Onset Disease? J. Pers. Med. 2024, 14, 789. [Google Scholar] [CrossRef]
- McAlpine, L.; Zubair, A.S.; Joseph, P.; Spudich, S. Case-Control Study of Individuals with Small Fiber Neuropathy After COVID-19. Neurol. Neuroimmunol. Neuroinflamm. 2024, 11, e200244. [Google Scholar] [CrossRef] [PubMed]
- Bitirgen, G.; Korkmaz, C.; Zamani, A.; Ozkagnici, A.; Zengin, N.; Ponirakis, G.; Malik, R.A. Corneal confocal microscopy identifies corneal nerve fibre loss and increased dendritic cells in patients with long COVID. Br. J. Ophthalmol. 2022, 106, 1635–1641. [Google Scholar] [CrossRef] [PubMed]
- Devigili, G.; Rinaldo, S.; Lombardi, R.; Cazzato, D.; Marchi, M.; Salvi, E.; Eleopra, R.; Lauria, G. Diagnostic criteria for small fibre neuropathy in clinical practice and research. Brain 2019, 142, 3728–3736. [Google Scholar] [CrossRef] [PubMed]
- Lauria, G.; Bakkers, M.; Schmitz, C.; Lombardi, R.; Penza, P.; Devigili, G.; Smith, A.G.; Hsieh, S.T.; Mellgren, S.I.; Umapathi, T.; et al. Intraepidermal nerve fiber density at the distal leg: A worldwide normative reference study. J. Peripher. Nerv. Syst. 2010, 15, 202–207. [Google Scholar] [CrossRef]
- Chan, A.C.Y.; Wong, H.Y.; Chong, Y.F.; Lai, P.S.; Teoh, H.L.; Ng, A.Y.Y.; Hung, J.H.M.; Chan, Y.C.; Ng, K.W.P.; Vijayan, J.; et al. Novel Autoantibodies in Idiopathic Small Fiber Neuropathy. Ann. Neurol. 2022, 91, 66–77. [Google Scholar] [CrossRef] [PubMed]
- Nunez-Castilla, J.; Stebliankin, V.; Baral, P.; Balbin, C.A.; Sobhan, M.; Cickovski, T.; Mondal, A.M.; Narasimhan, G.; Chapagain, P.; Mathee, K.; et al. Potential Autoimmunity Resulting from Molecular Mimicry between SARS-CoV-2 Spike and Human Proteins. Viruses 2022, 14, 1415. [Google Scholar] [CrossRef]
- Novak, P.; Giannetti, M.P.; Weller, E.; Hamilton, M.J.; Mukerji, S.S.; Alabsi, H.S.; Systrom, D.; Marciano, S.P.; Felsenstein, D.; Mullally, W.J.; et al. Network autonomic analysis of post-acute sequelae of COVID-19 and postural tachycardia syndrome. Neurol. Sci. 2022, 43, 6627–6638. [Google Scholar] [CrossRef] [PubMed]
- Talotta, R. Molecular Mimicry and HLA Polymorphisms May Drive Autoimmunity in Recipients of the BNT-162b2 mRNA Vaccine: A Computational Analysis. Microorganisms 2023, 11, 1686. [Google Scholar] [CrossRef] [PubMed]
- Wohlin, C.; Kalinowski, M.; Romero Felizardo, K.; Mendesa, E. Successful combination of data base search and snowballing for identification of primary studies in systematic literature studies. Inf. Softw. Technol. 2022, 147, 106908. [Google Scholar] [CrossRef]
- Consonni, M.; Telesca, A.; Grazzi, L.; Cazzato, D.; Lauria, G. Life with chronic pain during COVID-19 lockdown: The case of patients with small fibre neuropathy and chronic migraine. Neurol. Sci. 2021, 42, 389–397. [Google Scholar] [CrossRef] [PubMed]
- Novak, P. Post COVID-19 syndrome associated with orthostatic cerebral hypoperfusion syndrome, small fiber neuropathy and benefit of immunotherapy: A case report. eNeurologicalSci 2020, 21, 100276. [Google Scholar] [CrossRef] [PubMed]
- Schwartz, B.; Moudgil, S.; Pollina, F.; Bhargava, A. Small Fiber Neuropathy After SARS-CoV-2 Infection and Vaccination: A Case-Based Comparison. Cureus 2023, 15, e43600. [Google Scholar] [CrossRef]
- Panagiotides, N.G.; Zimprich, F.; Machold, K.; Schlager, O.; Müller, M.; Ertl, S.; Löffler-Stastka, H.; Koppensteiner, R.; Wadowski, P.P. A Case of Autoimmune Small Fiber Neuropathy as Possible Post COVID Sequelae. Int. J. Environ. Res. Public. Health 2023, 20, 4918. [Google Scholar] [CrossRef] [PubMed]
- Shouman, K.; Vanichkachorn, G.; Cheshire, W.P.; Suarez, M.D.; Shelly, S.; Lamotte, G.J.; Sandroni, P.; Benarroch, E.E.; Berini, S.E.; Cutsforth-Gregory, J.K.; et al. Autonomic dysfunction following COVID-19 infection: An early experience. Clin. Auton. Res. 2021, 31, 385–394. [Google Scholar] [CrossRef]
- Azcue, N.; Del Pino, R.; Acera, M.; Fernández-Valle, T.; Ayo-Mentxakatorre, N.; Pérez-Concha, T.; Murueta-Goyena, A.; Lafuente, J.V.; Prada, A.; López de Munain, A.; et al. Dysautonomia and small fiber neuropathy in post-COVID condition and Chronic Fatigue Syndrome. J. Transl. Med. 2023, 21, 814. [Google Scholar] [CrossRef]
- Barros, A.; Queiruga-Piñeiro, J.; Lozano-Sanroma, J.; Alcalde, I.; Gallar, J.; Fernández-Vega Cueto, L.; Alfonso, J.F.; Quirós, L.M.; Merayo-Lloves, J. Small fiber neuropathy in the cornea of Covid-19 patients associated with the generation of ocular surface disease. Ocul. Surf. 2022, 23, 40–48. [Google Scholar] [CrossRef] [PubMed]
- Burakgazi, A.Z. Small-Fiber Neuropathy Possibly Associated with COVID-19. Case Rep. Neurol. 2022, 14, 208–212. [Google Scholar] [CrossRef] [PubMed]
- Midena, E.; Cosmo, E.; Cattelan, A.M.; Briani, C.; Leoni, D.; Capizzi, A.; Tabacchi, V.; Parrozzani, R.; Midena, G.; Frizziero, L. Small Fibre Peripheral Alterations Following COVID-19 Detected by Corneal Confocal Microscopy. J. Pers. Med. 2022, 12, 563. [Google Scholar] [CrossRef]
- Oaklander, A.L.; Mills, A.J.; Kelley, M.; Toran, L.S.; Smith, B.; Dalakas, M.C.; Nath, A. Peripheral Neuropathy Evaluations of Patients with Prolonged Long COVID. Neurol. Neuroimmunol. Neuroinflamm. 2022, 9, e1146. [Google Scholar] [CrossRef]
- Abrams, R.M.C.; Simpson, D.M.; Navis, A.; Jette, N.; Zhou, L.; Shin, S.C. Small fiber neuropathy associated with SARS-CoV-2 infection. Muscle Nerve 2022, 65, 440–443. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Graham, J.; Petropoulos, I.N.; Ponirakis, G.; Asghar, O.; Alam, U.; Marshall, A.; Ferdousi, M.; Azmi, S.; Efron, N.; et al. Corneal Nerve Fractal Dimension: A Novel Corneal Nerve Metric for the Diagnosis of Diabetic Sensorimotor Polyneuropathy. Invest. Ophthalmol. Vis. Sci. 2018, 59, 1113–1118. [Google Scholar] [CrossRef]
- Munipalli, B.; Seim, L.; Dawson, N.L.; Knight, D.; Dabrh, A.M.A. Post-acute sequelae of COVID-19 (PASC): A meta-narrative review of pathophysiology, prevalence, and management. SN Compr. Clin. Med. 2022, 4, 90. [Google Scholar] [CrossRef]
- Habat, S.; Meiner, Z.; Tsenter, J.; Schwartz, I.; Portnoy, S. Correlations between Electro-Diagnostic Findings, the Severity of Initial Infection, and the Rehabilitation Outcomes among COVID-19 Patients. Biology 2022, 11, 277. [Google Scholar] [CrossRef] [PubMed]
- Chiaramonte, R.; Romano, M.; Vecchio, M. A Systematic Review of the Diagnostic Methods of Small Fiber Neuropathies in Rehabilitation. Diagnostics 2020, 10, 613. [Google Scholar] [CrossRef]
- Nolano, M.; Tozza, S.; Caporaso, G.; Provitera, V. Contribution of Skin Biopsy in Peripheral Neuropathies. Brain Sci. 2020, 10, 989. [Google Scholar] [CrossRef]
- Najar Nobari, N.; Seirafianpour, F.; Dodangeh, M.; Sadeghzadeh-Bazargan, A.; Behrangi, E.; Mozafarpoor, S.; Goodarzi, A. A systematic review of the histopathologic survey on skin biopsies in patients with Corona Virus Disease 2019 (COVID-19) who developed virus or drug-related mucocutaneous manifestations. Exp. Dermatol. 2021, 30, 1233–1253. [Google Scholar] [CrossRef] [PubMed]
- Trevino, J.A.; Novak, P. TS-HDS and FGFR3 antibodies in small fiber neuropathy and Dysautonomia. Muscle Nerve 2021, 64, 70–76. [Google Scholar] [CrossRef]
- Zeidman, L.A. Effectiveness of IVIG on Non-Length-Dependent Skin Biopsies in Small Fiber Neuropathy with Plexin D1, Trisulfated Heparin Disaccharide, and Fibroblast Growth Factor Receptor 3 Autoantibodies. J. Clin. Neuromuscul. Dis. 2024, 25, 184–196. [Google Scholar] [CrossRef] [PubMed]
- Dabby, R.; Gilad, R.; Sadeh, M.; Lampl, Y.; Watemberg, N. Acute steroid responsive small-fiber sensory neuropathy: A new entity? J. Peripher. Nerv. Syst. 2006, 11, 47–52. [Google Scholar] [CrossRef] [PubMed]
Study, Year of Publication, Country [ref.] | Sample Size | Age at Diagnosis (Years) | SFN Histologic (H) or Clinical (C) Criteria | Comparison to Controls | WHO COVID-19 Severity (n Patients) | SFN Onset Since Infection (Days) | SFN Symptoms and Localization | PASC Symptoms and Biomarkers |
---|---|---|---|---|---|---|---|---|
Abrams et al., 2022 USA [34] | 6 PASC-SFN (6 females); 5 PASC | 48 (8.4) mean | Lauria (H) criteria; NA | Distal-reduced pinprick in PASC-SFN vs. normal in PASC | 2 (4), 5 (1), 6 (1) | 10 (7), mean (SD) | 66.6% BP; 100% N; 33% SG; 100% lower limbs; 33.3% also upper limbs | 16.6% arthralgia; 33% POTS; 16.6% tachycardia; 100% ANA negative |
Azcue et al., 2023 Spain [29] | 87 PASC (17/87 PASC-SFN; 62 females, 25 males); 50 HCs and 50 with chronic fatigue syndrome | NA | SFN clinical screening list; Sudoscan and QST | SFN screening list higher in PASC-SFN (p = 0.001); Sudoscan NS; QST for heat lower than HCs (p = 0.001) | NA | NA | NA | NA |
Bandinelli et al., 2024 Italy [14] | 7 PASC-SFN and 1 PCV-SFN (5 females, 3 males); 15 PASC-PCV | 57 (14) mean | Lauria (H) and Bradford Hill criteria (C) | Small nerve density/mm at biopsy (PASC-PCV-SFN) lower (p = 0.003); OCT abnormalities higher than PASC-PCV (p = 0.01) | 2 (6), 5 (1) | 4 (1–11), median (IQR) | 100% BP, N, F, MI, TD and SG; lower limbs | Arthritis (100%); abnormal ocular OCT (6.5%); brain and visual fog (100%); EMG-MUAPs (75%); HRCT (62.5%); DLCO abnormalities (37.5%); ANA+ (87%) |
Barros et al., 2022 Spain [30] | 23 PASC (21/23 PASC-SFN; 18 females, 5 males); 46 HCs | NA | In vivo corneal microscopy | CNBD and CNFL lower (p < 0.01 and p < 0.05) and DCD higher (p = 0.05) in PASC vs. HCs | 2 (22), 5 (1) | NA | NA | 100% corneal symptoms; 34% Surface Disease Index test severe; 17.3% Schirmer test positive; |
Burakgazi et al., 2022 EUR [31] | 2 SFN (2 females) | 55.5 (9.1) mean | NA | NA | 2 (2) | 21 (9.8), mean (SD) | 100% BP, N, TD; upper and lower limbs | NA |
Bitirgen et al., 2022 Turkey [16] | 22 neurological PASC (10 females, 12 males); 18 PC; 30 HC | 48.3 (13.1) mean | NA | CNBD (p = 0.02), CNFL (p = 0.01), CFND (p = 0.03) lower than HCs; CFNL (p = 0.02) and CFND (p = 0.04) lower than PC; DCD higher than HCs (p = 0.001) | 2 (22), 4 (11), 5 (4), 7 (3) | 26.6 (9.1), mean (SD) | NA | NICE-Q neurological score (0–7) at 12 weeks: 1.0 (0.5–2.0), median (IQR) |
Falco et al., 2024 Italy [13] | 12 PASC-SFN (7 females, 5 males); 14 painful PASC | 49.9 (11.7) mean | Besta and Lauria (H) criteria (only 6 positive at biopsy) | Higher sensory loss and mechanical hyperalgesia in PASC-SFN vs. PASC (p = 0.0026); smaller distal area involved (p < 0.001) | 2 (7), 4 (2), 5–6 (3) | 17.3 (20.3), mean (SD) | 100% BP and SG; 83% F; 57.7% TD; upper and lower limbs | 83% depression and cognitive impairment |
McAlpine et al., 2024 USA [15] | 9 PASC-SFN treated with IVIG (5 females, 2 males); 7 untreated PASC-SFN | 48 (40–62) median | WHO (C) definition of PASC; skin biopsy (H) | Clinical response to IVIG (p = 0.0001) | 2 (5), 4–5 (4) | 14 (14–21), median (IQR) | 100% BP and N; NA | Dysautonomia (89% IVIG, 86% untreated); 33% TS-HDS/FGFR3+ |
Midena et al., 2022 Italy [32] | 151 PASC (68 females, 83 males); 46 HCs | 56.8 (14.2) Mean | In vivo corneal microscopy | CNBD, CTBD, and CNFW reduced vs. HCs (p = 0.01, p = 0.05, and p = 0.005); NBe and DCD higher than HCs (p = 0.004 and p = 0.0001) | 4 (4), 5 (90), 6 (30),7 (7), 8 (16) | 19.3 (10.5), mean (SD) | NA | Arthralgia (45%); visual (23.2%); cognitive (32.5%); syncope (11.9%) |
Novak et al., 2022 USA [21] | 15 PASC, (10/15, PASC-SFN; 12 females, 3 males); 15 POTS (14/15 with SFN); 11 HCs | 35.8 (7.9) Mean | Brigham (C) and Lauria (H) criteria | In PASC and POTS autonomic failure (p < 0.005), increased heart rate (tilt test), decreased cerebral blood flow (p < 0.001), reduction in end-tidal CO2, (p < 0.001) | NA | NA | NA | In PASC, 100% autonomic failure and reduced orthostatic cerebral blood Doppler flow; 87% hypocapnia |
Oaklander et al., 2022 USA [33] | 17 PASC-SFN (10/16 positive at biopsy; 11 females, 6 males) | 43 (21) mean | Electrodiagnostic and autonomic tests; skin biopsy (H) | NA | 2 (17), 6 (1) | 6 (1.3), mean (SEM) | 11.7% MI; 100% BP and N; lower limbs | ANA negative |
Panagiotides et al., 2023 Austria [27] | 1 PASC-SFN (female) | 34 | Sural nerve biopsy (H) | NA | NA | Same month of infection | F, BP, N, MI; acute; upper and lower limbs | Arthritis; visual impairment; POTS; p-ANCA and anti-Scl34+ |
Shouman et al., 2021 USA [28] | 1 PC (male) | 52 | NA | NA | NA | NA | 50% MI; 100% BP and N; upper and lower limbs | NA |
Schwartz et al., 2023 USA [26] | 1 PC SFN (female) | 54 | NA | NA | 2 (1) | NA | BP and N; lower limbs | NA |
Authors, Year of Publication, Country [ref] | Duration of Follow-Up of PASC-SFN | Treatment | Outcome | Prognosis |
---|---|---|---|---|
Abrams et al., 2022 USA [34] | 8–12 months | Gabapentin, duloxetine, amitryptline | 4 improved; 2 poorly controlled | +/− |
Bandinelli et al., 2024 Italy [14] | 12 months | Steroids, vitamin B6-B12-D3, homotaurine and phosphatidylserine, folate, alpha lipoic acid, pregabalin, HCQ, MTX, SLZ, mycophenolate | Improvement of brain fog, F, MI, BP, N, TD, SG at 12 months; no improvement of visual fog | +/− |
Burakgazi et al., 2022 USA [31] | 6–8 months | Pregabalin, duloxetine, amytriptiline | Improvement of BP only in 50%; no improvement of N | − |
Falco et al., 2024 Italy [13] | NA | Gabapentin, pregabalin, duloxetine | NA | NA |
McAlpine et al., 2024 USA [15] | 6 and later (not specified) months | Patients previously treated with gabapentin, pregabalin, and/or duloxetine without resolution, candidates for IVIG | 33% improvement and 66% resolution after 6 months; 55.5% relapse upon weaning of treatment, later | +/− |
Oaklander et al., 2022 USA [33] | 4 weeks | Corticosteroids in 35.3% (6/17) and IVIG in 35.3% (6/17) | 88.2% improvement; 11.7% unvaried; 75% of IVIG patients ameliorated > 40% | +/− |
Panagiotides et al., 2023, Austria [27] | NA | Gabapentin, high dose of corticosteroids, IVIG, hydroxyclochine, rituximab | Low improvement only after high dosage of steroids and IVIG in BP, but not F, MI, or N | − |
Shouman et al., 2021, USA [28] | NA | Gabapentin and topical lidocaine cream | Improvement of BP | + |
Schwartz et al., 2023, USA [26] | NA | Amitriptyline, gabapentin, pregabalin, or capsaicin | Not responsive | − |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bandinelli, F.; Di Carlo, M.; Colantuono, V.A.; Nozzoli, F.; Salaffi, F.; Chiocchetti, B.; Nucci, E.; Mastricci, A.; Gherardi, E.; Manetti, M. Post-COVID-19 Small Fiber Neuropathy as a New Emerging Quality of Life-Threatening Disease: A Systematic Review. Microorganisms 2025, 13, 328. https://doi.org/10.3390/microorganisms13020328
Bandinelli F, Di Carlo M, Colantuono VA, Nozzoli F, Salaffi F, Chiocchetti B, Nucci E, Mastricci A, Gherardi E, Manetti M. Post-COVID-19 Small Fiber Neuropathy as a New Emerging Quality of Life-Threatening Disease: A Systematic Review. Microorganisms. 2025; 13(2):328. https://doi.org/10.3390/microorganisms13020328
Chicago/Turabian StyleBandinelli, Francesca, Marco Di Carlo, Virginia Alba Colantuono, Filippo Nozzoli, Fausto Salaffi, Barbara Chiocchetti, Elena Nucci, Alessandra Mastricci, Eleonora Gherardi, and Mirko Manetti. 2025. "Post-COVID-19 Small Fiber Neuropathy as a New Emerging Quality of Life-Threatening Disease: A Systematic Review" Microorganisms 13, no. 2: 328. https://doi.org/10.3390/microorganisms13020328
APA StyleBandinelli, F., Di Carlo, M., Colantuono, V. A., Nozzoli, F., Salaffi, F., Chiocchetti, B., Nucci, E., Mastricci, A., Gherardi, E., & Manetti, M. (2025). Post-COVID-19 Small Fiber Neuropathy as a New Emerging Quality of Life-Threatening Disease: A Systematic Review. Microorganisms, 13(2), 328. https://doi.org/10.3390/microorganisms13020328