Parvovirus B19 in Rheumatic Diseases
Abstract
:1. Introduction
2. Biological Characteristics and Epidemiological Features of Parvovirus B19
3. Infection in Erythroid or Non-Erythroid Cells
4. B19V and Rheumatic Diseases
5. B19V and Rheumatoid Arthritis (RA)
6. B19V and Juvenile Idiopathic Arthritis (JIA)
7. B19V and Systemic Sclerosis (SSc)
8. B19V and Systemic Lupus Erythematosus (SLE)
9. B19V and Vasculitis
10. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Cotmore, S.F.; Agbandje-McKenna, M.; Canuti, M.; Chiorini, J.A.; Eis-Hubinger, A.M.; Hughes, J.; Mietzsch, M.; Modha, S.; Ogliastro, M.; Penzes, J.J.; et al. ICTV Virus Taxonomy Profile: Parvoviridae. J. Gen. Virol. 2019, 100, 367–368. [Google Scholar] [CrossRef] [PubMed]
- Qiu, J.; Soderlund-Venermo, M.; Young, N.S. Human Parvoviruses. Clin. Microbiol. Rev. 2017, 30, 43–113. [Google Scholar] [CrossRef]
- Zakrzewska, K.; Arvia, R.; Bua, G.; Margheri, F.; Gallinella, G. Parvovirus B19: Insights and implication for pathogenesis, prevention and therapy. Asp. Mol. Med. 2023, 1, 100007. [Google Scholar] [CrossRef]
- Young, N.S.; Brown, K.E. Parvovirus B19. N. Engl. J. Med. 2004, 350, 586–597. [Google Scholar] [CrossRef]
- Bonvicini, F.; Bua, G.; Gallinella, G. Parvovirus B19 infection in pregnancy-awareness and opportunities. Curr. Opin. Virol. 2017, 27, 8–14. [Google Scholar] [CrossRef]
- Ganaie, S.S.; Qiu, J. Recent Advances in Replication and Infection of Human Parvovirus B19. Front. Cell. Infect. Microbiol. 2018, 8, 166. [Google Scholar] [CrossRef] [PubMed]
- Kaufmann, B.; Simpson, A.A.; Rossmann, M.G. The structure of human parvovirus B19. Proc. Natl. Acad. Sci. USA 2004, 101, 11628–11633. [Google Scholar] [CrossRef]
- Kaufmann, B.; Chipman, P.R.; Kostyuchenko, V.A.; Modrow, S.; Rossmann, M.G. Visualization of the externalized VP2 N termini of infectious human parvovirus B19. J. Virol. 2008, 82, 7306–7312. [Google Scholar] [CrossRef] [PubMed]
- Dorsch, S.; Liebisch, G.; Kaufmann, B.; von Landenberg, P.; Hoffmann, J.H.; Drobnik, W.; Modrow, S. The VP1 unique region of parvovirus B19 and its constituent phospholipase A2-like activity. J. Virol. 2002, 76, 2014–2018. [Google Scholar] [CrossRef]
- Mossong, J.; Hens, N.; Friederichs, V.; Davidkin, I.; Broman, M.; Litwinska, B.; Siennicka, J.; Trzcinska, A.; van Damme, P.; Beutels, P.; et al. Parvovirus B19 infection in five European countries: Seroepidemiology, force of infection and maternal risk of infection. Epidemiol. Infect. 2008, 136, 1059–1068. [Google Scholar] [CrossRef]
- Gallinella, G. Parvoviridae. In Encyclopedia of Infection and Immunity; Rezaei, N., Ed.; Elsevier: Oxford, UK, 2022; pp. 259–277. [Google Scholar]
- Luo, Y.; Qiu, J. Human parvovirus B19: A mechanistic overview of infection and DNA replication. Future Virol. 2015, 10, 155–167. [Google Scholar] [CrossRef]
- Adamson-Small, L.A.; Ignatovich, I.V.; Laemmerhirt, M.G.; Hobbs, J.A. Persistent parvovirus B19 infection in non-erythroid tissues: Possible role in the inflammatory and disease process. Virus Res. 2014, 190, 8–16. [Google Scholar] [CrossRef] [PubMed]
- Mende, M.; Sockel, K. Images in clinical medicine. Parvovirus B19 Infection. N. Engl. J. Med. 2018, 379, 2361. [Google Scholar] [CrossRef] [PubMed]
- Wong, S.; Zhi, N.; Filippone, C.; Keyvanfar, K.; Kajigaya, S.; Brown, K.E.; Young, N.S. Ex vivo-generated CD36+ erythroid progenitors are highly permissive to human parvovirus B19 replication. J. Virol. 2008, 82, 2470–2476. [Google Scholar] [CrossRef]
- Filippone, C.; Franssila, R.; Kumar, A.; Saikko, L.; Kovanen, P.E.; Soderlund-Venermo, M.; Hedman, K. Erythroid progenitor cells expanded from peripheral blood without mobilization or preselection: Molecular characteristics and functional competence. PLoS ONE 2010, 5, e9496. [Google Scholar] [CrossRef] [PubMed]
- Chen, A.Y.; Guan, W.; Lou, S.; Liu, Z.; Kleiboeker, S.; Qiu, J. Role of erythropoietin receptor signaling in parvovirus B19 replication in human erythroid progenitor cells. J. Virol. 2010, 84, 12385–12396. [Google Scholar] [CrossRef] [PubMed]
- Bua, G.; Manaresi, E.; Bonvicini, F.; Gallinella, G. Parvovirus B19 Replication and Expression in Differentiating Erythroid Progenitor Cells. PLoS ONE 2016, 11, e0148547. [Google Scholar] [CrossRef] [PubMed]
- Pillet, S.; Le Guyader, N.; Hofer, T.; NguyenKhac, F.; Koken, M.; Aubin, J.T.; Fichelson, S.; Gassmann, M.; Morinet, F. Hypoxia enhances human B19 erythrovirus gene expression in primary erythroid cells. Virology 2004, 327, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Brown, K.E.; Anderson, S.M.; Young, N.S. Erythrocyte P antigen: Cellular receptor for B19 parvovirus. Science 1993, 262, 114–117. [Google Scholar] [CrossRef] [PubMed]
- Brown, K.E.; Hibbs, J.R.; Gallinella, G.; Anderson, S.M.; Lehman, E.D.; McCarthy, P.; Young, N.S. Resistance to parvovirus B19 infection due to lack of virus receptor (erythrocyte P antigen). N. Engl. J. Med. 1994, 330, 1192–1196. [Google Scholar] [CrossRef]
- Bieri, J.; Ros, C. Globoside Is Dispensable for Parvovirus B19 Entry but Essential at a Postentry Step for Productive Infection. J. Virol. 2019, 93, e00972-19. [Google Scholar] [CrossRef] [PubMed]
- Bieri, J.; Leisi, R.; Bircher, C.; Ros, C. Human parvovirus B19 interacts with globoside under acidic conditions as an essential step in endocytic trafficking. PLoS Pathog. 2021, 17, e1009434. [Google Scholar] [CrossRef]
- Weigel-Kelley, K.A.; Yoder, M.C.; Srivastava, A. Alpha5beta1 integrin as a cellular coreceptor for human parvovirus B19: Requirement of functional activation of beta1 integrin for viral entry. Blood 2003, 102, 3927–3933. [Google Scholar] [CrossRef] [PubMed]
- Leisi, R.; Ruprecht, N.; Kempf, C.; Ros, C. Parvovirus B19 uptake is a highly selective process controlled by VP1u, a novel determinant of viral tropism. J. Virol. 2013, 87, 13161–13167. [Google Scholar] [CrossRef]
- Leisi, R.; Di Tommaso, C.; Kempf, C.; Ros, C. The Receptor-Binding Domain in the VP1u Region of Parvovirus B19. Viruses 2016, 8, 61. [Google Scholar] [CrossRef] [PubMed]
- Leisi, R.; Von Nordheim, M.; Ros, C.; Kempf, C. The VP1u Receptor Restricts Parvovirus B19 Uptake to Permissive Erythroid Cells. Viruses 2016, 8, 265. [Google Scholar] [CrossRef] [PubMed]
- Bonsch, C.; Zuercher, C.; Lieby, P.; Kempf, C.; Ros, C. The globoside receptor triggers structural changes in the B19 virus capsid that facilitate virus internalization. J. Virol. 2010, 84, 11737–11746. [Google Scholar] [CrossRef] [PubMed]
- Ning, K.; Zou, W.; Xu, P.; Cheng, F.; Zhang, E.Y.; Zhang-Chen, A.; Kleiboeker, S.; Qiu, J. Identification of AXL as a co-receptor for human parvovirus B19 infection of human erythroid progenitors. Sci. Adv. 2023, 9, eade0869. [Google Scholar] [CrossRef]
- Gallinella, G.; Manaresi, E.; Zuffi, E.; Venturoli, S.; Bonsi, L.; Bagnara, G.P.; Musiani, M.; Zerbini, M. Different patterns of restriction to B19 parvovirus replication in human blast cell lines. Virology 2000, 278, 361–367. [Google Scholar] [CrossRef]
- Guan, W.; Cheng, F.; Yoto, Y.; Kleiboeker, S.; Wong, S.; Zhi, N.; Pintel, D.J.; Qiu, J. Block to the production of full-length B19 virus transcripts by internal polyadenylation is overcome by replication of the viral genome. J. Virol. 2008, 82, 9951–9963. [Google Scholar] [CrossRef]
- Zou, W.; Wang, Z.; Xiong, M.; Chen, A.Y.; Xu, P.; Ganaie, S.S.; Badawi, Y.; Kleiboeker, S.; Nishimune, H.; Ye, S.Q.; et al. Human Parvovirus B19 Utilizes Cellular DNA Replication Machinery for Viral DNA Replication. J. Virol. 2018, 92, e01881-17. [Google Scholar] [CrossRef] [PubMed]
- Tewary, S.K.; Zhao, H.; Deng, X.; Qiu, J.; Tang, L. The human parvovirus B19 non-structural protein 1 N-terminal domain specifically binds to the origin of replication in the viral DNA. Virology 2014, 449, 297–303. [Google Scholar] [CrossRef] [PubMed]
- Ganaie, S.S.; Zou, W.; Xu, P.; Deng, X.; Kleiboeker, S.; Qiu, J. Phosphorylated STAT5 directly facilitates parvovirus B19 DNA replication in human erythroid progenitors through interaction with the MCM complex. PLoS Pathog. 2017, 13, e1006370. [Google Scholar] [CrossRef]
- Ganaie, S.S.; Chen, A.Y.; Huang, C.; Xu, P.; Kleiboeker, S.; Du, A.; Qiu, J. RNA Binding Protein RBM38 Regulates Expression of the 11-Kilodalton Protein of Parvovirus B19, Which Facilitates Viral DNA Replication. J. Virol. 2018, 92, e02050-17. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Ganaie, S.S.; Cheng, F.; Xu, P.; Ning, K.; Wang, X.; Kleiboeker, S.; Cheng, S.; Qiu, J. RNA Binding Motif Protein RBM45 Regulates Expression of the 11-Kilodalton Protein of Parvovirus B19 through Binding to Novel Intron Splicing Enhancers. mBio 2020, 11, e00192-20. [Google Scholar] [CrossRef] [PubMed]
- Bonvicini, F.; Filippone, C.; Delbarba, S.; Manaresi, E.; Zerbini, M.; Musiani, M.; Gallinella, G. Parvovirus B19 genome as a single, two-state replicative and transcriptional unit. Virology 2006, 347, 447–454. [Google Scholar] [CrossRef]
- Bonvicini, F.; Filippone, C.; Manaresi, E.; Zerbini, M.; Musiani, M.; Gallinella, G. Functional analysis and quantitative determination of the expression profile of human parvovirus B19. Virology 2008, 381, 168–177. [Google Scholar] [CrossRef] [PubMed]
- Xu, P.; Zhou, Z.; Xiong, M.; Zou, W.; Deng, X.; Ganaie, S.S.; Kleiboeker, S.; Peng, J.; Liu, K.; Wang, S.; et al. Parvovirus B19 NS1 protein induces cell cycle arrest at G2-phase by activating the ATR-CDC25C-CDK1 pathway. PLoS Pathog. 2017, 13, e1006266. [Google Scholar] [CrossRef] [PubMed]
- Wan, Z.; Zhi, N.; Wong, S.; Keyvanfar, K.; Liu, D.; Raghavachari, N.; Munson, P.J.; Su, S.; Malide, D.; Kajigaya, S.; et al. Human parvovirus B19 causes cell cycle arrest of human erythroid progenitors via deregulation of the E2F family of transcription factors. J. Clin. Investig. 2010, 120, 3530–3544. [Google Scholar] [CrossRef]
- Morita, E.; Sugamura, K. Human parvovirus B19-induced cell cycle arrest and apoptosis. Semin. Immunopathol. 2002, 24, 187–199. [Google Scholar] [CrossRef]
- Chen, A.Y.; Zhang, E.Y.; Guan, W.; Cheng, F.; Kleiboeker, S.; Yankee, T.M.; Qiu, J. The small 11 kDa nonstructural protein of human parvovirus B19 plays a key role in inducing apoptosis during B19 virus infection of primary erythroid progenitor cells. Blood 2010, 115, 1070–1080. [Google Scholar] [CrossRef]
- Tsitsikas, D.A.; Gallinella, G.; Patel, S.; Seligman, H.; Greaves, P.; Amos, R.J. Bone marrow necrosis and fat embolism syndrome in sickle cell disease: Increased susceptibility of patients with non-SS genotypes and a possible association with human parvovirus B19 infection. Blood Rev. 2014, 28, 23–30. [Google Scholar] [CrossRef]
- Bua, G.; Gallinella, G. How does parvovirus B19 DNA achieve lifelong persistence in human cells? Future Virol. 2017, 12, 549–553. [Google Scholar] [CrossRef]
- Bua, G.; Marrazzo, P.; Manaresi, E.; Gamberini, C.; Bonsi, L.; Alviano, F.; Gallinella, G. Non-Permissive Parvovirus B19 Infection: A Reservoir and Questionable Safety Concern in Mesenchymal Stem Cells. Int. J. Mol. Sci. 2023, 24, 8204. [Google Scholar] [CrossRef] [PubMed]
- Duechting, A.; Tschope, C.; Kaiser, H.; Lamkemeyer, T.; Tanaka, N.; Aberle, S.; Lang, F.; Torresi, J.; Kandolf, R.; Bock, C.T. Human parvovirus B19 NS1 protein modulates inflammatory signaling by activation of STAT3/PIAS3 in human endothelial cells. J. Virol. 2008, 82, 7942–7952. [Google Scholar] [CrossRef]
- Zakrzewska, K.; Cortivo, R.; Tonello, C.; Panfilo, S.; Abatangelo, G.; Giuggioli, D.; Ferri, C.; Corcioli, F.; Azzi, A. Human parvovirus B19 experimental infection in human fibroblasts and endothelial cells cultures. Virus Res. 2005, 114, 1–5. [Google Scholar] [CrossRef]
- Ferri, C.; Giuggioli, D.; Sebastiani, M.; Panfilo, S.; Abatangelo, G.; Zakrzewska, K.; Azzi, A. Parvovirus B19 infection of cultured skin fibroblasts from systemic sclerosis patients: Comment on the article by Ray et al. Arthritis Rheum. 2002, 46, 2262–2263; author reply 2263–2264. [Google Scholar] [CrossRef]
- Pyoria, L.; Toppinen, M.; Mantyla, E.; Hedman, L.; Aaltonen, L.M.; Vihinen-Ranta, M.; Ilmarinen, T.; Soderlund-Venermo, M.; Hedman, K.; Perdomo, M.F. Extinct type of human parvovirus B19 persists in tonsillar B cells. Nat. Commun. 2017, 8, 14930. [Google Scholar] [CrossRef]
- von Kietzell, K.; Pozzuto, T.; Heilbronn, R.; Grossl, T.; Fechner, H.; Weger, S. Antibody-mediated enhancement of parvovirus B19 uptake into endothelial cells mediated by a receptor for complement factor C1q. J. Virol. 2014, 88, 8102–8115. [Google Scholar] [CrossRef] [PubMed]
- Munakata, Y.; Kato, I.; Saito, T.; Kodera, T.; Ishii, K.K.; Sasaki, T. Human parvovirus B19 infection of monocytic cell line U937 and antibody-dependent enhancement. Virology 2006, 345, 251–257. [Google Scholar] [CrossRef] [PubMed]
- Bonvicini, F.; Manaresi, E.; Di Furio, F.; De Falco, L.; Gallinella, G. Parvovirus b19 DNA CpG dinucleotide methylation and epigenetic regulation of viral expression. PLoS ONE 2012, 7, e33316. [Google Scholar] [CrossRef] [PubMed]
- Verdonschot, J.; Hazebroek, M.; Merken, J.; Debing, Y.; Dennert, R.; Brunner-La Rocca, H.P.; Heymans, S. Relevance of cardiac parvovirus B19 in myocarditis and dilated cardiomyopathy: Review of the literature. Eur. J. Heart Fail. 2016, 18, 1430–1441. [Google Scholar] [CrossRef] [PubMed]
- Isa, A.; Lundqvist, A.; Lindblom, A.; Tolfvenstam, T.; Broliden, K. Cytokine responses in acute and persistent human parvovirus B19 infection. Clin. Exp. Immunol. 2007, 147, 419–425. [Google Scholar] [CrossRef] [PubMed]
- Corcoran, A.; Mahon, B.P.; Doyle, S. B cell memory is directed toward conformational epitopes of parvovirus B19 capsid proteins and the unique region of VP1. J. Infect. Dis. 2004, 189, 1873–1880. [Google Scholar] [CrossRef] [PubMed]
- Tolfvenstam, T.; Lundqvist, A.; Levi, M.; Wahren, B.; Broliden, K. Mapping of B-cell epitopes on human parvovirus B19 non-structural and structural proteins. Vaccine 2000, 19, 758–763. [Google Scholar] [CrossRef] [PubMed]
- Musiani, M.; Manaresi, E.; Gallinella, G.; Venturoli, S.; Zuffi, E.; Zerbini, M. Immunoreactivity against linear epitopes of parvovirus B19 structural proteins. Immunodominance of the amino-terminal half of the unique region of VP1. J. Med. Virol. 2000, 60, 347–352. [Google Scholar] [CrossRef]
- Kerr, J.R.; Boyd, N. Autoantibodies following parvovirus B19 infection. J. Infect. 1996, 32, 41–47. [Google Scholar] [CrossRef] [PubMed]
- Lunardi, C.; Tiso, M.; Borgato, L.; Nanni, L.; Millo, R.; De Sandre, G.; Severi, A.B.; Puccetti, A. Chronic parvovirus B19 infection induces the production of anti-virus antibodies with autoantigen binding properties. Eur. J. Immunol. 1998, 28, 936–948. [Google Scholar] [CrossRef]
- White, D.G.; Woolf, A.D.; Mortimer, P.P.; Cohen, B.J.; Blake, D.R.; Bacon, P.A. Human parvovirus arthropathy. Lancet 1985, 1, 419–421. [Google Scholar] [CrossRef]
- Reid, D.M.; Reid, T.M.; Brown, T.; Rennie, J.A.; Eastmond, C.J. Human parvovirus-associated arthritis: A clinical and laboratory description. Lancet 1985, 1, 422–425. [Google Scholar] [CrossRef]
- Miki, N.P.; Chantler, J.K. Non-permissiveness of synovial membrane cells to human parvovirus B19 in vitro. J. Gen. Virol. 1992, 73 Pt 6, 1559–1562. [Google Scholar] [CrossRef] [PubMed]
- Lennerz, C.; Madry, H.; Ehlhardt, S.; Venzke, T.; Zang, K.D.; Mehraein, Y. Parvovirus B19-related chronic monoarthritis: Immunohistochemical detection of virus-positive lymphocytes within the synovial tissue compartment: Two reported cases. Clin. Rheumatol. 2004, 23, 59–62. [Google Scholar] [CrossRef] [PubMed]
- Mehraein, Y.; Lennerz, C.; Ehlhardt, S.; Venzke, T.; Ojak, A.; Remberger, K.; Zang, K.D. Detection of parvovirus B19 capsid proteins in lymphocytic cells in synovial tissue of autoimmune chronic arthritis. Mod. Pathol. 2003, 16, 811–817. [Google Scholar] [CrossRef]
- Ray, N.B.; Nieva, D.R.; Seftor, E.A.; Khalkhali-Ellis, Z.; Naides, S.J. Induction of an invasive phenotype by human parvovirus B19 in normal human synovial fibroblasts. Arthritis Rheum. 2001, 44, 1582–1586. [Google Scholar] [CrossRef]
- Lu, J.; Zhi, N.; Wong, S.; Brown, K.E. Activation of synoviocytes by the secreted phospholipase A2 motif in the VP1-unique region of parvovirus B19 minor capsid protein. J. Infect. Dis. 2006, 193, 582–590. [Google Scholar] [CrossRef] [PubMed]
- Kerr, J.R.; Bracewell, J.; Laing, I.; Mattey, D.L.; Bernstein, R.M.; Bruce, I.N.; Tyrrell, D.A. Chronic fatigue syndrome and arthralgia following parvovirus B19 infection. J. Rheumatol. 2002, 29, 595–602. [Google Scholar] [PubMed]
- Kerr, J.R.; Cunniffe, V.S.; Kelleher, P.; Bernstein, R.M.; Bruce, I.N. Successful intravenous immunoglobulin therapy in 3 cases of parvovirus B19-associated chronic fatigue syndrome. Clin. Infect. Dis. 2003, 36, e100–e106. [Google Scholar] [CrossRef]
- Attard, L.; Bonvicini, F.; Gelsomino, F.; Manfredi, R.; Cascavilla, A.; Viale, P.; Varani, S.; Gallinella, G. Paradoxical response to intravenous immunoglobulin in a case of Parvovirus B19-associated chronic fatigue syndrome. J. Clin. Virol. 2015, 62, 54–57. [Google Scholar] [CrossRef] [PubMed]
- Kerr, J.R. The role of parvovirus B19 in the pathogenesis of autoimmunity and autoimmune disease. J. Clin. Pathol. 2016, 69, 279–291. [Google Scholar] [CrossRef] [PubMed]
- Thomas, G.; Rael, L.; Shimonkevitz, R.; Melamed, I.; Bar-Or, D. Autoantibody reaction to myelin basic protein by plasma parvovirus B19 IgG in MS patients. Protein Pept. Lett. 2006, 13, 109–111. [Google Scholar] [CrossRef] [PubMed]
- Levine, J.S.; Koh, J.S.; Subang, R.; Rauch, J. Apoptotic cells as immunogen and antigen in the antiphospholipid syndrome. Exp. Mol. Pathol. 1999, 66, 82–98. [Google Scholar] [CrossRef]
- Thammasri, K.; Rauhamaki, S.; Wang, L.; Filippou, A.; Kivovich, V.; Marjomaki, V.; Naides, S.J.; Gilbert, L. Human parvovirus B19 induced apoptotic bodies contain altered self-antigens that are phagocytosed by antigen presenting cells. PLoS ONE 2013, 8, e67179. [Google Scholar] [CrossRef] [PubMed]
- Zadori, Z.; Szelei, J.; Lacoste, M.C.; Li, Y.; Gariepy, S.; Raymond, P.; Allaire, M.; Nabi, I.R.; Tijssen, P. A viral phospholipase A2 is required for parvovirus infectivity. Dev. Cell 2001, 1, 291–302. [Google Scholar] [CrossRef] [PubMed]
- Von Landenberg, P.; Lehmann, H.W.; Knoll, A.; Dorsch, S.; Modrow, S. Antiphospholipid antibodies in pediatric and adult patients with rheumatic disease are associated with parvovirus B19 infection. Arthritis Rheum. 2003, 48, 1939–1947. [Google Scholar] [CrossRef]
- Lehmann, H.W.; von Landenberg, P.; Modrow, S. Parvovirus B19 infection and autoimmune disease. Autoimmun. Rev. 2003, 2, 218–223. [Google Scholar] [CrossRef]
- Tzang, B.S.; Tsay, G.J.; Lee, Y.J.; Li, C.; Sun, Y.S.; Hsu, T.C. The association of VP1 unique region protein in acute parvovirus B19 infection and anti-phospholipid antibody production. Clin. Chim. Acta Int. J. Clin. Chem. 2007, 378, 59–65. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.Y.; Tzang, B.S.; Chen, Y.M.; Lan, J.L.; Tsai, C.C.; Hsu, T.C. The association of anti-parvovirus B19-VP1 unique region antibodies with antiphospholipid antibodies in patients with antiphospholipid syndrome. Clin. Chim. Acta Int. J. Clin. Chem. 2010, 411, 1084–1089. [Google Scholar] [CrossRef]
- Steiner, G. Auto-antibodies and autoreactive T-cells in rheumatoid arthritis: Pathogenetic players and diagnostic tools. Clin. Rev. Allergy Immunol. 2007, 32, 23–35. [Google Scholar] [CrossRef]
- Naides, S.J.; Scharosch, L.L.; Foto, F.; Howard, E.J. Rheumatologic manifestations of human parvovirus B19 infection in adults. Initial two-year clinical experience. Arthritis Rheum. 1990, 33, 1297–1309. [Google Scholar] [CrossRef]
- Saal, J.G.; Steidle, M.; Einsele, H.; Müller, C.A.; Fritz, P.; Zacher, J. Persistence of B19 parvovirus in synovial membranes of patients with rheumatoid arthritis. Rheumatology 1992, 12, 147–151. [Google Scholar] [CrossRef]
- Kerr, J.R.; Cartron, J.P.; Curran, M.D.; Moore, J.E.; Elliott, J.R.; Mollan, R.A. A study of the role of parvovirus B19 in rheumatoid arthritis. Br. J. Rheumatol. 1995, 34, 809–813. [Google Scholar] [CrossRef] [PubMed]
- Aboelazm, A.A.; Emam, S.M.; Elolemy, G.G.; Fawzy, R.M. Human Parvovirus B19 Infection in Rheumatoid Arthritis Patients: Screening and Clinical Significance. Egypt. J. Immunol. 2018, 25, 1–10. [Google Scholar] [PubMed]
- Takahashi, Y.; Murai, C.; Shibata, S.; Munakata, Y.; Ishii, T.; Ishii, K.; Saitoh, T.; Sawai, T.; Sugamura, K.; Sasaki, T. Human parvovirus B19 as a causative agent for rheumatoid arthritis. Proc. Natl. Acad. Sci. USA 1998, 95, 8227–8232. [Google Scholar] [CrossRef] [PubMed]
- Takasawa, N.; Munakata, Y.; Ishii, K.K.; Takahashi, Y.; Takahashi, M.; Fu, Y.; Ishii, T.; Fujii, H.; Saito, T.; Takano, H.; et al. Human parvovirus B19 transgenic mice become susceptible to polyarthritis. J. Immunol. 2004, 173, 4675–4683. [Google Scholar] [CrossRef] [PubMed]
- von Poblotzki, A.; Hemauer, A.; Gigler, A.; Puchhammer-Stockl, E.; Heinz, F.X.; Pont, J.; Laczika, K.; Wolf, H.; Modrow, S. Antibodies to the nonstructural protein of parvovirus B19 in persistently infected patients: Implications for pathogenesis. J. Infect. Dis. 1995, 172, 1356–1359. [Google Scholar] [CrossRef]
- Kerr, J.R.; Cunniffe, V.S. Antibodies to parvovirus B19 non-structural protein are associated with chronic but not acute arthritis following B19 infection. Rheumatology 2000, 39, 903–908. [Google Scholar] [CrossRef] [PubMed]
- Kakurina, N.; Kadisa, A.; Lejnieks, A.; Mikazane, H.; Kozireva, S.; Murovska, M. Use of exploratory factor analysis to ascertain the correlation between the activities of rheumatoid arthritis and infection by human parvovirus B19. Medicina 2015, 51, 18–24. [Google Scholar] [CrossRef] [PubMed]
- Naciute, M.; Mieliauskaite, D.; Rugiene, R.; Nikitenkiene, R.; Jancoriene, L.; Mauricas, M.; Nora-Krukle, Z.; Murovska, M.; Girkontaite, I. Frequency and significance of parvovirus B19 infection in patients with rheumatoid arthritis. J. Gen. Virol. 2016, 97, 3302–3312. [Google Scholar] [CrossRef]
- Berntson, L.; Nordal, E.; Fasth, A.; Aalto, K.; Herlin, T.; Nielsen, S.; Rygg, M.; Zak, M.; Rönnelid, J. Anti-type II collagen antibodies, anti-CCP, IgA RF and IgM RF are associated with joint damage, assessed eight years after onset of juvenile idiopathic arthritis (JIA). Pediatr. Rheumatol. Online J. 2014, 12, 22. [Google Scholar] [CrossRef]
- Pouchot, J.; Ouakil, H.; Debin, M.L.; Vinceneux, P. Adult Still’s disease associated with acute human parvovirus B19 infection. Lancet 1993, 341, 1280–1281. [Google Scholar] [CrossRef]
- Gonzalez, B.; Larrañaga, C.; León, O.; Díaz, P.; Miranda, M.; Barría, M.; Gaggero, A. Parvovirus B19 may have a role in the pathogenesis of juvenile idiopathic arthritis. J. Rheumatol. 2007, 34, 1336–1340. [Google Scholar] [PubMed]
- Lehmann, H.W.; Plentz, A.; von Landenberg, P.; Küster, R.M.; Modrow, S. Different patterns of disease manifestations of parvovirus B19-associated reactive juvenile arthritis and the induction of antiphospholipid-antibodies. Clin. Rheumatol. 2008, 27, 333–338. [Google Scholar] [CrossRef] [PubMed]
- Benfaremo, D.; Svegliati, S.; Paolini, C.; Agarbati, S.; Moroncini, G. Systemic Sclerosis: From Pathophysiology to Novel Therapeutic Approaches. Biomedicines 2022, 10, 163. [Google Scholar] [CrossRef] [PubMed]
- Distler, O.; Cozzio, A. Systemic sclerosis and localized scleroderma--current concepts and novel targets for therapy. Semin. Immunopathol. 2016, 38, 87–95. [Google Scholar] [CrossRef] [PubMed]
- Farina, A.; Farina, G.A. Fresh Insights into Disease Etiology and the Role of Microbial Pathogens. Curr. Rheumatol. Rep. 2016, 18, 1. [Google Scholar] [CrossRef] [PubMed]
- Ferri, C.; Longombardo, G.; Azzi, A.; Zakrzewska, K. Parvovirus B19 and systemic sclerosis. Clin. Exp. Rheumatol. 1999, 17, 267–268. [Google Scholar] [CrossRef] [PubMed]
- Ferri, C.; Zakrzewska, K.; Longombardo, G.; Giuggioli, D.; Storino, F.A.; Pasero, G.; Azzi, A. Parvovirus B19 infection of bone marrow in systemic sclerosis patients. Clin. Exp. Rheumatol. 1999, 17, 718–720. [Google Scholar] [PubMed]
- Ohtsuka, T.; Yamazaki, S. Increased prevalence of human parvovirus B19 DNA in systemic sclerosis skin. Br. J. Dermatol. 2004, 150, 1091–1095. [Google Scholar] [CrossRef]
- Zakrzewska, K.; Corcioli, F.; Carlsen, K.M.; Giuggioli, D.; Fanci, R.; Rinieri, A.; Ferri, C.; Azzi, A. Human parvovirus B19 (B19V) infection in systemic sclerosis patients. Intervirology 2009, 52, 279–282. [Google Scholar] [CrossRef]
- Magro, C.M.; Nuovo, G.; Ferri, C.; Crowson, A.N.; Giuggioli, D.; Sebastiani, M. Parvoviral infection of endothelial cells and stromal fibroblasts: A possible pathogenetic role in scleroderma. J. Cutan. Pathol. 2004, 31, 43–50. [Google Scholar] [CrossRef] [PubMed]
- Arvia, R.; Margheri, F.; Stincarelli, M.A.; Laurenzana, A.; Fibbi, G.; Gallinella, G.; Ferri, C.; Del Rosso, M.; Zakrzewska, K. Parvovirus B19 activates in vitro normal human dermal fibroblasts: A possible implication in skin fibrosis and systemic sclerosis. Rheumatology 2020, 59, 3526–3532. [Google Scholar] [CrossRef] [PubMed]
- Schmidt-Lucke, C.; Zobel, T.; Schrepfer, S.; Kuhl, U.; Wang, D.; Klingel, K.; Becher, P.M.; Fechner, H.; Pozzuto, T.; Van Linthout, S.; et al. Impaired Endothelial Regeneration through Human Parvovirus B19-Infected Circulating Angiogenic Cells in Patients with Cardiomyopathy. J. Infect. Dis. 2015, 212, 1070–1081. [Google Scholar] [CrossRef] [PubMed]
- D’Alessio, S.; Fibbi, G.; Cinelli, M.; Guiducci, S.; Del Rosso, A.; Margheri, F.; Serrati, S.; Pucci, M.; Kahaleh, B.; Fan, P.; et al. Matrix metalloproteinase 12-dependent cleavage of urokinase receptor in systemic sclerosis microvascular endothelial cells results in impaired angiogenesis. Arthritis Rheum. 2004, 50, 3275–3285. [Google Scholar] [CrossRef] [PubMed]
- Serrati, S.; Cinelli, M.; Margheri, F.; Guiducci, S.; Del Rosso, A.; Pucci, M.; Fibbi, G.; Bazzichi, L.; Bombardieri, S.; Matucci-Cerinic, M.; et al. Systemic sclerosis fibroblasts inhibit in vitro angiogenesis by MMP-12-dependent cleavage of the endothelial cell urokinase receptor. J. Pathol. 2006, 210, 240–248. [Google Scholar] [CrossRef] [PubMed]
- Arvia, R.; Zakrzewska, K.; Giovannelli, L.; Ristori, S.; Frediani, E.; Del Rosso, M.; Mocali, A.; Stincarelli, M.A.; Laurenzana, A.; Fibbi, G.; et al. Parvovirus B19 (B19V) induces cellular senescence in human dermal fibroblasts: Putative role in SSc-associated fibrosis. Rheumatology 2021, 61, 3864–3874. [Google Scholar] [CrossRef] [PubMed]
- Schafer, M.J.; Haak, A.J.; Tschumperlin, D.J.; LeBrasseur, N.K. Targeting Senescent Cells in Fibrosis: Pathology, Paradox, and Practical Considerations. Curr. Rheumatol. Rep. 2018, 20, 3. [Google Scholar] [CrossRef] [PubMed]
- Herzog, E.L.; Mathur, A.; Tager, A.M.; Feghali-Bostwick, C.; Schneider, F.; Varga, J. Review: Interstitial lung disease associated with systemic sclerosis and idiopathic pulmonary fibrosis: How similar and distinct? Arthritis Rheumatol. 2014, 66, 1967–1978. [Google Scholar] [CrossRef] [PubMed]
- Strickland, G.; Pauling, J.; Cavill, C.; Shaddick, G.; McHugh, N. Mortality in systemic sclerosis-a single centre study from the UK. Clin. Rheumatol. 2013, 32, 1533–1539. [Google Scholar] [CrossRef]
- Dumit, V.I.; Kuttner, V.; Kappler, J.; Piera-Velazquez, S.; Jimenez, S.A.; Bruckner-Tuderman, L.; Uitto, J.; Dengjel, J. Altered MCM protein levels and autophagic flux in aged and systemic sclerosis dermal fibroblasts. J. Investig. Dermatol. 2014, 134, 2321–2330. [Google Scholar] [CrossRef] [PubMed]
- Fu, Y.; Ishii, K.K.; Munakata, Y.; Saitoh, T.; Kaku, M.; Sasaki, T. Regulation of tumor necrosis factor alpha promoter by human parvovirus B19 NS1 through activation of AP-1 and AP-2. J. Virol. 2002, 76, 5395–5403. [Google Scholar] [CrossRef]
- Chen, D.Y.; Chen, Y.M.; Chen, H.H.; Hsieh, C.W.; Gung, N.R.; Hung, W.T.; Tzang, B.S.; Hsu, T.C. Human parvovirus B19 nonstructural protein NS1 activates NLRP3 inflammasome signaling in adult-onset Still’s disease. Mol. Med. Rep. 2018, 17, 3364–3371. [Google Scholar] [CrossRef] [PubMed]
- Reggiani, A.; Avati, A.; Valenti, F.; Fasano, E.; Bua, G.; Manaresi, E.; Gallinella, G. A Functional Minigenome of Parvovirus B19. Viruses 2022, 14, 84. [Google Scholar] [CrossRef] [PubMed]
- Schmidt-Lucke, C.; Zobel, T.; Escher, F.; Tschope, C.; Lassner, D.; Kuhl, U.; Gubbe, K.; Volk, H.D.; Schultheiss, H.P. Human Parvovirus B19 (B19V) Up-regulates CXCR4 Surface Expression of Circulating Angiogenic Cells: Implications for Cardiac Ischemia in B19V Cardiomyopathy. J. Infect. Dis. 2018, 217, 456–465. [Google Scholar] [CrossRef] [PubMed]
- Zobel, T.; Bock, C.T.; Kuhl, U.; Rohde, M.; Lassner, D.; Schultheiss, H.P.; Schmidt-Lucke, C. Telbivudine Reduces Parvovirus B19-Induced Apoptosis in Circulating Angiogenic Cells. Viruses 2019, 11, 227. [Google Scholar] [CrossRef] [PubMed]
- O’Reilly, S. Toll Like Receptors in systemic sclerosis: An emerging target. Immunol. Lett. 2018, 195, 2–8. [Google Scholar] [CrossRef] [PubMed]
- Duan, H.; Fleming, J.; Pritchard, D.K.; Amon, L.M.; Xue, J.; Arnett, H.A.; Chen, G.; Breen, P.; Buckner, J.H.; Molitor, J.A.; et al. Combined analysis of monocyte and lymphocyte messenger RNA expression with serum protein profiles in patients with scleroderma. Arthritis Rheum. 2008, 58, 1465–1474. [Google Scholar] [CrossRef] [PubMed]
- Dantas, A.T.; Almeida, A.R.; Sampaio, M.; Cordeiro, M.F.; Oliveira, P.S.S.; Mariz, H.A.; Pereira, M.C.; Rego, M.; Pitta, I.D.R.; Duarte, A.; et al. Different profile of cytokine production in patients with systemic sclerosis and association with clinical manifestations. Immunol. Lett. 2018, 198, 12–16. [Google Scholar] [CrossRef] [PubMed]
- Gasse, P.; Mary, C.; Guenon, I.; Noulin, N.; Charron, S.; Schnyder-Candrian, S.; Schnyder, B.; Akira, S.; Quesniaux, V.F.; Lagente, V.; et al. IL-1R1/MyD88 signaling and the inflammasome are essential in pulmonary inflammation and fibrosis in mice. J. Clin. Investig. 2007, 117, 3786–3799. [Google Scholar] [CrossRef]
- Zhang, W.J.; Fang, Z.M.; Liu, W.Q. NLRP3 inflammasome activation from Kupffer cells is involved in liver fibrosis of Schistosoma japonicum-infected mice via NF-kappaB. Parasit Vectors 2019, 12, 29. [Google Scholar] [CrossRef] [PubMed]
- Artlett, C.M.; Sassi-Gaha, S.; Rieger, J.L.; Boesteanu, A.C.; Feghali-Bostwick, C.A.; Katsikis, P.D. The inflammasome activating caspase 1 mediates fibrosis and myofibroblast differentiation in systemic sclerosis. Arthritis Rheum. 2011, 63, 3563–3574. [Google Scholar] [CrossRef]
- Muruve, D.A.; Petrilli, V.; Zaiss, A.K.; White, L.R.; Clark, S.A.; Ross, P.J.; Parks, R.J.; Tschopp, J. The inflammasome recognizes cytosolic microbial and host DNA and triggers an innate immune response. Nature 2008, 452, 103–107. [Google Scholar] [CrossRef] [PubMed]
- Delaloye, J.; Roger, T.; Steiner-Tardivel, Q.G.; Le Roy, D.; Knaup Reymond, M.; Akira, S.; Petrilli, V.; Gomez, C.E.; Perdiguero, B.; Tschopp, J.; et al. Innate immune sensing of modified vaccinia virus Ankara (MVA) is mediated by TLR2-TLR6, MDA-5 and the NALP3 inflammasome. PLoS Pathog. 2009, 5, e1000480. [Google Scholar] [CrossRef] [PubMed]
- Ichinohe, T.; Pang, I.K.; Iwasaki, A. Influenza virus activates inflammasomes via its intracellular M2 ion channel. Nat. Immunol. 2010, 11, 404–410. [Google Scholar] [CrossRef] [PubMed]
- Zakrzewska, K.; Arvia, R.; Torcia, M.G.; Clemente, A.M.; Tanturli, M.; Castronovo, G.; Sighinolfi, G.; Giuggioli, D.; Ferri, C. Effects of Parvovirus B19 In Vitro Infection on Monocytes from Patients with Systemic Sclerosis: Enhanced Inflammatory Pathways by Caspase-1 Activation and Cytokine Production. J. Investig. Dermatol. 2019, 139, 2125–2133.e2121. [Google Scholar] [CrossRef] [PubMed]
- Pozzuto, T.; von Kietzell, K.; Bock, T.; Schmidt-Lucke, C.; Poller, W.; Zobel, T.; Lassner, D.; Zeichhardt, H.; Weger, S.; Fechner, H. Transactivation of human parvovirus B19 gene expression in endothelial cells by adenoviral helper functions. Virology 2011, 411, 50–64. [Google Scholar] [CrossRef] [PubMed]
- Bock, C.T.; Duchting, A.; Utta, F.; Brunner, E.; Sy, B.T.; Klingel, K.; Lang, F.; Gawaz, M.; Felix, S.B.; Kandolf, R. Molecular phenotypes of human parvovirus B19 in patients with myocarditis. World J. Cardiol. 2014, 6, 183–195. [Google Scholar] [CrossRef] [PubMed]
- Kaul, A.; Gordon, C.; Crow, M.K.; Touma, Z.; Urowitz, M.B.; van Vollenhoven, R.; Ruiz-Irastorza, G.; Hughes, G. Systemic lupus erythematosus. Nat. Rev. Dis. Primers 2016, 2, 16039. [Google Scholar] [CrossRef]
- Pan, Q.; Liu, Z.; Liao, S.; Ye, L.; Lu, X.; Chen, X.; Li, Z.; Li, X.; Xu, Y.Z.; Liu, H. Current mechanistic insights into the role of infection in systemic lupus erythematosus. Biomed. Pharmacother. 2019, 117, 109122. [Google Scholar] [CrossRef]
- Trapani, S.; Ermini, M.; Falcini, F. Human parvovirus B19 infection: Its relationship with systemic lupus erythematosus. Semin. Arthritis Rheum. 1999, 28, 319–325. [Google Scholar] [CrossRef] [PubMed]
- Chassagne, P.; Mejjad, O.; Gourmelen, O.; Moore, N.; Le Loet, X.; Deshayes, P. Exacerbation of systemic lupus erythematosus during human parvovirus B19 infection. Br. J. Rheumatol. 1993, 32, 158–159. [Google Scholar] [CrossRef]
- Hemauer, A.; Beckenlehner, K.; Wolf, H.; Lang, B.; Modrow, S. Acute parvovirus B19 infection in connection with a flare of systemic lupus erythematodes in a female patient. J. Clin. Virol. 1999, 14, 73–77. [Google Scholar] [CrossRef] [PubMed]
- Severin, M.C.; Levy, Y.; Shoenfeld, Y. Systemic lupus erythematosus and parvovirus B19: Casual coincidence or causative culprit? Clin. Rev. Allergy Immunol. 2003, 25, 41–48. [Google Scholar] [CrossRef] [PubMed]
- Aslanidis, S.; Pyrpasopoulou, A.; Kontotasios, K.; Doumas, S.; Zamboulis, C. Parvovirus B19 infection and systemic lupus erythematosus: Activation of an aberrant pathway? Eur. J. Intern. Med. 2008, 19, 314–318. [Google Scholar] [CrossRef] [PubMed]
- Page, C.; Francois, C.; Goeb, V.; Duverlie, G. Human parvovirus B19 and autoimmune diseases. Review of the literature and pathophysiological hypotheses. J. Clin. Virol. 2015, 72, 69–74. [Google Scholar] [CrossRef]
- Morey, A.L.; Ferguson, D.J.; Fleming, K.A. Ultrastructural features of fetal erythroid precursors infected with parvovirus B19 in vitro: Evidence of cell death by apoptosis. J. Pathol. 1993, 169, 213–220. [Google Scholar] [CrossRef]
- Kerr, J.R.; Barah, F.; Mattey, D.L.; Laing, I.; Hopkins, S.J.; Hutchinson, I.V.; Tyrrell, D.A.J. Circulating tumour necrosis factor-alpha and interferon-gamma are detectable during acute and convalescent parvovirus B19 infection and are associated with prolonged and chronic fatigue. J. Gen. Virol. 2001, 82, 3011–3019. [Google Scholar] [CrossRef]
- Petri, M. Antiphospholipid syndrome. Transl. Res. 2020, 225, 70–81. [Google Scholar] [CrossRef]
- Hod, T.; Zandman-Goddard, G.; Langevitz, P.; Rudnic, H.; Grossman, Z.; Rotman-Pikielny, P.; Levy, Y. Does parvovirus infection have a role in systemic lupus erythematosus? Immunol. Res. 2017, 65, 447–453. [Google Scholar] [CrossRef]
- Lin, C.Y.; Chiu, C.C.; Cheng, J.; Lin, C.Y.; Shi, Y.F.; Tsai, C.C.; Tzang, B.S.; Hsu, T.C. Antigenicity analysis of human parvovirus B19-VP1u protein in the induction of anti-phospholipid syndrome. Virulence 2018, 9, 208–216. [Google Scholar] [CrossRef]
- Chen, D.Y.; Chen, Y.M.; Tzang, B.S.; Lan, J.L.; Hsu, T.C. Th17-related cytokines in systemic lupus erythematosus patients with dilated cardiomyopathies: A possible linkage to parvovirus B19 infection. PLoS ONE 2014, 9, e113889. [Google Scholar] [CrossRef] [PubMed]
- Wiik, A. Autoantibodies in vasculitis. Arthritis Res. Ther. 2003, 5, 147–152. [Google Scholar] [CrossRef] [PubMed]
- Nigro, G.; Zerbini, M.; Krzysztofiak, A.; Gentilomi, G.; Porcaro, M.A.; Mango, T.; Musiani, M. Active or recent parvovirus B19 infection in children with Kawasaki disease. Lancet 1994, 343, 1260–1261. [Google Scholar] [CrossRef] [PubMed]
- Yoto, Y.; Kudoh, T.; Haseyama, K.; Suzuki, N.; Chiba, S.; Matsunaga, Y. Human parvovirus B19 infection in Kawasaki disease. Lancet 1994, 344, 58–59. [Google Scholar] [CrossRef] [PubMed]
- Chua, P.K.; Nerurkar, V.R.; Yu, Q.; Woodward, C.L.; Melish, M.E.; Yanagihara, R. Lack of association between Kawasaki syndrome and infection with parvovirus B19, human herpesvirus 8, TT virus, GB virus C/hepatitis G virus or Chlamydia pneumoniae. Pediatr. Infect. Dis. J. 2000, 19, 477–479. [Google Scholar] [CrossRef] [PubMed]
- Bowles, N.E.; Hirono, K.; Yu, X.; Ichida, F. Absence of parvoviral genomes in endothelial cells of Kawasaki disease patients with coronary artery lesions. Pediatr. Infect. Dis. J. 2009, 28, 345. [Google Scholar] [CrossRef]
- Cioc, A.M.; Sedmak, D.D.; Nuovo, G.J.; Dawood, M.R.; Smart, G.; Magro, C.M. Parvovirus B19 associated adult Henoch Schönlein purpura. J. Cutan. Pathol. 2002, 29, 602–607. [Google Scholar] [CrossRef] [PubMed]
- Heegaard, E.D.; Taaning, E.B. Parvovirus B19 and parvovirus V9 are not associated with Henoch-Schonlein purpura in children. Pediatr. Infect. Dis. J. 2002, 21, 31–34. [Google Scholar] [CrossRef] [PubMed]
- Viguier, M.; Guillevin, L.; Laroche, L. Treatment of parvovirus-associated polyarteritis nodosa with intravenous immune globulin. N. Engl. J. Med. 2001, 344, 1481–1482. [Google Scholar] [CrossRef] [PubMed]
- Sachetto, Z.; Costa, S.C.; Andrade, P.D.; Conde, R.A.; Amstalden, E.M.; Samara, A.M.; Fernandes, S.R. No evidence of parvovirus B19 in tissue samples from patients with polyarteritis nodosa and microscopic polyangiitis as assessed by the polymerase chain reaction. Ann. Rheum. Dis. 2006, 65, 418–420. [Google Scholar] [CrossRef]
- Baskan, E.B.; Yilmaz, E.; Saricaoglu, H.; Alkan, G.; Ercan, I.; Mistik, R.; Adim, S.B.; Goral, G.; Dilek, K.; Tunali, S. Detection of parvovirus B19 DNA in the lesional skin of patients with Behcet’s disease. Clin. Exp. Dermatol. 2007, 32, 186–190. [Google Scholar] [CrossRef]
- Habibagahi, M.; Habibagahi, Z.; Saidmardani, S.M.; Sadeghian, F. No Definite Association between Human Parvovirus B19 Infection and Behcet Disease. Iran J Med Sci. 2015, 40, 493–500. [Google Scholar] [PubMed]
- Nikkari, S.; Mertsola, J.; Korvenranta, H.; Vainionpää, R.; Toivanen, P. Wegener’s granulomatosis and parvovirus B19 infection. Arthritis Rheum. 1994, 37, 1707–1708. [Google Scholar] [CrossRef] [PubMed]
- Eden, A.; Mahr, A.; Servant, A.; Radjef, N.; Amard, S.; Mouthon, L.; Garbarg-Chenon, A.; Guillevin, L. Lack of association between B19 or V9 erythrovirus infection and ANCA-positive vasculitides: A case-control study. Rheumatology 2003, 42, 660–664. [Google Scholar] [CrossRef]
- Gallinella, G. The clinical use of parvovirus B19 assays: Recent advances. Expert Rev. Mol. Diagn. 2018, 18, 821–832. [Google Scholar] [CrossRef] [PubMed]
- Manaresi, E.; Gallinella, G. Advances in the Development of Antiviral Strategies against Parvovirus B19. Viruses 2019, 11, 659. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.; Jia, C.; Wu, J.; Zhang, J.; Jiang, Z.; Ma, K. Towards the Antiviral Agents and Nanotechnology-Enabled Approaches Against Parvovirus B19. Front. Cell Infect. Microbiol. 2022, 12, 916012. [Google Scholar] [CrossRef]
Category | Frequent | Sporadic |
---|---|---|
Hematological | Transient anemia Aplastic crisis Chronic anemia Chronic Pure Red Cell Aplasia | Bone marrow necrosis and fat embolism Myelodysplastic syndrome Thrombocytopenia/Granulocytopenia Pancytopenia Idiopathic thrombocytopenic purpura Hemophagocytic lymphohistiocytosis |
Systemic/Rheumatological disease | Aspecific febrile illness Mono or polyarthritis Chronic arthralgias | Chronic fatigue syndrome Vasculitis Scleroderma Systemic lupus erythematosus Rheumatoid arthritis Juvenile idiopathic arthritis |
Specific tissue/organ disease | Erythema infectiosum | Petechial purpura Papular purpuric gloves and socks syndrome Acute myocarditis/pericarditis Chronic inflammatory myocarditis Myositis Hepatitis Glomerulonephritis Meningitis/Encephalitis Peripheral neuropathy |
Infection in pregnancy | Intrauterine infection Fetal anemia Fetal hydrops Fetal death | Mirror syndrome Meconium peritonitis Fetal malformations Congenital anemia |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arvia, R.; Stincarelli, M.A.; Manaresi, E.; Gallinella, G.; Zakrzewska, K. Parvovirus B19 in Rheumatic Diseases. Microorganisms 2024, 12, 1708. https://doi.org/10.3390/microorganisms12081708
Arvia R, Stincarelli MA, Manaresi E, Gallinella G, Zakrzewska K. Parvovirus B19 in Rheumatic Diseases. Microorganisms. 2024; 12(8):1708. https://doi.org/10.3390/microorganisms12081708
Chicago/Turabian StyleArvia, Rosaria, Maria A. Stincarelli, Elisabetta Manaresi, Giorgio Gallinella, and Krystyna Zakrzewska. 2024. "Parvovirus B19 in Rheumatic Diseases" Microorganisms 12, no. 8: 1708. https://doi.org/10.3390/microorganisms12081708
APA StyleArvia, R., Stincarelli, M. A., Manaresi, E., Gallinella, G., & Zakrzewska, K. (2024). Parvovirus B19 in Rheumatic Diseases. Microorganisms, 12(8), 1708. https://doi.org/10.3390/microorganisms12081708