Composition and Diversity of Gut Bacterial Community in Different Life Stages of Osmia excavata Alfken (Hymenoptera: Megachilidae)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Insects
2.2. DNA Extraction and PCR Amplification of 16S rDNA
2.3. Bioinformatics Analysis
3. Results
3.1. Characteristics of the Sequencing Data
3.2. Composition of Intestinal Microbiota
3.3. Formatting of Mathematical Components
3.3.1. Alpha Diversity Analysis
3.3.2. Beta Diversity Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, B.; Du, K.; Sun, C.; Vimalanathan, A.; Liang, X.; Li, Y.; Wang, B.; Lu, X.; Li, L.; Shao, Y. Gut bacterial and fungal communities of the domesticated silkworm (Bombyx mori) and wild mulberry-feeding relatives. ISME J. 2018, 12, 2252–2262. [Google Scholar] [CrossRef] [PubMed]
- Xie, S.; Lan, Y.; Sun, C.; Shao, Y. Insect microbial symbionts as a novel source for biotechnology. World J. Microbiol. Biotechnol. 2019, 35, 25. [Google Scholar] [CrossRef] [PubMed]
- Kaltenpoth, M.; Florez, L.V. Versatile and Dynamic Symbioses between Insects and Burkholderia Bacteria. Annu. Rev. Entomol. 2020, 65, 145–170. [Google Scholar] [CrossRef] [PubMed]
- Lee, W.J.; Hase, K. Gut microbiota-generated metabolites in animal health and disease. Nat. Chem. Biol. 2014, 10, 416–424. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Chang, L.; Xu, K.; Zhang, S.; Gao, F.; Fan, Y. Research Progresses on the Function and Detection Methods of Insect Gut Microbes. Microorganisms 2023, 11, 1208. [Google Scholar] [CrossRef] [PubMed]
- Suenami, S.; Koto, A.; Miyazaki, R. Basic Structures of Gut Bacterial Communities in Eusocial Insects. Insects 2023, 14, 444. [Google Scholar] [CrossRef] [PubMed]
- Zheng, H.; Powell, J.E.; Steele, M.I.; Dietrich, C.; Moran, N.A. Honeybee gut microbiota promotes host weight gain via bacterial metabolism and hormonal signaling. Proc. Natl. Acad. Sci. USA 2017, 114, 4775–4780. [Google Scholar] [CrossRef] [PubMed]
- Su, L.J.; Liu, H.; Li, Y.; Zhang, H.F.; Chen, M.; Gao, X.H.; Wang, F.Q.; Song, A.D. Cellulolytic activity and structure of symbiotic bacteria in locust guts. Genet. Mol. Res. 2014, 13, 7926–7936. [Google Scholar] [CrossRef] [PubMed]
- Shao, Y.; Chen, B.; Sun, C.; Ishida, K.; Hertweck, C.; Boland, W. Symbiont-Derived Antimicrobials Contribute to the Control of the Lepidopteran Gut Microbiota. Cell Chem. Biol. 2017, 24, 66–75. [Google Scholar] [CrossRef]
- Chen, B.; Zhang, N.; Xie, S.; Zhang, X.; He, J.; Muhammad, A.; Sun, C.; Lu, X.; Shao, Y. Gut bacteria of the silkworm Bombyx mori facilitate host resistance against the toxic effects of organophosphate insecticides. Environ. Int. 2020, 143, 105886. [Google Scholar] [CrossRef]
- Philipp, E.; Nancy, A.M. The gut microbiota of insects—Diversity in structure and function. FEMS Microbiol. Rev. 2013, 37, 699–735. [Google Scholar] [CrossRef]
- Hammer, T.J.; Moran, N.A. Links between metamorphosis and symbiosis in holometabolous insects. Philos. Trans. R. Soc. Lond B Biol. Sci. 2019, 374, 20190068. [Google Scholar] [CrossRef] [PubMed]
- Moll, R.M.; Romoser, W.S.; Modrzakowski, M.C.; Moncayo, A.C.; Lerdthusnee, K. Meconial peritrophic membranes and the fate of midgut bacteria during mosquito (Diptera: Culicidae) metamorphosis. J. Med. Entomol. 2001, 38, 29–32. [Google Scholar] [CrossRef] [PubMed]
- Hongoh, Y.; Deevong, P.; Inoue, T.; Moriya, S.; Trakulnaleamsai, S.; Ohkuma, M.; Vongkaluang, C.; Noparatnaraporn, N.; Kudo, T. Intra- and interspecific comparisons of bacterial diversity and community structure support coevolution of gut microbiota and termite host. Appl. Environ. Microbiol. 2005, 71, 6590–6599. [Google Scholar] [CrossRef] [PubMed]
- Martinson, V.G.; Moy, J.; Moran, N.A. Establishment of characteristic gut bacteria during development of the honeybee worker. Appl. Environ. Microbiol. 2012, 78, 2830–2840. [Google Scholar] [CrossRef] [PubMed]
- Powell, J.E.; Martinson, V.G.; Urban-Mead, K.; Moran, N.A. Routes of Acquisition of the Gut Microbiota of the Honey Bee Apis mellifera. Appl. Environ. Microbiol. 2014, 80, 7378–7387. [Google Scholar] [CrossRef] [PubMed]
- Kwong, W.K.; Moran, N.A. Gut microbial communities of social bees. Nat. Rev. Microbiol. 2016, 14, 374–384. [Google Scholar] [CrossRef] [PubMed]
- Moran, N.A.; Hansen, A.K.; Powell, J.E.; Sabree, Z.L. Distinctive gut microbiota of honey bees assessed using deep sampling from individual worker bees. PLoS ONE 2012, 7, e36393. [Google Scholar] [CrossRef] [PubMed]
- Zheng, H.; Steele, M.I.; Leonard, S.P.; Motta, E.V.S.; Moran, N.A. Honey bees as models for gut microbiota research. Lab Anim. 2018, 47, 317–325. [Google Scholar] [CrossRef]
- Shapira, M. Gut Microbiotas and Host Evolution: Scaling Up Symbiosis. Trends Ecol. Evol. 2016, 31, 539–549. [Google Scholar] [CrossRef]
- Kueneman, J.G.; Gillung, J.; Van Dyke, M.T.; Fordyce, R.F.; Danforth, B.N. Solitary bee larvae modify bacterial diversity of pollen provisions in the stem-nesting bee, Osmia cornifrons (Megachilidae). Front. Microbiol. 2023, 13, 1057626. [Google Scholar] [CrossRef] [PubMed]
- Men, X.; Li, L.; Lu, Z.; Ouyang, F.; Liu, L.; Xu, H.; Yu, Y. Biological characteristics and pollination service function of Maxon bee. Chin. J. Appl. Entomol. 2018, 55, 973–983. [Google Scholar] [CrossRef]
- Cao, Y.; Zhou, X.; Ye, B.; Li, L.; Lu, Z.; Xu, H.; Li, W.; Yu, Y.; Men, X. Analysis on the restrictive factors of the population of Odontocheilus chinensis in apple orchard of Shandong Province. Chin. J. Appl. Entomol. 2017, 54, 652–659. [Google Scholar]
- Liu, L.; Li, L.; Ouyang, F.; Li, C.; Yu, Y.; Qu, C.; Qu, Z.; Ye, B.; Men, X. Fruit-Setting, Yield Increase and Economic Value Evaluation for Cherry Pollination by Osmia excavata Alfken in Shandong Province. Shandong Agric. Sci. 2019, 51, 125–128. [Google Scholar] [CrossRef]
- Wei, S.G.; Wang, R.; Smirle, M.J.; Xu, H.L. Release of Osmia excavata and Osmia jacoti (Hymenoptera: Megachilidae) for apple pollination. Can. Entomol. 2002, 134, 369–380. [Google Scholar] [CrossRef]
- Lu, H.; Dou, F.; Hao, Y.; Li, Y.; Zhang, K.; Zhang, H.; Zhou, Z.; Zhu, C.; Huang, D.; Luo, A. Metabarcoding analysis of pollen species foraged by Osmia excavata Alfken (Hymenoptera: Megachilidae) in China. Front. Ecol. Evol. 2021, 9, 730549. [Google Scholar] [CrossRef]
- Yan, Z.; Wang, L.; Reddy, G.V.P.; Gu, S.; Men, X.; Xiao, Y.; Su, J.; Ge, F.; Ouyang, F. The Supercooling Responses of the Solitary Bee Osmia excavata (Hymenoptera: Megachilidae) under the Biological Stress of Its Brood Parasite, Sapyga coma (Hymenoptera: Sapygidae). Insects 2022, 13, 235. [Google Scholar] [CrossRef] [PubMed]
- Dou, F.Y.; Li, H.Y.; Song, H.Y.; Kou, R.M.; Zhou, Z.Y.; Luo, A.R.; Huang, D.Y. Nesting biology of Osmia excavata Alfken(Hymenoptera: Megachilidae). J. Environ. Entomol. 2022, 44, 184–193. [Google Scholar] [CrossRef]
- Liu, W.; Li, Y.; Lu, H.; Hao, Y.; Zhang, K.; Dang, X.; Fan, X.; Zhang, H.; Zhou, Z.; Zhu, C.; et al. Diversity of Bacterial Communities Associated with Solitary Bee Osmia excavata Alfken (Hymenoptera: Megachilidae). Appl. Sci. 2023, 13, 1524. [Google Scholar] [CrossRef]
- Barbour, A.B.; Montgomery, M.L.; Adamson, A.A.; Díaz-Ferguson, E.; Silliman, B.R. Mangrove use by the invasive lionfish Pterois volitans. Mar. Ecol. Prog. Ser. 2010, 401, 291–294. [Google Scholar] [CrossRef]
- Magoč, T.; Salzberg, S.L. FLASH: Fast length adjustment of short reads to improve genome assemblies. Bioinformatics 2011, 27, 2957–2963. [Google Scholar] [CrossRef] [PubMed]
- Bokulich, N.A.; Subramanian, S.; Faith, J.J.; Gevers, D.; Gordon, J.I.; Knight, R.; Mills, D.A.; Caporaso, J.G. Quality-filtering vastly improves diversity estimates from Illumina amplicon sequencing. Nat. Methods 2013, 10, 57–59. [Google Scholar] [CrossRef] [PubMed]
- Edgar, R.C.; Haas, B.J.; Clemente, J.C.; Quince, C.; Knight, R. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 2011, 27, 2194–2200. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Guo, H.; Gao, X.; Wang, J. The Intratumor Microbiota Signatures Associate with Subtype, Tumor Stage, and Survival Status of Esophageal Carcinoma. Front. Oncol. 2021, 27, 754788. [Google Scholar] [CrossRef]
- Xiang, X.; Zhang, F.; Fu, R.; Yan, S.; Zhou, L. Significant differences in bacterial and potentially pathogenic communities between sympatric hooded crane and greater white-fronted goose. Front. Microbiol. 2019, 10, 163. [Google Scholar] [CrossRef] [PubMed]
- Rubin, B.E.R.; Sanders, J.G.; Turner, K.M.; Pierce, N.E.; Kocher, S.D. Social behaviour in bees influences the abundance of Sodalis (Enterobacteriaceae) symbionts. R. Soc. Open Sci. 2018, 11, 180369. [Google Scholar] [CrossRef] [PubMed]
- Dale, C.; Welburn, S.C. The endosymbionts of tsetse flies: Manipulating host-parasite interactions. Int. J. Parasitol. 2001, 1, 628–631. [Google Scholar] [CrossRef]
- McFrederick, Q.S.; Mueller, U.G.; James, R.R. Interactions between fungi and bacteria influence microbial community structure in the Megachile rotundata larval gut. Proc. R. Soc. Biol. Sci. 2014, 281, 20132653. [Google Scholar] [CrossRef] [PubMed]
- Hu, C.; Rzymski, P. Non-Photosynthetic Melainabacteria (Cyanobacteria) in Human Gut: Characteristics and Association with Health. Life 2022, 25, 476. [Google Scholar] [CrossRef]
- Zang, J.; Xu, Y.; Xia, W.; Yu, D.; Gao, P.; Jiang, Q.; Yang, F. Dynamics and diversity of microbial community succession during fermentation of Suan yu, a Chinese traditional fermented fish, determined by high throughput sequencing. Food. Res. Int. 2018, 111, 565–573. [Google Scholar] [CrossRef]
- Huang, S.; Sheng, P.; Zhang, H. Isolation and identification of cellulolytic bacteria from the gut of Holotrichia parallela larvae (Coleoptera: Scarabaeidae). Int. J. Mol. Sci. 2012, 13, 2563–2577. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Lu, M.; Xu, D.; Chen, L.; Sun, J. Sexual variation of bacterial microbiota of Dendroctonus valens guts and frass in relation to verbenone production. J. Insect Physiol. 2016, 95, 110–117. [Google Scholar] [CrossRef] [PubMed]
- Briones-Roblero, C.I.; Hernández-García, J.A.; Gonzalez-Escobedo, R.; Soto-Robles, L.V.; Rivera-Orduña, F.N.; Zúñiga, G. Structure and dynamics of the gut bacterial microbiota of the bark beetle, Dendroctonus rhizophagus (Curculionidae: Scolytinae) across their life stages. PLoS ONE 2017, 12, e0175470. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Xiang, X.; Wan, X. Divergence in Gut Bacterial Community Among Life Stages of the Rainbow Stag Beetle Phalacrognathus muelleri (Coleoptera: Lucanidae). Insects 2020, 11, 719. [Google Scholar] [CrossRef] [PubMed]
- Gutierrez, C.; Somoskovi, A. Human Pathogenic Mycobacteria. Ref. Modul. Biomed. Sci. 2014. [Google Scholar] [CrossRef]
- Martha, G.; Stephen, L.B.; Brenda, J.L. Microbial flora of the larval provisions of the solitary bees, Centris pallida and Anthophora sp. Apidologie 1984, 15, 1–10. [Google Scholar] [CrossRef]
- Zhang, Z.; Jiao, S.; Li, X.; Li, M. Bacterial and fungal gut communities of Agrilus mali at different developmental stages and fed different diets. Sci. Rep. 2018, 8, 15634. [Google Scholar] [CrossRef] [PubMed]
- Yun, J.H.; Roh, S.W.; Whon, T.W.; Jung, M.J.; Kim, M.S.; Park, D.S.; Yoon, C.; Nam, Y.D.; Kim, Y.J.; Choi, J.H.; et al. Insect gut bacterial diversity determined by environmental habitat, diet, developmental stage, and phylogeny of host. Appl. Environ. Microbiol. 2014, 80, 5254–5264. [Google Scholar] [CrossRef] [PubMed]
- Engel, P.; Martinson, V.G.; Moran, N.A. Functional diversity within the simple gut microbiota of the honey bee. Proc. Natl. Acad Sci. USA 2012, 109, 11002–11007. [Google Scholar] [CrossRef] [PubMed]
- Michener, C.D. The Social Behavior of the Bees: A Comparative Study; Harvard University Press: Cambridge, MA, USA, 1974. [Google Scholar] [CrossRef]
Sample | Raw Reads | Valid Reads | No. of ASV | No. of Taxa | ||||
---|---|---|---|---|---|---|---|---|
Phylum | Class | Order | Family | Genus | ||||
Egg. 1 | 92119 | 78673 | 305 | 12 | 19 | 40 | 71 | 122 |
Egg. 2 | 95943 | 83567 | 447 | 13 | 21 | 56 | 112 | 182 |
Egg. 3 | 92388 | 76185 | 513 | 18 | 25 | 64 | 115 | 178 |
Egg. 4 | 96365 | 81838 | 399 | 27 | 43 | 75 | 115 | 173 |
Egg. 5 | 91832 | 75047 | 418 | 24 | 30 | 49 | 71 | 67 |
Larva. Y1 | 87118 | 82088 | 47 | 2 | 2 | 2 | 2 | 2 |
Larva. Y2 | 84499 | 80444 | 136 | 15 | 20 | 41 | 53 | 68 |
Larva. Y3 | 80427 | 74899 | 179 | 13 | 20 | 38 | 52 | 73 |
Larva. Y4 | 77534 | 64460 | 75 | 10 | 16 | 24 | 35 | 37 |
Larva. Y5 | 83092 | 56875 | 215 | 13 | 20 | 44 | 62 | 89 |
Larva. O1 | 75106 | 71895 | 191 | 10 | 16 | 24 | 29 | 32 |
Larva. O2 | 84323 | 75774 | 190 | 9 | 13 | 26 | 33 | 44 |
Larva. O3 | 78404 | 67311 | 444 | 14 | 20 | 42 | 60 | 95 |
Larva. O4 | 75693 | 67772 | 312 | 12 | 19 | 31 | 48 | 81 |
Larva. O5 | 81790 | 68266 | 514 | 14 | 21 | 42 | 57 | 99 |
Pupa. Y1 | 83228 | 52882 | 578 | 15 | 26 | 47 | 80 | 111 |
Pupa. Y2 | 84809 | 75380 | 370 | 13 | 23 | 34 | 57 | 67 |
Pupa. Y3 | 80597 | 55972 | 288 | 9 | 12 | 22 | 45 | 65 |
Pupa. Y4 | 80301 | 57459 | 291 | 8 | 11 | 20 | 37 | 56 |
Pupa. Y5 | 83433 | 75739 | 400 | 9 | 14 | 30 | 50 | 78 |
Pupa. O1 | 87192 | 84738 | 92 | 3 | 3 | 3 | 4 | 3 |
Pupa. O2 | 91959 | 87005 | 122 | 5 | 5 | 9 | 14 | 12 |
Pupa. O3 | 88771 | 84581 | 84 | 5 | 5 | 6 | 11 | 10 |
Pupa. O4 | 83843 | 79877 | 109 | 3 | 7 | 15 | 22 | 20 |
Pupa. O5 | 90087 | 86581 | 84 | 3 | 3 | 3 | 5 | 6 |
Adult. 1 | 87603 | 85355 | 53 | 2 | 2 | 2 | 3 | 3 |
Adult. 2 | 88140 | 85875 | 67 | 2 | 2 | 2 | 2 | 2 |
Adult. 3 | 76468 | 73429 | 146 | 10 | 9 | 13 | 16 | 14 |
Adult. 4 | 78755 | 56166 | 147 | 11 | 13 | 16 | 20 | 20 |
Adult. 5 | 79842 | 66193 | 136 | 9 | 12 | 16 | 20 | 15 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, G.; Wang, G.; Ma, Y.; Lv, Z.; You, Y.; Ma, P.; Yu, Y. Composition and Diversity of Gut Bacterial Community in Different Life Stages of Osmia excavata Alfken (Hymenoptera: Megachilidae). Microorganisms 2024, 12, 1709. https://doi.org/10.3390/microorganisms12081709
Wang G, Wang G, Ma Y, Lv Z, You Y, Ma P, Yu Y. Composition and Diversity of Gut Bacterial Community in Different Life Stages of Osmia excavata Alfken (Hymenoptera: Megachilidae). Microorganisms. 2024; 12(8):1709. https://doi.org/10.3390/microorganisms12081709
Chicago/Turabian StyleWang, Guangzhao, Guiping Wang, Yixiang Ma, Zhaoyun Lv, Yinwei You, Pengtao Ma, and Yi Yu. 2024. "Composition and Diversity of Gut Bacterial Community in Different Life Stages of Osmia excavata Alfken (Hymenoptera: Megachilidae)" Microorganisms 12, no. 8: 1709. https://doi.org/10.3390/microorganisms12081709
APA StyleWang, G., Wang, G., Ma, Y., Lv, Z., You, Y., Ma, P., & Yu, Y. (2024). Composition and Diversity of Gut Bacterial Community in Different Life Stages of Osmia excavata Alfken (Hymenoptera: Megachilidae). Microorganisms, 12(8), 1709. https://doi.org/10.3390/microorganisms12081709