Flow Cytometry Coupled with Resuscitation Assays As a High-Resolution Tool to Inform Environmental Management and Disinfection of Settings Affected by Tuberculous Mycobacteria
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bacterial Growth and Culture Media
2.2. Preparation of Environmental Spiked Samples
2.3. Cell Recovery from Mock Environmental Samples
2.4. Cell Viability Staining assay and Flow Cytometry Analyses
2.5. Evaluation of Dormant BCG Cells
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Andrade, C.; Contente, J.; Santos, J.A. Climate Change Projections of Aridity Conditions in the Iberian Peninsula. Water 2021, 13, 2035. [Google Scholar] [CrossRef]
- Pereira, S.C.; Carvalho, D.; Rocha, A. Temperature and Precipitation Extremes over the Iberian Peninsula under Climate Change Scenarios: A Review. Climate 2021, 9, 139. [Google Scholar] [CrossRef]
- Soares, P.M.M.; Lima, D.C.A. Water scarcity down to earth surface in a Mediterranean climate: The extreme future of soil moisture in Portugal. J. Hydrol. 2022, 615, 128731. [Google Scholar] [CrossRef]
- Carpenter, L.H.; Decker, D.J.; Lipscomb, J.F. Stakeholder Acceptance Capacity in Wildlife management. Hum. Dimens. Wildl. 2000, 5, 5–19. [Google Scholar] [CrossRef]
- Carpio, A.J.; Apollonio, M.; Acevedo, P. Wild ungulate overabundance in Europe: Contexts, causes, monitoring and management recommendations. Mammal Rev. 2021, 51, 95–108. [Google Scholar] [CrossRef]
- Carpio, A.J.; Guerrero-Casado, J.; Barasona, J.A.; Tortosa, F.S.; Vicente, J.; Hillström, L.; Delibes-Mateos, M. Hunting as a source of alien species: A European review. Biol. Invasions 2017, 19, 1197–1211. [Google Scholar] [CrossRef]
- Muñoz-Mendoza, M.; Marreros, N.; Boadella, M.; Gortázar, C.; Menéndez, S.; de Juan, L.; Bezos, J.; Romero, B.; Copano, M.F.; Amado, J.; et al. Wild boar tuberculosis in Iberian Atlantic Spain: A different picture from Mediterranean habitats. BMC Vet. Res. 2013, 9, 176. [Google Scholar] [CrossRef] [PubMed]
- Mentaberre, G.; Romero, B.; de Juan, L.; Navarro-González, N.; Velarde, R.; Mateos, A.; Marco, I.; Olivé-Boix, X.; Domínguez, L.; Lavín, S.; et al. Long-term assessment of wild boar harvesting and cattle removal for bovine tuberculosis control in free ranging populations. PLoS ONE 2014, 9, e88824. [Google Scholar] [CrossRef] [PubMed]
- Fink, M.; Schleicher, C.; Gonano, M.; Prodinger, W.M.; Pacciarini, M.; Glawischnig, W.; Ryser-Degiorgis, M.P.; Walzer, C.; Stalder, G.L.; Lombardo, D.; et al. Red deer as maintenance host for bovine tuberculosis, Alpine region. Emerg. Infect. Dis. 2015, 21, 464–467. [Google Scholar] [CrossRef]
- Vicente, J.; Höfle, U.; Garrido, J.M.; Fernández-de-Mera, I.G.; Acevedo, P.; Juste, R.; Barral, M.; Gortazar, C. Risk factors associated with the prevalence of tuberculosis-like lesions in fenced wild boar and red deer in south central Spain. Vet. Res. 2007, 38, 451–464. [Google Scholar] [CrossRef]
- Vicente, J.; Höfle, U.; Garrido, J.M.; Fernández-De-Mera, I.G.; Juste, R.; Barral, M.; Gortazar, C. Wild boar and red deer display high prevalences of tuberculosis-like lesions in Spain. Vet. Res. 2006, 37, 107–119. [Google Scholar] [CrossRef] [PubMed]
- Triguero-Ocaña, R.; Martínez-López, B.; Vicente, J.; Barasona, J.A.; Martínez-Guijosa, J.; Acevedo, P. Dynamic Network of Interactions in the Wildlife-Livestock Interface in Mediterranean Spain: An Epidemiological Point of View. Pathogens 2020, 9, 120. [Google Scholar] [CrossRef] [PubMed]
- Barasona, J.A.; Vicente, J.; Díez-Delgado, I.; Aznar, J.; Gortázar, C.; Torres, M.J. Environmental Presence of Mycobacterium tuberculosis Complex in Aggregation Points at the Wildlife/Livestock Interface. Transbound. Emerg. Dis. 2017, 64, 1148–1158. [Google Scholar] [CrossRef] [PubMed]
- Balseiro, A.; Oleaga, Á.; Álvarez Morales, L.M.; González Quirós, P.; Gortázar, C.; Prieto, J.M. Effectiveness of a calf-selective feeder in preventing wild boar access. Eur. J. Wildl. Res. 2019, 65, 38. [Google Scholar] [CrossRef]
- Allen, A.R.; Ford, T.; Skuce, R.A. Does Mycobacterium tuberculosis var. bovis Survival in the Environment Confound Bovine Tuberculosis Control and Eradication? A Literature Review. Vet. Med. Int. 2021, 2021, 8812898. [Google Scholar] [CrossRef] [PubMed]
- Pereira, A.C.; Pinto, D.; Cunha, M.V. Unlocking environmental contamination of animal tuberculosis hotspots with viable mycobacteria at the intersection of flow cytometry, PCR, and ecological modelling. Sci. Total Environ. 2023, 891, 164366. [Google Scholar] [CrossRef] [PubMed]
- Pereira, A.C.; Tenreiro, A.; Tenreiro, R.; Cunha, M.V. Stalking Mycobacterium bovis in the total environment: FLOW-FISH & FACS to detect, quantify, and sort metabolically active and quiescent cells in complex matrices. J. Hazard. Mater. 2022, 432, 128687. [Google Scholar] [PubMed]
- Destoumieux-Garzón, D.; Mavingui, P.; Boetsch, G.; Boissier, J.; Darriet, F.; Duboz, P.; Fritsch, C.; Giraudoux, P.; Le Roux, F.; Morand, S.; et al. The One Health Concept: 10 Years Old and a Long Road Ahead. Front. Vet. Sci. 2018, 5, 14. [Google Scholar] [CrossRef] [PubMed]
- Meyer, J.A.; Casey, N.H. Establishing risk assessment on water quality for livestock. Anim. Front. 2012, 2, 44–49. [Google Scholar] [CrossRef]
- Kristanti, R.A.; Hadibarata, T.; Syafrudin, M.; Yılmaz, M.; Abdullah, S. Microbiological Contaminants in Drinking Water: Current Status and Challenges. Water Air Soil Pollut. 2022, 233, 299. [Google Scholar] [CrossRef]
- Some, S.; Mondal, R.; Mitra, D.; Jain, D.; Verma, D.; Das, S. Microbial pollution of water with special reference to coliform bacteria and their nexus with environment. Energy Nexus 2021, 1, 100008. [Google Scholar] [CrossRef]
- Rompré, A.; Servais, P.; Baudart, J.; de-Roubin, M.-R.; Laurent, P. Detection and enumeration of coliforms in drinking water: Current methods and emerging approaches. J. Microbiol. Methods 2002, 49, 31–54. [Google Scholar] [CrossRef] [PubMed]
- Caruso, G.; Crisafi, E.; Mancuso, M. Development of an enzyme assay for rapid assessment of Escherichia coli in seawaters. J. Appl. Microbiol. 2002, 93, 548–556. [Google Scholar] [CrossRef] [PubMed]
- Hammes, F.; Goldschmidt, F.; Vital, M.; Wang, Y.; Egli, T. Measurement and interpretation of microbial adenosine tri-phosphate (ATP) in aquatic environments. Water Res. 2010, 44, 3915–3923. [Google Scholar] [CrossRef] [PubMed]
- Oliver, D.M.; van Niekerk, M.; Kay, D.; Heathwaite, A.L.; Porter, J.; Fleming, L.E.; Kinzelman, J.L.; Connolly, E.; Cummins, A.; McPhail, C.; et al. Opportunities and limitations of molecular methods for quantifying microbial compliance parameters in EU bathing waters. Environ. Int. 2014, 64, 124–128. [Google Scholar] [CrossRef] [PubMed]
- Buysschaert, B.; Vermijs, L.; Naka, A.; Boon, N.; De Gusseme, B. Online flow cytometric monitoring of microbial water quality in a full-scale water treatment plant. NPJ Clean Water 2018, 1, 16. [Google Scholar] [CrossRef]
- Eydal, H.S.C.; Pedersen, K. Use of an ATP assay to determine viable microbial biomass in Fennoscandian Shield groundwater from depths of 3–1000 m. J. Microbiol. Methods 2007, 70, 363–373. [Google Scholar] [CrossRef] [PubMed]
- Velten, S.; Hammes, F.; Boller, M.; Egli, T. Rapid and direct estimation of active biomass on granular activated carbon through adenosine tri-phosphate (ATP) determination. Water Res. 2007, 41, 1973–1983. [Google Scholar] [CrossRef]
- Pereira, A.C.; Tenreiro, A.; Cunha, M.V. When FLOW-FISH met FACS: Combining multiparametric, dynamic approaches for microbial single-cell research in the total environment. Sci. Total Environ. 2022, 806, 150682. [Google Scholar] [CrossRef]
- Virto, R.; Mañas, P.; Alvarez, I.; Condon, S.; Raso, J. Membrane damage and microbial inactivation by chlorine in the absence and presence of a chlorine-demanding substrate. Appl.Environ. Microbiol. 2005, 71, 5022–5028. [Google Scholar] [CrossRef]
- Willms, W.D.; Kenzie, O.R.; McAllister, T.A.; Colwell, D.; Veira, D.; Wilmshurst, J.F.; Entz, T.; Olson, M.E. Effects of water quality on cattle performance. J. Range Manag. 2002, 55, 452–460. [Google Scholar] [CrossRef]
- Llonch, L.; Verdú, M.; Martí, S.; Medinyà, C.; Riera, J.; Cucurull, J.; Devant, M. Drinking water chlorination in dairy beef fattening bulls: Water quality, potential hazards, apparent total tract digestibility, and growth performance. Animal 2023, 17, 100685. [Google Scholar] [CrossRef] [PubMed]
- Lardner, H.A.; Kirychuk, B.D.; Braul, L.; Willms, W.D.; Yarotski, J. The effect of water quality on cattle performance on pasture. Aust. J. Agric. Res. 2005, 56, 97–104. [Google Scholar] [CrossRef]
- Savill, M.; Hudson, A.; Devane, M.; Garrett, N.; Gilpin, B.; Ball, A. Elucidation of Potential Transmission Routes of Campylobacter in New Zealand. Water Sci. Technol. 2003, 47, 33–38. [Google Scholar] [CrossRef] [PubMed]
- Mohammed, A.N. Field study on evaluation of the efficacy and usability of two disinfectants for drinking water treatment at small cattle breeders and dairy cattle farms. Environ. Monit. Assess. 2016, 188, 151. [Google Scholar] [CrossRef] [PubMed]
- Chiaradia, L.; Lefebvre, C.; Parra, J.; Marcoux, J.; Burlet-Schiltz, O.; Etienne, G.; Tropis, M.; Daffé, M. Dissecting the mycobacterial cell envelope and defining the composition of the native mycomembrane. Sci. Rep. 2017, 7, 12807. [Google Scholar] [CrossRef] [PubMed]
- Borham, M.; Oreiby, A.; El-Gedawy, A.; Hegazy, Y.; Khalifa, H.O.; Al-Gaabary, M.; Matsumoto, T. Review on Bovine Tuberculosis: An Emerging Disease Associated with Multidrug-Resistant Mycobacterium Species. Pathogens 2022, 11, 715. [Google Scholar] [CrossRef] [PubMed]
- Domingo, M.; Vidal, E.; Marco, A. Pathology of bovine tuberculosis. Res. Vet. Sci. 2014, 97, S20–S29. [Google Scholar] [CrossRef] [PubMed]
- Musee, N.; Ngwenya, P.; Motaung, L.K.; Moshuhla, K.; Nomngongo, P. Occurrence, effects, and ecological risks of chemicals in sanitizers and disinfectants: A review. Environ. Chem. Ecotoxicol. 2023, 5, 62–78. [Google Scholar] [CrossRef]
- Wang, H.B.; Wu, Y.H.; Luo, L.W.; Yu, T.; Xu, A.; Xue, S.; Chen, G.Q.; Ni, X.Y.; Peng, L.; Chen, Z.; et al. Risks, characteristics, and control strategies of disinfection-residual-bacteria (DRB) from the perspective of microbial community structure. Water Res. 2021, 204, 117606. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pereira, A.C.; Cunha, M.V. Flow Cytometry Coupled with Resuscitation Assays As a High-Resolution Tool to Inform Environmental Management and Disinfection of Settings Affected by Tuberculous Mycobacteria. Microorganisms 2024, 12, 1068. https://doi.org/10.3390/microorganisms12061068
Pereira AC, Cunha MV. Flow Cytometry Coupled with Resuscitation Assays As a High-Resolution Tool to Inform Environmental Management and Disinfection of Settings Affected by Tuberculous Mycobacteria. Microorganisms. 2024; 12(6):1068. https://doi.org/10.3390/microorganisms12061068
Chicago/Turabian StylePereira, André C., and Mónica V. Cunha. 2024. "Flow Cytometry Coupled with Resuscitation Assays As a High-Resolution Tool to Inform Environmental Management and Disinfection of Settings Affected by Tuberculous Mycobacteria" Microorganisms 12, no. 6: 1068. https://doi.org/10.3390/microorganisms12061068
APA StylePereira, A. C., & Cunha, M. V. (2024). Flow Cytometry Coupled with Resuscitation Assays As a High-Resolution Tool to Inform Environmental Management and Disinfection of Settings Affected by Tuberculous Mycobacteria. Microorganisms, 12(6), 1068. https://doi.org/10.3390/microorganisms12061068